This file is indexed.

/usr/share/doc/libplplot12/examples/c++/x01cc.cc is in libplplot-dev 5.10.0+dfsg2-0.1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
//--------------------------------------------------------------------------
// $Id: x01cc.cc 11297 2010-11-02 03:31:14Z airwin $
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
// Copyright (C) 1994 Geoffrey Furnish
// Copyright (C) 1995, 2000 Maurice LeBrun
// Copyright (C) 2002, 2002, 2003, 2004 Alan W. Irwin
// Copyright (C) 2004  Andrew Ross
//
// This file is part of PLplot.
//
// PLplot is free software; you can redistribute it and/or modify
// it under the terms of the GNU Library General Public License as published by
// the Free Software Foundation; version 2 of the License.
//
// PLplot is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU Library General Public License for more details.
//
// You should have received a copy of the GNU Library General Public License
// along with PLplot; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA
//--------------------------------------------------------------------------
//
//--------------------------------------------------------------------------
// This example program demonstrates the use of the plstream C++ class, and
// some aspects of its improvements over the klunky C API, mostly those
// relating to 2-d plotting.
//--------------------------------------------------------------------------

#include "plc++demos.h"

#ifdef PL_USE_NAMESPACE
using namespace std;
#endif

//--------------------------------------------------------------------------
// In the real world, the user has his own Matrix class, so he just includes
// the header for it.  Here we conjure up a dopey stand in.

class Matrix {
    int   nx, ny;
    PLFLT *v;
public:
    Matrix( int _nx, int _ny ) : nx( _nx ), ny( _ny ) { v = new PLFLT[nx * ny]; }
    ~Matrix() { delete[] v; }

    PLFLT & operator()( int i, int j )
    {
        // Should do bounds checking, pass for now.
        return v[ j * ny + i ];
    }

    PLFLT operator()( int i, int j ) const
    {
        // Should do bounds checking, pass for now.
        return v[ j * ny + i ];
    }

    void redim( int i, int j )
    {
        delete[] v;
        nx = i, ny = j;
        v  = new PLFLT[nx * ny];
    }
};

//--------------------------------------------------------------------------
// To perform contouring, we have to concretize the abstract contouring
// interface.  Do this by deriving from Contourable_Data, and implementing
// the indexing operator.

class ContourableMatrix : public Contourable_Data {
    int    nx, ny;
    Matrix m;
    int    wrapy;               // periodic in 2nd coord ?
public:
    ContourableMatrix( int _nx, int _ny, int wy = 0 )
        : Contourable_Data( _nx, _ny ),
        nx( _nx ), ny( _ny ), m( nx, ny ), wrapy( wy )
    {}
    void elements( int& _nx, int& _ny ) const
    {
        _nx = nx;
        if ( wrapy )
            _ny = ny + 1;
        else
            _ny = ny;
    }
    PLFLT & operator()( int i, int j )
    {
        if ( wrapy ) j %= ny;
        return m( i, j );
    }
    PLFLT operator()( int i, int j ) const
    {
        if ( wrapy ) j %= ny;
        return m( i, j );
    }
};

//--------------------------------------------------------------------------
// For general mesh plotting, we also need to concretize the abstract
// coordinate interface.  Do this by deriving from Coord_2d and filling in
// the blanks.

class CoordinateMatrix : public Coord_2d {
    int    nx, ny;
    Matrix m;
    int    wrapy;
public:
    CoordinateMatrix( int _nx, int _ny, int wy = 0 )
        : nx( _nx ), ny( _ny ), m( nx, ny ), wrapy( wy )
    {}

    PLFLT operator()( int ix, int iy ) const
    {
        if ( wrapy ) iy %= ny;
        return m( ix, iy );
    }

    PLFLT & operator()( int ix, int iy )
    {
        if ( wrapy ) iy %= ny;
        return m( ix, iy );
    }

    void elements( int& _nx, int& _ny )
    {
        _nx = nx;
        if ( wrapy )
            _ny = ny + 1;
        else
            _ny = ny;
    }

    void min_max( PLFLT& _min, PLFLT& _max )
    {
        _min = _max = m( 0, 0 );
        for ( int i = 0; i < nx; i++ )
            for ( int j = 0; j < ny; j++ )
            {
                if ( m( i, j ) < _min ) _min = m( i, j );
                if ( m( i, j ) > _max ) _max = m( i, j );
            }
    }
};

class x01cc {
public:
    x01cc( int, const char** );
    void plot1();
    void plot2();


private:
    plstream *pls;
};

//--------------------------------------------------------------------------
// Just a simple little routine to show simple use of the plstream object.
//--------------------------------------------------------------------------

void x01cc::plot1()
{
    pls->col( Red );
    pls->env( 0., 1., 0., 1., 0, 0 );

    pls->col( Yellow );
    pls->lab( "(x)", "(y)", "#frPLplot Example 1 - y=x#u2" );

    PLFLT x[6], y[6];
    for ( int i = 0; i < 6; i++ )
    {
        x[i] = .2 * i;
        y[i] = x[i] * x[i];
    }

    pls->col( Cyan );
    pls->poin( 6, x, y, 9 );

    pls->col( Green );
    pls->line( 6, x, y );
}

//--------------------------------------------------------------------------
// Demonstration of contouring using the C++ abstract interface which does
// not impose fascist requirements on storage order/format of user data as
// the C and Fortran API's do.
//--------------------------------------------------------------------------

void x01cc::plot2()
{
    pls->adv( 0 );

// First declare some objects to hold the data and the coordinates.  Note,
// if you don't want to go to the trouble of making these derived classes so
// easy to use (const and non-const indexing operators, etc), such as if you
// have existing code using a Matrix class, and all you want to do now is
// plot it, then you could just make these derived classes have a
// constructor taking a Matrix (previously calculated somewhere else) by
// reference through the constructor.  That way the calculation engine can
// continue to use the normal container class, and only the plotting code
// needs the auxiliary class to concretize the C++ abstract contouring
// interface.

// Since this is a "polar" plot ( :-), see below), we need to enable the
// "wrapy" option in our special purpose data and coordinate classes.  Note
// that this allows "reconnection" of lines, etc, with trivial effort, IFF
// done from C++.  For C-- and Dogtran, one would have to copy the data to a
// new buffer, and pad one side with an image copy of the other side.

    ContourableMatrix d( 64, 64, 1 );
    CoordinateMatrix  xg( 64, 64, 1 ), yg( 64, 64, 1 );

    int   i, j;
    PLFLT twopi = 2. * 3.1415927;

// Set up the data and coordinate matrices.

    for ( i = 0; i < 64; i++ )
    {
        PLFLT r = i / 64.;
        for ( j = 0; j < 64; j++ )
        {
            PLFLT theta = twopi * j / 64.;

            xg( i, j ) = r * cos( theta );
            yg( i, j ) = r * sin( theta );;
            d( i, j )  = exp( -r * r ) * cos( twopi * 2 * r ) * sin( 3 * theta );
        }
    }

// Now draw a normal shaded plot.

    PLFLT zmin   = -1., zmax = 1.;
    int   NCONTR = 20;
    PLFLT shade_min, shade_max, sh_color;
    int   sh_cmap   = 1, sh_width;
    int   min_color = 1, min_width = 0, max_color = 0, max_width = 0;

    pls->vpor( .1, .9, .1, .9 );
    pls->wind( 0., 1., 0., twopi );

    for ( i = 0; i < NCONTR; i++ )
    {
        shade_min = zmin + ( zmax - zmin ) * i / (PLFLT) NCONTR;
        shade_max = zmin + ( zmax - zmin ) * ( i + 1 ) / (PLFLT) NCONTR;
        sh_color  = i / (PLFLT) ( NCONTR - 1 );
        sh_width  = 2;
        pls->psty( 0 );

        pls->shade( d, 0., 1., 0., twopi,
            shade_min, shade_max, sh_cmap, sh_color, sh_width,
            min_color, min_width, max_color, max_width,
            true, NULL );
    }

    pls->col( Red );
    pls->box( "bcnst", 0.0, 0, "bcnstv", 0.0, 0 );

// Now do it again, but with the coordinate transformation taken into
// account.

    pls->adv( 0 );

    cxx_pltr2 tr( xg, yg );

    pls->vpas( .1, .9, .1, .9, 1. );
    pls->wind( -1., 1., -1., 1. );

    for ( i = 0; i < NCONTR; i++ )
    {
        shade_min = zmin + ( zmax - zmin ) * i / (PLFLT) NCONTR;
        shade_max = zmin + ( zmax - zmin ) * ( i + 1 ) / (PLFLT) NCONTR;
        sh_color  = i / (PLFLT) ( NCONTR - 1 );
        sh_width  = 2;
        pls->psty( 0 );

        pls->shade( d, 0., 1., 0., twopi,
            shade_min, shade_max, sh_cmap, sh_color, sh_width,
            min_color, min_width, max_color, max_width,
            false, &tr );
    }

    pls->col( Red );

// Now draw the border around the drawing region.

    PLFLT x[65], y[65];

    for ( i = 0; i < 65; i++ )
    {
        x[i] = xg( 63, i );
        y[i] = yg( 63, i );
    }

    pls->line( 65, x, y );

// Finally, let's "squoosh" the plot, and draw it all again.

    PLFLT X1 = 1., X2 = .1, Y1 = 1.2, Y2 = -.2;

    for ( i = 0; i < 64; i++ )
    {
        PLFLT r = i / 64.;
        for ( j = 0; j < 64; j++ )
        {
            PLFLT theta = twopi * j / 64.;

            xg( i, j ) = X1 * r * cos( theta ) +
                         X2 * r*r * cos( 2 * theta );

            yg( i, j ) = Y1 * r * sin( theta ) +
                         Y2 * r*r * sin( 2 * theta );
        }
    }

    PLFLT xmin, xmax, ymin, ymax;
    xg.min_max( xmin, xmax ), yg.min_max( ymin, ymax );

    pls->adv( 0 );

    pls->vpas( .1, .9, .1, .9, 1. );
    pls->wind( xmin, xmax, ymin, ymax );

    for ( i = 0; i < NCONTR; i++ )
    {
        shade_min = zmin + ( zmax - zmin ) * i / (PLFLT) NCONTR;
        shade_max = zmin + ( zmax - zmin ) * ( i + 1 ) / (PLFLT) NCONTR;
        sh_color  = i / (PLFLT) ( NCONTR - 1 );
        sh_width  = 2;
        pls->psty( 0 );

        pls->shade( d, 0., 1., 0., twopi,
            shade_min, shade_max, sh_cmap, sh_color, sh_width,
            min_color, min_width, max_color, max_width,
            false, &tr );
    }

    pls->col( Red );

// Now draw the border around the drawing region.

    for ( i = 0; i < 65; i++ )
    {
        x[i] = xg( 63, i );
        y[i] = yg( 63, i );
    }

    pls->line( 65, x, y );
}

x01cc::x01cc( int argc, const char **argv )
{
    pls = new plstream();

    // Parse and process command line arguments.

    pls->parseopts( &argc, argv, PL_PARSE_FULL );

    // Initialize plplot.

    pls->init();
    plot1();
    plot2();
    delete pls;
}

//--------------------------------------------------------------------------
// Finally!
//--------------------------------------------------------------------------

int main( int argc, const char **argv )
{
    x01cc *x = new x01cc( argc, argv );

    delete x;
}

//--------------------------------------------------------------------------
//                              End of x01cc.cc
//--------------------------------------------------------------------------