This file is indexed.

/usr/share/doc/libplplot12/examples/f95/x09f.f90 is in libplplot-dev 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
!   $Id: x09f.f90 12843 2013-12-11 01:50:02Z andrewross $
!   Contour plot demo.
!
!   Copyright (C) 2004  Alan W. Irwin
!
!   This file is part of PLplot.
!
!   PLplot is free software; you can redistribute it and/or modify
!   it under the terms of the GNU Library General Public License as
!   published by the Free Software Foundation; either version 2 of the
!   License, or (at your option) any later version.
!
!   PLplot is distributed in the hope that it will be useful,
!   but WITHOUT ANY WARRANTY; without even the implied warranty of
!   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
!   GNU Library General Public License for more details.
!
!   You should have received a copy of the GNU Library General Public
!   License along with PLplot; if not, write to the Free Software
!   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

!   Does several contour plots using different coordinate mappings.

program x09f95
    use plplot, PI => PL_PI, TWOPI => PL_TWOPI
    use plf95demolib
    implicit none
    integer i, j

!   xdim and ydim are the absolute static dimensions.
!   nptsx, and nptsy are the (potentially dynamic) defined area of the 2D
!   arrays that is actually used.
    integer, parameter :: xdim=99, ydim=100, nptsx=35, nptsy=46

    real(kind=plflt)   :: z(xdim, ydim), w(xdim, ydim), &
                          xg1(xdim), yg1(ydim), &
                          xg2(xdim, ydim), yg2(xdim, ydim)
    real(kind=plflt)   :: xc(nptsx), yc(nptsy)
    real(kind=plflt)   :: xx, yy, argx, argy, distort
    real(kind=plflt)   :: tr(6)

    real(kind=plflt)   :: clevel(11) = &
        (/ -1._plflt, -0.8_plflt, -0.6_plflt, -0.4_plflt, -0.2_plflt, &
            0._plflt,  0.2_plflt,  0.4_plflt,  0.6_plflt,  0.8_plflt, 1._plflt /)

!   Process command-line arguments
    call plparseopts(PL_PARSE_FULL)

    tr = (/ 2._plflt/dble(nptsx-1), 0.0_plflt, -1.0_plflt, &
            0.0_plflt, 2._plflt/dble(nptsy-1), -1.0_plflt /)

!   Calculate the data matrices.
    xc = (arange(0,nptsx) - (nptsx/2)) / dble(nptsx/2)
    yc = (arange(0,nptsy) - (nptsy/2)) / dble(nptsy/2) - 1.0_plflt

    do i=1,nptsx
        do j=1,nptsy
            z(i,j) = xc(i)**2 - yc(j)**2
            w(i,j) = 2._plflt*xc(i)*yc(j)
        enddo
    enddo

!   Build the 1-d coord arrays.
    distort = 0.4_plflt

    xg1(1:nptsx) = coord_function( arange(0,nptsx) / dble(nptsx-1),  distort )
    yg1(1:nptsy) = coord_function( arange(0,nptsy) / dble(nptsy-1), -distort )

!   Build the 2-d coord arrays.
    do i=1,nptsx
        xx = -1._plflt + dble(i-1)*2._plflt/dble(nptsx-1)
        argx = 0.5_plflt*PI*xx
        do j=1,nptsy
            yy = -1._plflt + dble(j-1)*2._plflt/dble(nptsy-1)
            argy = 0.5_plflt*PI*yy
            xg2(i,j) = xx + distort*cos(argx)*cos(argy)
            yg2(i,j) = yy - distort*cos(argx)*cos(argy)
        enddo
    enddo

    call plinit

!   Plot using identity transform
    call pl_setcontlabelformat(4, 3)
    call pl_setcontlabelparam(0.006_plflt, 0.3_plflt, 0.1_plflt, 1)
    call plenv(-1.0_plflt, 1.0_plflt, -1.0_plflt, 1.0_plflt, 0, 0)
    call plcol0(2)
    call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, tr)
    call plstyl(1, 1500, 1500)
    call plcol0(3)
    call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, tr)
    call plstyl(0, 1500, 1500)
    call plcol0(1)
    call pllab('X Coordinate', 'Y Coordinate', 'Streamlines of flow')
    call pl_setcontlabelparam(0.006_plflt, 0.3_plflt, 0.1_plflt, 0)

!   Plot using 1d coordinate transform
    call plenv(-1.0_plflt, 1.0_plflt, -1.0_plflt, 1.0_plflt, 0, 0)
    call plcol0(2)
    call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg1(1:nptsx), yg1(1:nptsy))
    call plstyl(1, 1500, 1500)
    call plcol0(3)
    call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg1(1:nptsx), yg1(1:nptsy))
    call plstyl(0, 1500, 1500)
    call plcol0(1)
    call pllab('X Coordinate', 'Y Coordinate', 'Streamlines of flow')

!   Plot using 2d coordinate transform
    call plenv(-1.0_plflt, 1.0_plflt, -1.0_plflt, 1.0_plflt, 0, 0)
    call plcol0(2)
    call plcont(z(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg2(1:nptsx,1:nptsy), yg2(1:nptsx,1:nptsy))
    call plstyl(1, 1500, 1500)
    call plcol0(3)
    call plcont(w(1:nptsx,1:nptsy), 1, nptsx, 1, nptsy, clevel, xg2(1:nptsx,1:nptsy), yg2(1:nptsx,1:nptsy))
    call plstyl(0, 1500, 1500)
    call plcol0(1)
    call pllab('X Coordinate', 'Y Coordinate', 'Streamlines of flow')

    call polar()
    call potential()

    call plend
contains

!----------------------------------------------------------------------------
!   Auxiliary function to compute the coordinates

elemental real(kind=plflt) function coord_function( coord, factor )
    real(kind=plflt), intent(in) :: coord
    real(kind=plflt), intent(in) :: factor

    real(kind=plflt)             :: tcoord

    tcoord         = -1.0_plflt + coord * 2.0_plflt
    coord_function = tcoord + factor*cos(0.5_plflt*PI*tcoord)
end function coord_function

!----------------------------------------------------------------------------
!   polar contour plot example.
subroutine polar()
    integer, parameter :: PERIMETERPTS = 100

!   xdim and ydim are the absolute static size of the 2D arrays.
!   RPTS and THETAPTS are associated with the part of the
!   2D arrays that are defined.
    integer, parameter :: xdim=99, RPTS = 40
    integer, parameter :: ydim=100, THETAPTS = 40
    integer, parameter :: NLEVEL=10
    integer            :: i,j
    real(kind=plflt)   :: xg(xdim, ydim),  yg(xdim, ydim), &
        z(xdim, ydim), px(PERIMETERPTS), py(PERIMETERPTS), &
        lev(NLEVEL), r, theta, delta

    call plenv(-1._plflt, 1._plflt, -1._plflt, 1._plflt, 0, -2)
    call plcol0(1)

!   perimeter.
    delta = 2._plflt*PI/(PERIMETERPTS-1)
    px = cos(delta*arange(0, PERIMETERPTS))
    py = sin(delta*arange(0, PERIMETERPTS))

    call plline(px, py)

!   create data to be contoured.
    do j = 1, THETAPTS
        theta = (2._plflt*PI/dble(THETAPTS-1))*dble(j-1)
        do i = 1, RPTS
            r = (i-1)/dble(RPTS-1)
            xg(i,j) = r*cos(theta)
            yg(i,j) = r*sin(theta)
            z(i,j) = r
        enddo
    enddo

!   create contour values.
    lev = 0.05_plflt + 0.10_plflt * arange(0,nlevel)

!   plot the (polar) contours.
    call plcol0(2)
    call plcont(z, 1, RPTS, 1, THETAPTS, lev, xg, yg)
    call plcol0(1)
    call pllab('', '', 'Polar Contour Plot')
end subroutine polar

!----------------------------------------------------------------------------
!    shielded potential contour plot example
subroutine potential()

    integer          :: i, j, nx, ny, kx, lx, ky, ly, &
        nlevel, ilevgt, ilevlt, nlevlt, nlevgt, &
        ncollin, ncolbox, ncollab, &
        nxsub, nysub
    real(kind=plflt) :: r, theta, rmax, x0, &
        y0, xmin, xmax, eps, q1, d1, &
        ymin, ymax, &
        q1i, d1i, q2, d2, q2i, d2i, div1, div1i, div2, div2i, &
        zmin, zmax, dz, xpmin, xpmax, ypmin, ypmax, &
        xtick, ytick, delta

!    xdim and ydim are the absolute static size of the 2D arrays.
!    NCX and NCY are associated with the part of the
!    2D arrays that are defined.
    integer, parameter :: xdim=99, NCX=40, ydim=100, NCY=64, NPLT=100

    real(kind=plflt)   :: z(xdim, ydim), ztmp(xdim, ydim+1)
    real(kind=plflt)   :: xg(xdim, ydim+1), yg(xdim, ydim+1), xtm(NPLT), ytm(NPLT)

    real(kind=plflt)   :: clevel(20)
    character(len=8)   :: xopt, yopt

    nx = NCX
    ny = NCY

    kx = 1
    lx = nx
    ky = 1
    ly = ny

!    Set up r-theta grids
!    Tack on extra cell in theta to handle periodicity.

    do i = 1, nx
        r = i - 0.5_plflt
        do j = 1, ny
            theta = TWOPI/dble(ny-1) * (j-0.5_plflt)
            xg(i,j) = r * cos(theta)
            yg(i,j) = r * sin(theta)
        enddo
        xg(i, ny+1) = xg(i, 1)
        yg(i, ny+1) = yg(i, 1)
    enddo

    xmax = maxval( xg(1:nx,1:ny) )
    xmin = minval( xg(1:nx,1:ny) )
    ymax = maxval( yg(1:nx,1:ny) )
    ymin = minval( yg(1:nx,1:ny) )

    rmax = r
    x0 = (xmin + xmax)/2._plflt
    y0 = (ymin + ymax)/2._plflt

!    Potential inside a conducting cylinder (or sphere) by method of images.
!    Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
!    Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
!    Also put in smoothing term at small distances.

    eps = 2._plflt

    q1 = 1._plflt
    d1 = r/4._plflt

    q1i = - q1*r/d1
    d1i = r**2/d1

    q2 = -1._plflt
    d2 = r/4._plflt

    q2i = - q2*r/d2
    d2i = r**2/d2

    do i = 1, nx
        do j = 1, ny
            div1  = sqrt((xg(i,j)-d1)**2  + (yg(i,j)-d1)**2  + eps**2)
            div1i = sqrt((xg(i,j)-d1i)**2 + (yg(i,j)-d1i)**2 + eps**2)

            div2  = sqrt((xg(i,j)-d2)**2  + (yg(i,j)+d2)**2  + eps**2)
            div2i = sqrt((xg(i,j)-d2i)**2 + (yg(i,j)+d2i)**2 + eps**2)

            z(i,j) = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
        enddo
    enddo

!   Tack on extra cell in theta to handle periodicity.

    ztmp(:,1:ny) = z
    ztmp(:,ny+1:ny+1) = z(:,1:1)

    zmax = maxval( z(1:nx,1:ny) )
    zmin = minval( z(1:nx,1:ny) )

!   Set up contour levels.

    nlevel = 20
    dz = abs(zmax - zmin)/dble (nlevel)
    clevel(1:nlevel) = zmin + (arange(1,nlevel+1) - 0.5_plflt) * dz

!   Split contours into two parts, z > 0, and z < 0.
!   Dashed contours will be at levels 'ilevlt' through 'ilevlt+nlevlt'.
!   Solid  contours will be at levels 'ilevgt' through 'ilevgt+nlevgt'.
!
!   Since the array clevel is ordered, we can find the level
!   where the values become positive by counting the non-positive
!   elements

    ilevlt = 1
    nlevlt = count( clevel(1:nlevel) <= 0.0_plflt )
    ilevgt = ilevlt + nlevlt
    nlevgt = nlevel - nlevlt

!   Advance graphics frame and get ready to plot.

    ncollin = 11
    ncolbox = 1
    ncollab = 2

    call pladv(0)
    call plcol0(ncolbox)

!   Scale window to user coordinates.
!   Make a bit larger so the boundary doesn't get clipped.

    eps = 0.05_plflt
    xpmin = xmin - abs(xmin)*eps
    xpmax = xmax + abs(xmax)*eps
    ypmin = ymin - abs(ymin)*eps
    ypmax = ymax + abs(ymax)*eps

    call plvpas(0.1_plflt, 0.9_plflt, 0.1_plflt, 0.9_plflt, 1.0_plflt )
    call plwind(xpmin, xpmax, ypmin, ypmax)

    xopt = ' '
    yopt = ' '
    xtick = 0._plflt
    nxsub = 0
    ytick = 0._plflt
    nysub = 0

    call plbox(xopt, xtick, nxsub, yopt, ytick, nysub)

!   Call plotter once for z < 0 (dashed), once for z > 0 (solid lines).

    call plcol0(ncollin)
    if (nlevlt > 0) then
        call pllsty(2)
        call plcont(ztmp, kx, lx, ky, ly+1, &
                 clevel(ilevlt:nlevlt), xg, yg)
    endif
    if (nlevgt > 0) then
        call pllsty(1)
        call plcont(ztmp, kx, lx, ky, ly+1, &
                 clevel(ilevgt:ilevgt-1+nlevgt), xg, yg)
    endif

!   Draw boundary.

    delta = TWOPI/(NPLT-1)
    xtm = x0 + rmax * cos(delta*arange(0,NPLT))
    ytm = y0 + rmax * sin(delta*arange(0,NPLT))

    call plcol0(ncolbox)
    call plline(xtm, ytm)

    call plcol0(ncollab)
    call pllab('', '', 'Shielded potential of charges in a conducting sphere')
end subroutine potential
end program x09f95