This file is indexed.

/usr/share/doc/libplplot12/examples/f95/x21f.f90 is in libplplot-dev 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
!      $Id: x21f.f90 12320 2013-05-02 01:20:31Z arjenmarkus $
!      Grid data demo.
!
!      Copyright (C) 2004  Joao Cardoso
!      Copyright (C) 2008  Andrew Ross
!
!      This file is part of PLplot.
!
!      PLplot is free software; you can redistribute it and/or modify
!      it under the terms of the GNU Library General Public License as
!      published by the Free Software Foundation; either version 2 of the
!      License, or (at your option) any later version.
!
!      PLplot is distributed in the hope that it will be useful,
!      but WITHOUT ANY WARRANTY; without even the implied warranty of
!      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!      GNU Library General Public License for more details.
!
!      You should have received a copy of the GNU Library General Public
!      License along with PLplot; if not, write to the Free Software
!      Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

      use plplot, PI => PL_PI

      implicit none

      external myisnan
      logical myisnan

      integer pts, xp, yp, nl, knn_order, randn, rosen
      real(kind=plflt) threshold, wmin
      parameter (pts = 500)
      parameter (xp = 25)
      parameter (yp = 20)
      parameter (nl = 16)
      parameter (knn_order = 20)
      parameter (threshold = 1.001_plflt)
      parameter (wmin = -1e3_plflt)
      parameter (randn = 0)
      parameter (rosen = 0)

      real(kind=plflt) xmin, xmax, ymin, ymax

      real(kind=plflt) x(pts), y(pts), z(pts), clev(nl)
      real(kind=plflt) xg(xp), yg(yp), zg(xp,yp)
      real(kind=plflt) zmin, zmax, lzmin, lzmax
      integer i, j, k
      integer alg
      character(len=80) title(6)
      data title /'Cubic Spline Approximation', &
                 'Delaunay Linear Interpolation', &
                 'Natural Neighbors Interpolation', &
                 'KNN Inv. Distance Weighted', &
                 '3NN Linear Interpolation', &
                 '4NN Around Inv. Dist. Weighted'/

      real(kind=plflt) opt(6)
      data opt /0._plflt, 0._plflt, 0._plflt, 0._plflt, 0._plflt, 0._plflt/

      real(kind=plflt) xt, yt

      real(kind=plflt) r
      integer ii, jj
      real(kind=plflt) dist, d

      character(len=1) defined

      xmin = -0.2_plflt
      ymin = -0.2_plflt
      xmax = 0.6_plflt
      ymax = 0.6_plflt

!      call plMergeOpts(options, "x21c options", NULL);
      call plparseopts(PL_PARSE_FULL)

      opt(3) = wmin
      opt(4) = dble(knn_order)
      opt(5) = threshold

! Initialize plplot

      call plinit

      call cmap1_init

      call plseed(5489)

      do i=1,pts
         xt = (xmax-xmin)*plrandd()
         yt = (ymax-ymin)*plrandd()
         if (randn.eq.0) then
            x(i) = xt + xmin
            y(i) = yt + ymin
         else
            x(i) = sqrt(-2._plflt*log(xt)) * cos(2._plflt*PI*yt) + xmin
            y(i) = sqrt(-2._plflt*log(xt)) * sin(2._plflt*PI*yt) + ymin
         endif
         if (rosen.eq.0) then
            r = sqrt(x(i)*x(i) + y(i)*y(i))
            z(i) = exp(-r*r)*cos(2._plflt*PI*r)
         else
            z(i) = log((1._plflt-x(i))**2 + 100._plflt*(y(i)-x(i)**2)**2)
         endif
      enddo

      zmin = z(1)
      zmax = z(1)
      do i=2,pts
         zmax = max(zmax,z(i))
         zmin = min(zmin,z(i))
      enddo

      do i=1,xp
         xg(i) = xmin + (xmax-xmin)*(i-1._plflt)/(xp-1._plflt)
      enddo
      do i=1,yp
         yg(i) = ymin + (ymax-ymin)*(i-1._plflt)/(yp-1._plflt)
      enddo

      call plcol0(1)
      call plenv(xmin, xmax, ymin, ymax, 2, 0)
      call plcol0(15)
      call pllab("X", "Y", "The original data sampling")
      do i=1,pts
         call plcol1( ( z(i) - zmin ) / ( zmax - zmin ) )
!     The following plstring call should be the the equivalent of
!     plpoin( 1, &x[i], &y[i], 5 ); Use plstring because it is
!     not deprecated like plpoin and has much more powerful
!     capabilities.  N.B. symbol 141 works for Hershey devices
!     (e.g., -dev xwin) only if plfontld( 0 ) has been called
!     while symbol 727 works only if plfontld( 1 ) has been
!     called.  The latter is the default which is why we use 727
!     here to represent a centred X (multiplication) symbol.
!     This dependence on plfontld is one of the limitations of
!     the Hershey escapes for PLplot, but the upside is you get
!     reasonable results for both Hershey and Unicode devices.
        call plstring( x(i:i), y(i:i), '#(727)' );
      enddo
      call pladv(0)

      call plssub(3,2)

      do k=1,2
         call pladv(0)
         do alg=1,6

            call plgriddata(x, y, z, xg, yg, zg, alg, opt(alg))

!     - CSA can generate NaNs (only interpolates? !).
!     - DTLI and NNI can generate NaNs for points outside the convex hull
!     of the data points.
!     - NNLI can generate NaNs if a sufficiently thick triangle is not found
!
!     PLplot should be NaN/Inf aware, but changing it now is quite a job...
!     so, instead of not plotting the NaN regions, a weighted average over
!     the neighbors is done.
!

            if ((alg.eq.GRID_CSA).or.(alg.eq.GRID_DTLI).or. &
                 (alg.eq.GRID_NNLI).or.(alg.eq.GRID_NNI)) then

               do i=1,xp
                  do j=1,yp
                     if (myisnan(zg(i,j))) then
!     average (IDW) over the 8 neighbors

                        zg(i,j) = 0._plflt
                        dist = 0._plflt

                        ii=i-1
                        do while ((ii.le.i+1).and.(ii.le.xp))
                           jj = j-1
                           do while ((jj.le.j+1).and.(jj.le.yp))
                              if ((ii.ge.1) .and. (jj.ge.1) .and. &
                                   (.not.myisnan(zg(ii,jj))) ) then
                                 if (abs(ii-i) + abs(jj-j) .eq. 1) then
                                    d = 1._plflt
                                 else
                                    d = 1.4142_plflt
                                 endif
                                 zg(i,j) = zg(i,j) + zg(ii,jj)/(d*d)
                                 dist = dist + d
                              endif
                              jj = jj+1
                           enddo
                           ii = ii+1
                        enddo
                        if (dist.ne.0._plflt) then
                           zg(i,j) = zg(i,j) / dist
                        else
                           zg(i,j) = zmin
                        endif
                     endif
                  enddo
               enddo
            endif

            call a2mnmx(zg, xp, yp, lzmin, lzmax, xp)

            lzmin = min(lzmin, zmin)
            lzmax = max(lzmax, zmax)

            lzmin = lzmin - 0.01_plflt
            lzmax = lzmax + 0.01_plflt

            call plcol0(1)
            call pladv(alg)

            if (k.eq.1) then

               do i=1,nl
                  clev(i) = lzmin + (lzmax-lzmin)/(nl-1._plflt)*(i-1._plflt)
               enddo
               call plenv0(xmin, xmax, ymin, ymax, 2, 0)
               call plcol0(15)
               call pllab("X", "Y", title(alg))
               call plshades(zg, defined, xmin, xmax, ymin, &
                    ymax, clev, 1._plflt, 0, 1._plflt)
               call plcol0(2)
            else

               do i = 1,nl
                  clev(i) = lzmin + (lzmax-lzmin)/(nl-1._plflt)*(i-1._plflt)
               enddo
               call plvpor(0._plflt, 1._plflt, 0._plflt, 0.9_plflt)
               call plwind(-1.1_plflt, 0.75_plflt, -0.65_plflt, 1.20_plflt)
!
!     For the comparison to be fair, all plots should have the
!     same z values, but to get the max/min of the data generated
!     by all algorithms would imply two passes. Keep it simple.
!
!     plw3d(1., 1., 1., xmin, xmax, ymin, ymax, zmin, zmax, 30, -60);
!

               call plw3d(1._plflt, 1._plflt, 1._plflt, xmin, xmax, ymin, ymax,  &
                    lzmin, lzmax, 30._plflt, -40._plflt)
               call plbox3("bntu", "X", 0._plflt, 0, &
                   "bntu", "Y", 0._plflt, 0, &
                   "bcdfntu", "Z", 0.5_plflt, 0)
               call plcol0(15)
               call pllab("", "", title(alg))
               call plot3dc(xg, yg, zg, ior(ior(DRAW_LINEXY, &
                   MAG_COLOR), BASE_CONT), clev)
            endif
         enddo
      enddo

      call plend

      end

      subroutine cmap1_init
        use plplot
        implicit none
        real(kind=plflt) i(2), h(2), l(2), s(2)

        i(1) = 0._plflt
        i(2) = 1._plflt

        h(1) = 240._plflt
        h(2) = 0._plflt

        l(1) = 0.6_plflt
        l(2) = 0.6_plflt

        s(1) = 0.8_plflt
        s(2) = 0.8_plflt

        call plscmap1n(256)
        call plscmap1l(.false., i, h, l, s)
      end subroutine cmap1_init


!----------------------------------------------------------------------------
!      Subroutine a2mnmx
!      Minimum and the maximum elements of a 2-d array.

      subroutine a2mnmx(f, nx, ny, fmin, fmax, xdim)
        use plplot
        implicit none

        integer   i, j, nx, ny, xdim
        real(kind=plflt) f(xdim, ny), fmin, fmax

        fmax = f(1, 1)
        fmin = fmax
        do j = 1, ny
           do  i = 1, nx
              fmax = max(fmax, f(i, j))
              fmin = min(fmin, f(i, j))
           enddo
        enddo
      end subroutine a2mnmx

      include 'plf95demos.inc'