This file is indexed.

/usr/share/doc/libplplot12/examples/c/x27c.c is in libplplot-dev 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
// $Id: x27c.c 11992 2011-10-20 22:54:16Z andrewross $
//
//      Drawing "spirograph" curves - epitrochoids, cycolids, roulettes
//
// Copyright (C) 2007  Arjen Markus
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published
// by the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
//
//

#include "plcdemos.h"

// Function prototypes

void cycloid( void );
void spiro( PLFLT data[], int fill );
PLINT gcd( PLINT a, PLINT b );
void arcs( void );

//--------------------------------------------------------------------------
// main
//
// Generates two kinds of plots:
//   - construction of a cycloid (animated)
//   - series of epitrochoids and hypotrochoids
//--------------------------------------------------------------------------

int
main( int argc, const char *argv[] )
{
    // R, r, p, N
    // R and r should be integers to give correct termination of the
    // angle loop using gcd.
    // N.B. N is just a place holder since it is no longer used
    // (because we now have proper termination of the angle loop).
    PLFLT params[9][4] = {
        { 21.0,   7.0,  7.0,  3.0 }, // Deltoid
        { 21.0,   7.0, 10.0,  3.0 },
        { 21.0,  -7.0, 10.0,  3.0 },
        { 20.0,   3.0,  7.0, 20.0 },
        { 20.0,   3.0, 10.0, 20.0 },
        { 20.0,  -3.0, 10.0, 20.0 },
        { 20.0,  13.0,  7.0, 20.0 },
        { 20.0,  13.0, 20.0, 20.0 },
        { 20.0, -13.0, 20.0, 20.0 }
    };

    int   i;
    int   fill;

// plplot initialization

// Parse and process command line arguments

    plparseopts( &argc, argv, PL_PARSE_FULL );

// Initialize plplot

    plinit();

// Illustrate the construction of a cycloid

    cycloid();

// Loop over the various curves
// First an overview, then all curves one by one
//
    plssub( 3, 3 ); // Three by three window

    fill = 0;
    for ( i = 0; i < 9; i++ )
    {
        pladv( 0 );
        plvpor( 0.0, 1.0, 0.0, 1.0 );
        spiro( &params[i][0], fill );
    }

    pladv( 0 );
    plssub( 1, 1 ); // One window per curve

    for ( i = 0; i < 9; i++ )
    {
        pladv( 0 );
        plvpor( 0.0, 1.0, 0.0, 1.0 );
        spiro( &params[i][0], fill );
    }

// Fill the curves
    fill = 1;

    pladv( 0 );
    plssub( 1, 1 ); // One window per curve

    for ( i = 0; i < 9; i++ )
    {
        pladv( 0 );
        plvpor( 0.0, 1.0, 0.0, 1.0 );
        spiro( &params[i][0], fill );
    }

// Finally, an example to test out plarc capabilities

    arcs();

// Don't forget to call plend() to finish off!

    plend();
    exit( 0 );
}

//--------------------------------------------------------------------------
// Calculate greatest common divisor following pseudo-code for the
// Euclidian algorithm at http://en.wikipedia.org/wiki/Euclidean_algorithm

PLINT gcd( PLINT a, PLINT b )
{
    PLINT t;
    a = abs( a );
    b = abs( b );
    while ( b != 0 )
    {
        t = b;
        b = a % b;
        a = t;
    }
    return a;
}

//--------------------------------------------------------------------------

void
cycloid( void )
{
    // TODO
}

//--------------------------------------------------------------------------

void
spiro( PLFLT params[], int fill )
{
#define NPNT    2000
    static PLFLT xcoord[NPNT + 1];
    static PLFLT ycoord[NPNT + 1];

    int          windings;
    int          steps;
    int          i;
    PLFLT        phi;
    PLFLT        phiw;
    PLFLT        dphi;
    PLFLT        xmin = 0.0;
    PLFLT        xmax = 0.0;
    PLFLT        xrange_adjust;
    PLFLT        ymin = 0.0;
    PLFLT        ymax = 0.0;
    PLFLT        yrange_adjust;

    // Fill the coordinates

    // Proper termination of the angle loop very near the beginning
    // point, see
    // http://mathforum.org/mathimages/index.php/Hypotrochoid.
    windings = (int) ( abs( (int) params[1] ) / gcd( (PLINT) params[0], (PLINT) params[1] ) );
    steps    = NPNT / windings;
    dphi     = 2.0 * PI / (PLFLT) steps;

    for ( i = 0; i <= windings * steps; i++ )
    {
        phi       = (PLFLT) i * dphi;
        phiw      = ( params[0] - params[1] ) / params[1] * phi;
        xcoord[i] = ( params[0] - params[1] ) * cos( phi ) + params[2] * cos( phiw );
        ycoord[i] = ( params[0] - params[1] ) * sin( phi ) - params[2] * sin( phiw );
        if ( i == 0 )
        {
            xmin = xcoord[i];
            xmax = xcoord[i];
            ymin = ycoord[i];
            ymax = ycoord[i];
        }
        if ( xmin > xcoord[i] )
            xmin = xcoord[i];
        if ( xmax < xcoord[i] )
            xmax = xcoord[i];
        if ( ymin > ycoord[i] )
            ymin = ycoord[i];
        if ( ymax < ycoord[i] )
            ymax = ycoord[i];
    }

    xrange_adjust = 0.15 * ( xmax - xmin );
    xmin         -= xrange_adjust;
    xmax         += xrange_adjust;
    yrange_adjust = 0.15 * ( ymax - ymin );
    ymin         -= yrange_adjust;
    ymax         += yrange_adjust;

    plwind( xmin, xmax, ymin, ymax );

    plcol0( 1 );
    if ( fill )
    {
        plfill( 1 + steps * windings, xcoord, ycoord );
    }
    else
    {
        plline( 1 + steps * windings, xcoord, ycoord );
    }
}

void arcs()
{
#define NSEG    8
    int   i;
    PLFLT theta, dtheta;
    PLFLT a, b;

    theta  = 0.0;
    dtheta = 360.0 / NSEG;
    plenv( -10.0, 10.0, -10.0, 10.0, 1, 0 );

    // Plot segments of circle in different colors
    for ( i = 0; i < NSEG; i++ )
    {
        plcol0( i % 2 + 1 );
        plarc( 0.0, 0.0, 8.0, 8.0, theta, theta + dtheta, 0.0, 0 );
        theta = theta + dtheta;
    }

    // Draw several filled ellipses inside the circle at different
    // angles.
    a     = 3.0;
    b     = a * tan( ( dtheta / 180.0 * M_PI ) / 2.0 );
    theta = dtheta / 2.0;
    for ( i = 0; i < NSEG; i++ )
    {
        plcol0( 2 - i % 2 );
        plarc( a * cos( theta / 180.0 * M_PI ), a * sin( theta / 180.0 * M_PI ), a, b, 0.0, 360.0, theta, 1 );
        theta = theta + dtheta;
    }
}