/usr/include/d/4.9/std/range.d is in libphobos-4.9-dev 4.9.3-13ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 | // Written in the D programming language.
/**
This module defines the notion of a range. Ranges generalize the concept of
arrays, lists, or anything that involves sequential access. This abstraction
enables the same set of algorithms (see $(LINK2 std_algorithm.html,
std.algorithm)) to be used with a vast variety of different concrete types. For
example, a linear search algorithm such as $(LINK2 std_algorithm.html#find,
std.algorithm.find) works not just for arrays, but for linked-lists, input
files, incoming network data, etc.
For more detailed information about the conceptual aspect of ranges and the
motivation behind them, see Andrei Alexandrescu's article
$(LINK2 http://www.informit.com/articles/printerfriendly.aspx?p=1407357&rll=1,
$(I On Iteration)).
This module defines several templates for testing whether a given object is a
_range, and what kind of _range it is:
$(BOOKTABLE ,
$(TR $(TD $(D $(LREF isInputRange)))
$(TD Tests if something is an $(I input _range), defined to be
something from which one can sequentially read data using the
primitives $(D front), $(D popFront), and $(D empty).
))
$(TR $(TD $(D $(LREF isOutputRange)))
$(TD Tests if something is an $(I output _range), defined to be
something to which one can sequentially write data using the
$(D $(LREF put)) primitive.
))
$(TR $(TD $(D $(LREF isForwardRange)))
$(TD Tests if something is a $(I forward _range), defined to be an
input _range with the additional capability that one can save one's
current position with the $(D save) primitive, thus allowing one to
iterate over the same _range multiple times.
))
$(TR $(TD $(D $(LREF isBidirectionalRange)))
$(TD Tests if something is a $(I bidirectional _range), that is, a
forward _range that allows reverse traversal using the primitives $(D
back) and $(D popBack).
))
$(TR $(TD $(D $(LREF isRandomAccessRange)))
$(TD Tests if something is a $(I random access _range), which is a
bidirectional _range that also supports the array subscripting
operation via the primitive $(D opIndex).
))
)
A number of templates are provided that test for various _range capabilities:
$(BOOKTABLE ,
$(TR $(TD $(D $(LREF hasMobileElements)))
$(TD Tests if a given _range's elements can be moved around using the
primitives $(D moveFront), $(D moveBack), or $(D moveAt).
))
$(TR $(TD $(D $(LREF ElementType)))
$(TD Returns the element type of a given _range.
))
$(TR $(TD $(D $(LREF ElementEncodingType)))
$(TD Returns the encoding element type of a given _range.
))
$(TR $(TD $(D $(LREF hasSwappableElements)))
$(TD Tests if a _range is a forward _range with swappable elements.
))
$(TR $(TD $(D $(LREF hasAssignableElements)))
$(TD Tests if a _range is a forward _range with mutable elements.
))
$(TR $(TD $(D $(LREF hasLvalueElements)))
$(TD Tests if a _range is a forward _range with elements that can be
passed by reference and have their address taken.
))
$(TR $(TD $(D $(LREF hasLength)))
$(TD Tests if a given _range has the $(D length) attribute.
))
$(TR $(TD $(D $(LREF isInfinite)))
$(TD Tests if a given _range is an $(I infinite _range).
))
$(TR $(TD $(D $(LREF hasSlicing)))
$(TD Tests if a given _range supports the array slicing operation $(D
R[x..y]).
))
$(TR $(TD $(D $(LREF walkLength)))
$(TD Computes the length of any _range in O(n) time.
))
)
A rich set of _range creation and composition templates are provided that let
you construct new ranges out of existing ranges:
$(BOOKTABLE ,
$(TR $(TD $(D $(LREF retro)))
$(TD Iterates a bidirectional _range backwards.
))
$(TR $(TD $(D $(LREF stride)))
$(TD Iterates a _range with stride $(I n).
))
$(TR $(TD $(D $(LREF chain)))
$(TD Concatenates several ranges into a single _range.
))
$(TR $(TD $(D $(LREF roundRobin)))
$(TD Given $(I n) ranges, creates a new _range that return the $(I n)
first elements of each _range, in turn, then the second element of each
_range, and so on, in a round-robin fashion.
))
$(TR $(TD $(D $(LREF radial)))
$(TD Given a random-access _range and a starting point, creates a
_range that alternately returns the next left and next right element to
the starting point.
))
$(TR $(TD $(D $(LREF take)))
$(TD Creates a sub-_range consisting of only up to the first $(I n)
elements of the given _range.
))
$(TR $(TD $(D $(LREF takeExactly)))
$(TD Like $(D take), but assumes the given _range actually has $(I n)
elements, and therefore also defines the $(D length) property.
))
$(TR $(TD $(D $(LREF takeOne)))
$(TD Creates a random-access _range consisting of exactly the first
element of the given _range.
))
$(TR $(TD $(D $(LREF takeNone)))
$(TD Creates a random-access _range consisting of zero elements of the
given _range.
))
$(TR $(TD $(D $(LREF drop)))
$(TD Creates the _range that results from discarding the first $(I n)
elements from the given _range.
))
$(TR $(TD $(D $(LREF dropExactly)))
$(TD Creates the _range that results from discarding exactly $(I n)
of the first elements from the given _range.
))
$(TR $(TD $(D $(LREF dropOne)))
$(TD Creates the _range that results from discarding
the first elements from the given _range.
))
$(TR $(TD $(D $(LREF repeat)))
$(TD Creates a _range that consists of a single element repeated $(I n)
times, or an infinite _range repeating that element indefinitely.
))
$(TR $(TD $(D $(LREF cycle)))
$(TD Creates an infinite _range that repeats the given forward _range
indefinitely. Good for implementing circular buffers.
))
$(TR $(TD $(D $(LREF zip)))
$(TD Given $(I n) _ranges, creates a _range that successively returns a
tuple of all the first elements, a tuple of all the second elements,
etc.
))
$(TR $(TD $(D $(LREF lockstep)))
$(TD Iterates $(I n) _ranges in lockstep, for use in a $(D foreach)
loop. Similar to $(D zip), except that $(D lockstep) is designed
especially for $(D foreach) loops.
))
$(TR $(TD $(D $(LREF recurrence)))
$(TD Creates a forward _range whose values are defined by a
mathematical recurrence relation.
))
$(TR $(TD $(D $(LREF sequence)))
$(TD Similar to $(D recurrence), except that a random-access _range is
created.
))
$(TR $(TD $(D $(LREF iota)))
$(TD Creates a _range consisting of numbers between a starting point
and ending point, spaced apart by a given interval.
))
$(TR $(TD $(D $(LREF frontTransversal)))
$(TD Creates a _range that iterates over the first elements of the
given ranges.
))
$(TR $(TD $(D $(LREF transversal)))
$(TD Creates a _range that iterates over the $(I n)'th elements of the
given random-access ranges.
))
$(TR $(TD $(D $(LREF indexed)))
$(TD Creates a _range that offers a view of a given _range as though
its elements were reordered according to a given _range of indices.
))
$(TR $(TD $(D $(LREF chunks)))
$(TD Creates a _range that returns fixed-size chunks of the original
_range.
))
$(TR $(TD $(D $(LREF only)))
$(TD Creates a _range that iterates over the given arguments.
))
)
These _range-construction tools are implemented using templates; but sometimes
an object-based interface for ranges is needed. For this purpose, this module
provides a number of object and $(D interface) definitions that can be used to
wrap around _range objects created by the above templates.
$(BOOKTABLE ,
$(TR $(TD $(D $(LREF InputRange)))
$(TD Wrapper for input ranges.
))
$(TR $(TD $(D $(LREF InputAssignable)))
$(TD Wrapper for input ranges with assignable elements.
))
$(TR $(TD $(D $(LREF ForwardRange)))
$(TD Wrapper for forward ranges.
))
$(TR $(TD $(D $(LREF ForwardAssignable)))
$(TD Wrapper for forward ranges with assignable elements.
))
$(TR $(TD $(D $(LREF BidirectionalRange)))
$(TD Wrapper for bidirectional ranges.
))
$(TR $(TD $(D $(LREF BidirectionalAssignable)))
$(TD Wrapper for bidirectional ranges with assignable elements.
))
$(TR $(TD $(D $(LREF RandomAccessFinite)))
$(TD Wrapper for finite random-access ranges.
))
$(TR $(TD $(D $(LREF RandomAccessAssignable)))
$(TD Wrapper for finite random-access ranges with assignable elements.
))
$(TR $(TD $(D $(LREF RandomAccessInfinite)))
$(TD Wrapper for infinite random-access ranges.
))
$(TR $(TD $(D $(LREF OutputRange)))
$(TD Wrapper for output ranges.
))
$(TR $(TD $(D $(LREF OutputRangeObject)))
$(TD Class that implements the $(D OutputRange) interface and wraps the
$(D put) methods in virtual functions.
))
$(TR $(TD $(D $(LREF InputRangeObject)))
$(TD Class that implements the $(D InputRange) interface and wraps the
input _range methods in virtual functions.
))
$(TR $(TD $(D $(LREF RefRange)))
$(TD Wrapper around a forward _range that gives it reference semantics.
))
)
Ranges whose elements are sorted afford better efficiency with certain
operations. For this, the $(D $(LREF assumeSorted)) function can be used to
construct a $(D $(LREF SortedRange)) from a pre-sorted _range. The $(LINK2
std_algorithm.html#sort, $(D std.algorithm.sort)) function also conveniently
returns a $(D SortedRange). $(D SortedRange) objects provide some additional
_range operations that take advantage of the fact that the _range is sorted.
Finally, this module also defines some convenience functions for
manipulating ranges:
$(BOOKTABLE ,
$(TR $(TD $(D $(LREF popFrontN)))
$(TD Advances a given _range by up to $(I n) elements.
))
$(TR $(TD $(D $(LREF popBackN)))
$(TD Advances a given bidirectional _range from the right by up to
$(I n) elements.
))
$(TR $(TD $(D $(LREF popFrontExactly)))
$(TD Advances a given _range by up exactly $(I n) elements.
))
$(TR $(TD $(D $(LREF popBackExactly)))
$(TD Advances a given bidirectional _range from the right by exactly
$(I n) elements.
))
$(TR $(TD $(D $(LREF moveFront)))
$(TD Removes the front element of a _range.
))
$(TR $(TD $(D $(LREF moveBack)))
$(TD Removes the back element of a bidirectional _range.
))
$(TR $(TD $(D $(LREF moveAt)))
$(TD Removes the $(I i)'th element of a random-access _range.
))
)
Source: $(PHOBOSSRC std/_range.d)
Macros:
WIKI = Phobos/StdRange
Copyright: Copyright by authors 2008-.
License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(WEB erdani.com, Andrei Alexandrescu), David Simcha,
and Jonathan M Davis. Credit for some of the ideas in building this module goes
to $(WEB fantascienza.net/leonardo/so/, Leonardo Maffi).
*/
module std.range;
public import std.array;
import std.algorithm : copy, count, equal, filter, filterBidirectional,
findSplitBefore, group, isSorted, joiner, move, map, max, min, sort, swap,
until;
import std.traits;
import std.typecons : Tuple, tuple;
import std.typetuple : allSatisfy, staticMap, TypeTuple;
// For testing only. This code is included in a string literal to be included
// in whatever module it's needed in, so that each module that uses it can be
// tested individually, without needing to link to std.range.
enum dummyRanges = q{
// Used with the dummy ranges for testing higher order ranges.
enum RangeType
{
Input,
Forward,
Bidirectional,
Random
}
enum Length
{
Yes,
No
}
enum ReturnBy
{
Reference,
Value
}
// Range that's useful for testing other higher order ranges,
// can be parametrized with attributes. It just dumbs down an array of
// numbers 1..10.
struct DummyRange(ReturnBy _r, Length _l, RangeType _rt)
{
// These enums are so that the template params are visible outside
// this instantiation.
enum r = _r;
enum l = _l;
enum rt = _rt;
uint[] arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];
void reinit()
{
// Workaround for DMD bug 4378
arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];
}
void popFront()
{
arr = arr[1..$];
}
@property bool empty() const
{
return arr.length == 0;
}
static if(r == ReturnBy.Reference)
{
@property ref inout(uint) front() inout
{
return arr[0];
}
@property void front(uint val)
{
arr[0] = val;
}
}
else
{
@property uint front() const
{
return arr[0];
}
}
static if(rt >= RangeType.Forward)
{
@property typeof(this) save()
{
return this;
}
}
static if(rt >= RangeType.Bidirectional)
{
void popBack()
{
arr = arr[0..$ - 1];
}
static if(r == ReturnBy.Reference)
{
@property ref inout(uint) back() inout
{
return arr[$ - 1];
}
@property void back(uint val)
{
arr[$ - 1] = val;
}
}
else
{
@property uint back() const
{
return arr[$ - 1];
}
}
}
static if(rt >= RangeType.Random)
{
static if(r == ReturnBy.Reference)
{
ref inout(uint) opIndex(size_t index) inout
{
return arr[index];
}
void opIndexAssign(uint val, size_t index)
{
arr[index] = val;
}
}
else
{
uint opIndex(size_t index) const
{
return arr[index];
}
}
typeof(this) opSlice(size_t lower, size_t upper)
{
auto ret = this;
ret.arr = arr[lower..upper];
return ret;
}
}
static if(l == Length.Yes)
{
@property size_t length() const
{
return arr.length;
}
alias length opDollar;
}
}
enum dummyLength = 10;
alias TypeTuple!(
DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Forward),
DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Bidirectional),
DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Random),
DummyRange!(ReturnBy.Reference, Length.No, RangeType.Forward),
DummyRange!(ReturnBy.Reference, Length.No, RangeType.Bidirectional),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Input),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Forward),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Bidirectional),
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random),
DummyRange!(ReturnBy.Value, Length.No, RangeType.Input),
DummyRange!(ReturnBy.Value, Length.No, RangeType.Forward),
DummyRange!(ReturnBy.Value, Length.No, RangeType.Bidirectional)
) AllDummyRanges;
};
version(unittest)
{
mixin(dummyRanges);
// Tests whether forward, bidirectional and random access properties are
// propagated properly from the base range(s) R to the higher order range
// H. Useful in combination with DummyRange for testing several higher
// order ranges.
template propagatesRangeType(H, R...) {
static if(allSatisfy!(isRandomAccessRange, R)) {
enum bool propagatesRangeType = isRandomAccessRange!H;
} else static if(allSatisfy!(isBidirectionalRange, R)) {
enum bool propagatesRangeType = isBidirectionalRange!H;
} else static if(allSatisfy!(isForwardRange, R)) {
enum bool propagatesRangeType = isForwardRange!H;
} else {
enum bool propagatesRangeType = isInputRange!H;
}
}
template propagatesLength(H, R...) {
static if(allSatisfy!(hasLength, R)) {
enum bool propagatesLength = hasLength!H;
} else {
enum bool propagatesLength = !hasLength!H;
}
}
}
/**
Returns $(D true) if $(D R) is an input range. An input range must
define the primitives $(D empty), $(D popFront), and $(D front). The
following code should compile for any input range.
----
R r; // can define a range object
if (r.empty) {} // can test for empty
r.popFront(); // can invoke popFront()
auto h = r.front; // can get the front of the range of non-void type
----
The semantics of an input range (not checkable during compilation) are
assumed to be the following ($(D r) is an object of type $(D R)):
$(UL $(LI $(D r.empty) returns $(D false) iff there is more data
available in the range.) $(LI $(D r.front) returns the current
element in the range. It may return by value or by reference. Calling
$(D r.front) is allowed only if calling $(D r.empty) has, or would
have, returned $(D false).) $(LI $(D r.popFront) advances to the next
element in the range. Calling $(D r.popFront) is allowed only if
calling $(D r.empty) has, or would have, returned $(D false).))
*/
template isInputRange(R)
{
enum bool isInputRange = is(typeof(
(inout int = 0)
{
R r = void; // can define a range object
if (r.empty) {} // can test for empty
r.popFront(); // can invoke popFront()
auto h = r.front; // can get the front of the range
}));
}
unittest
{
struct A {}
struct B
{
void popFront();
@property bool empty();
@property int front();
}
static assert(!isInputRange!(A));
static assert( isInputRange!(B));
static assert( isInputRange!(int[]));
static assert( isInputRange!(char[]));
static assert(!isInputRange!(char[4]));
static assert( isInputRange!(inout(int)[])); // bug 7824
}
/+
puts the whole raw element $(D e) into $(D r). doPut will not attempt to
iterate, slice or transcode $(D e) in any way shape or form. It will $(B only)
call the correct primitive ($(D r.put(e)), $(D r.front = e) or
$(D r(0)) once.
This can be important when $(D e) needs to be placed in $(D r) unchanged.
Furthermore, it can be useful when working with $(D InputRange)s, as doPut
guarantees that no more than a single element will be placed.
+/
package void doPut(R, E)(ref R r, auto ref E e)
{
static if(is(PointerTarget!R == struct))
enum usingPut = hasMember!(PointerTarget!R, "put");
else
enum usingPut = hasMember!(R, "put");
static if (usingPut)
{
static assert(is(typeof(r.put(e))),
format("Cannot nativaly put a %s into a %s.", E.stringof, R.stringof));
r.put(e);
}
else static if (isInputRange!R)
{
static assert(is(typeof(r.front = e)),
format("Cannot nativaly put a %s into a %s.", E.stringof, R.stringof));
r.front = e;
r.popFront();
}
else
{
static assert(is(typeof(r(e))),
format("Cannot nativaly put a %s into a %s.", E.stringof, R.stringof));
r(e);
}
}
unittest
{
static assert (!isNativeOutputRange!(int, int));
static assert ( isNativeOutputRange!(int[], int));
static assert (!isNativeOutputRange!(int[][], int));
static assert (!isNativeOutputRange!(int, int[]));
static assert (!isNativeOutputRange!(int[], int[]));
static assert ( isNativeOutputRange!(int[][], int[]));
static assert (!isNativeOutputRange!(int, int[][]));
static assert (!isNativeOutputRange!(int[], int[][]));
static assert (!isNativeOutputRange!(int[][], int[][]));
static assert (!isNativeOutputRange!(int[4], int));
static assert ( isNativeOutputRange!(int[4][], int)); //Scary!
static assert ( isNativeOutputRange!(int[4][], int[4]));
static assert (!isNativeOutputRange!( char[], char));
static assert (!isNativeOutputRange!( char[], dchar));
static assert ( isNativeOutputRange!(dchar[], char));
static assert ( isNativeOutputRange!(dchar[], dchar));
}
/++
Outputs $(D e) to $(D r). The exact effect is dependent upon the two
types. Several cases are accepted, as described below. The code snippets
are attempted in order, and the first to compile "wins" and gets
evaluated.
In this table "doPut" is a method that places $(D e) into $(D r), using the
correct primitive: $(D r.put(e)) if $(D R) defines $(D put), $(D r.front = e) if $(D r) is an input
range (followed by $(D r.popFront())), or $(D r(e)) otherwise.
$(BOOKTABLE ,
$(TR
$(TH Code Snippet)
$(TH Scenario)
)
$(TR
$(TD $(D r.doPut(e);))
$(TD $(D R) specifically accepts an $(D E).)
)
$(TR
$(TD $(D r.doPut([ e ]);))
$(TD $(D R) specifically accepts an $(D E[]).)
)
$(TR
$(TD $(D r.putChar(e);))
$(TD $(D R) accepts some form of string or character. put will
transcode the character $(D e) accordingly.)
)
$(TR
$(TD $(D for (; !e.empty; e.popFront()) put(r, e.front);))
$(TD Copying range $(D E) into $(D R).)
)
)
Tip: $(D put) should $(I not) be used "UFCS-style", eg $(D r.put(e)).
Doing this may call $(D R.put) directly, by-passing any transformation
feature provided by $(D Range.put). $(D put(r, e)) is prefered.
+/
void put(R, E)(ref R r, E e)
{
@property ref E[] EArrayInit(); //@@@9186@@@: Can't use (E[]).init
//First level: simply straight up put.
static if (is(typeof(doPut(r, e))))
{
doPut(r, e);
}
//Optional optimization block for straight up array to array copy.
else static if (isDynamicArray!R && !isNarrowString!R && isDynamicArray!E && is(typeof(r[] = e[])))
{
immutable len = e.length;
r[0 .. len] = e[];
r = r[len .. $];
}
//Accepts E[] ?
else static if (is(typeof(doPut(r, [e]))) && !isDynamicArray!R)
{
if (__ctfe)
doPut(r, [e]);
else
doPut(r, (&e)[0..1]);
}
//special case for char to string.
else static if (isSomeChar!E && is(typeof(putChar(r, e))))
{
putChar(r, e);
}
//Extract each element from the range
//We can use "put" here, so we can recursively test a RoR of E.
else static if (isInputRange!E && is(typeof(put(r, e.front))))
{
//Special optimization: If E is a narrow string, and r accepts characters no-wider than the string's
//Then simply feed the characters 1 by 1.
static if (isNarrowString!E && (
(is(E : const char[]) && is(typeof(doPut(r, char.max))) && !is(typeof(doPut(r, dchar.max))) && !is(typeof(doPut(r, wchar.max)))) ||
(is(E : const wchar[]) && is(typeof(doPut(r, wchar.max))) && !is(typeof(doPut(r, dchar.max)))) ) )
{
foreach(c; e)
doPut(r, c);
}
else
{
for (; !e.empty; e.popFront())
put(r, e.front);
}
}
else
static assert (false, format("Cannot put a %s into a %s.", E.stringof, R.stringof));
}
//Helper function to handle chars as quickly and as elegantly as possible
//Assumes r.put(e)/r(e) has already been tested
private void putChar(R, E)(ref R r, E e)
if (isSomeChar!E)
{
////@@@9186@@@: Can't use (E[]).init
ref const( char)[] cstringInit();
ref const(wchar)[] wstringInit();
ref const(dchar)[] dstringInit();
enum csCond = !isDynamicArray!R && is(typeof(doPut(r, cstringInit())));
enum wsCond = !isDynamicArray!R && is(typeof(doPut(r, wstringInit())));
enum dsCond = !isDynamicArray!R && is(typeof(doPut(r, dstringInit())));
//Use "max" to avoid static type demotion
enum ccCond = is(typeof(doPut(r, char.max)));
enum wcCond = is(typeof(doPut(r, wchar.max)));
//enum dcCond = is(typeof(doPut(r, dchar.max)));
//Fast transform a narrow char into a wider string
static if ((wsCond && E.sizeof < wchar.sizeof) || (dsCond && E.sizeof < dchar.sizeof))
{
enum w = wsCond && E.sizeof < wchar.sizeof;
Select!(w, wchar, dchar) c = e;
if (__ctfe)
doPut(r, [c]);
else
doPut(r, (&c)[0..1]);
}
//Encode a wide char into a narrower string
else static if (wsCond || csCond)
{
import std.utf;
/+static+/ Select!(wsCond, wchar[2], char[4]) buf; //static prevents purity.
doPut(r, buf.ptr[0 .. encode(buf, e)]); //the word ".ptr" added to enforce un-safety.
}
//Slowly encode a wide char into a series of narrower chars
else static if (wcCond || ccCond)
{
import std.encoding;
alias C = Select!(wcCond, wchar, char);
encode!(C, R)(e, r);
}
else
static assert (false, format("Cannot put a %s into a %s.", E.stringof, R.stringof));
}
pure unittest
{
auto f = delegate (const(char)[]) {};
putChar(f, cast(dchar)'a');
}
unittest
{
struct A {}
static assert(!isInputRange!(A));
struct B
{
void put(int) {}
}
B b;
put(b, 5);
}
unittest
{
int[] a = [1, 2, 3], b = [10, 20];
auto c = a;
put(a, b);
assert(c == [10, 20, 3]);
assert(a == [3]);
}
unittest
{
int[] a = new int[10];
int b;
static assert(isInputRange!(typeof(a)));
put(a, b);
}
unittest
{
void myprint(in char[] s) { }
auto r = &myprint;
put(r, 'a');
}
unittest
{
int[] a = new int[10];
static assert(!__traits(compiles, put(a, 1.0L)));
static assert( __traits(compiles, put(a, 1)));
/*
* a[0] = 65; // OK
* a[0] = 'A'; // OK
* a[0] = "ABC"[0]; // OK
* put(a, "ABC"); // OK
*/
static assert( __traits(compiles, put(a, "ABC")));
}
unittest
{
char[] a = new char[10];
static assert(!__traits(compiles, put(a, 1.0L)));
static assert(!__traits(compiles, put(a, 1)));
// char[] is NOT output range.
static assert(!__traits(compiles, put(a, 'a')));
static assert(!__traits(compiles, put(a, "ABC")));
}
unittest
{
int[][] a;
int[] b;
int c;
static assert( __traits(compiles, put(b, c)));
static assert( __traits(compiles, put(a, b)));
static assert(!__traits(compiles, put(a, c)));
}
unittest
{
int[][] a = new int[][](3);
int[] b = [1];
auto aa = a;
put(aa, b);
assert(aa == [[], []]);
assert(a == [[1], [], []]);
int[][3] c = [2];
aa = a;
put(aa, c[]);
assert(aa.empty);
assert(a == [[2], [2], [2]]);
}
unittest
{
// Test fix for bug 7476.
struct LockingTextWriter
{
void put(dchar c){}
}
struct RetroResult
{
bool end = false;
@property bool empty() const { return end; }
@property dchar front(){ return 'a'; }
void popFront(){ end = true; }
}
LockingTextWriter w;
RetroResult r;
put(w, r);
}
unittest
{
import std.conv : to;
static struct PutC(C)
{
string result;
void put(const(C) c) { result ~= to!string((&c)[0..1]); }
}
static struct PutS(C)
{
string result;
void put(const(C)[] s) { result ~= to!string(s); }
}
static struct PutSS(C)
{
string result;
void put(const(C)[][] ss)
{
foreach(s; ss)
result ~= to!string(s);
}
}
PutS!char p;
putChar(p, cast(dchar)'a');
//Source Char
foreach (SC; TypeTuple!(char, wchar, dchar))
{
SC ch = 'I';
dchar dh = '♥';
immutable(SC)[] s = "日本語!";
immutable(SC)[][] ss = ["日本語", "が", "好き", "ですか", "?"];
//Target Char
foreach (TC; TypeTuple!(char, wchar, dchar))
{
//Testing PutC and PutS
foreach (Type; TypeTuple!(PutC!TC, PutS!TC))
{
Type type;
auto sink = new Type();
//Testing put and sink
foreach (value ; tuple(type, sink))
{
put(value, ch);
assert(value.result == "I");
put(value, dh);
assert(value.result == "I♥");
put(value, s);
assert(value.result == "I♥日本語!");
put(value, ss);
assert(value.result == "I♥日本語!日本語が好きですか?");
}
}
}
}
}
unittest
{
static struct CharRange
{
char c;
enum empty = false;
void popFront(){};
ref char front() @property
{
return c;
}
}
CharRange c;
put(c, cast(dchar)'H');
put(c, "hello"d);
}
unittest
{
// issue 9823
const(char)[] r;
void delegate(const(char)[]) dg = (s) { r = s; };
put(dg, ["ABC"]);
assert(r == "ABC");
}
unittest
{
// issue 10571
import std.format;
string buf;
formattedWrite((in char[] s) { buf ~= s; }, "%s", "hello");
assert(buf == "hello");
}
unittest
{
import std.format;
struct PutC(C)
{
void put(C){}
}
struct PutS(C)
{
void put(const(C)[]){}
}
struct CallC(C)
{
void opCall(C){}
}
struct CallS(C)
{
void opCall(const(C)[]){}
}
struct FrontC(C)
{
enum empty = false;
auto front()@property{return C.init;}
void front(C)@property{}
void popFront(){}
}
struct FrontS(C)
{
enum empty = false;
auto front()@property{return C[].init;}
void front(const(C)[])@property{}
void popFront(){}
}
void foo()
{
foreach(C; TypeTuple!(char, wchar, dchar))
{
formattedWrite((C c){}, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
formattedWrite((const(C)[]){}, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
formattedWrite(PutC!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
formattedWrite(PutS!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
CallC!C callC;
CallS!C callS;
formattedWrite(callC, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
formattedWrite(callS, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
formattedWrite(FrontC!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
formattedWrite(FrontS!C(), "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
}
formattedWrite((dchar[]).init, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
}
}
/+
Returns $(D true) if $(D R) is a native output range for elements of type
$(D E). An output range is defined functionally as a range that
supports the operation $(D doPut(r, e)) as defined above. if $(D doPut(r, e))
is valid, then $(D put(r,e)) will have the same behavior.
The two guarantees isNativeOutputRange gives over the larger $(D isOutputRange)
are:
1: $(D e) is $(B exactly) what will be placed (not $(D [e]), for example).
2: if $(D E) is a non $(empty) $(D InputRange), then placing $(D e) is
guaranteed to not overflow the range.
+/
package template isNativeOutputRange(R, E)
{
enum bool isNativeOutputRange = is(typeof(
(inout int = 0)
{
R r = void;
E e;
doPut(r, e);
}));
}
//
unittest
{
int[] r = new int[](4);
static assert(isInputRange!(int[]));
static assert( isNativeOutputRange!(int[], int));
static assert(!isNativeOutputRange!(int[], int[]));
static assert( isOutputRange!(int[], int[]));
if (!r.empty)
put(r, 1); //guaranteed to succeed
if (!r.empty)
put(r, [1, 2]); //May actually error out.
}
/++
Returns $(D true) if $(D R) is an output range for elements of type
$(D E). An output range is defined functionally as a range that
supports the operation $(D put(r, e)) as defined above.
+/
template isOutputRange(R, E)
{
enum bool isOutputRange = is(typeof(
(inout int = 0)
{
R r = void;
E e = void;
put(r, e);
}));
}
unittest
{
import std.stdio : writeln;
void myprint(in char[] s) { writeln('[', s, ']'); }
static assert(isOutputRange!(typeof(&myprint), char));
auto app = appender!string();
string s;
static assert( isOutputRange!(Appender!string, string));
static assert( isOutputRange!(Appender!string*, string));
static assert(!isOutputRange!(Appender!string, int));
static assert(!isOutputRange!(char[], char));
static assert(!isOutputRange!(wchar[], wchar));
static assert( isOutputRange!(dchar[], char));
static assert( isOutputRange!(dchar[], wchar));
static assert( isOutputRange!(dchar[], dchar));
static assert( isOutputRange!(dchar[], string));
static assert( isOutputRange!(dchar[], wstring));
static assert( isOutputRange!(dchar[], dstring));
static assert(!isOutputRange!(const(int)[], int));
static assert(!isOutputRange!(inout(int)[], int));
}
unittest
{
// 6973
static assert(isOutputRange!(OutputRange!int, int));
}
/**
Returns $(D true) if $(D R) is a forward range. A forward range is an
input range $(D r) that can save "checkpoints" by saving $(D r.save)
to another value of type $(D R). Notable examples of input ranges that
are $(I not) forward ranges are file/socket ranges; copying such a
range will not save the position in the stream, and they most likely
reuse an internal buffer as the entire stream does not sit in
memory. Subsequently, advancing either the original or the copy will
advance the stream, so the copies are not independent.
The following code should compile for any forward range.
----
static assert(isInputRange!R);
R r1;
static assert (is(typeof(r1.save) == R));
----
Saving a range is not duplicating it; in the example above, $(D r1)
and $(D r2) still refer to the same underlying data. They just
navigate that data independently.
The semantics of a forward range (not checkable during compilation)
are the same as for an input range, with the additional requirement
that backtracking must be possible by saving a copy of the range
object with $(D save) and using it later.
*/
template isForwardRange(R)
{
enum bool isForwardRange = isInputRange!R && is(typeof(
(inout int = 0)
{
R r1 = void;
static assert (is(typeof(r1.save) == R));
}));
}
unittest
{
static assert(!isForwardRange!(int));
static assert( isForwardRange!(int[]));
static assert( isForwardRange!(inout(int)[]));
}
/**
Returns $(D true) if $(D R) is a bidirectional range. A bidirectional
range is a forward range that also offers the primitives $(D back) and
$(D popBack). The following code should compile for any bidirectional
range.
----
R r;
static assert(isForwardRange!R); // is forward range
r.popBack(); // can invoke popBack
auto t = r.back; // can get the back of the range
auto w = r.front;
static assert(is(typeof(t) == typeof(w))); // same type for front and back
----
The semantics of a bidirectional range (not checkable during
compilation) are assumed to be the following ($(D r) is an object of
type $(D R)):
$(UL $(LI $(D r.back) returns (possibly a reference to) the last
element in the range. Calling $(D r.back) is allowed only if calling
$(D r.empty) has, or would have, returned $(D false).))
*/
template isBidirectionalRange(R)
{
enum bool isBidirectionalRange = isForwardRange!R && is(typeof(
(inout int = 0)
{
R r = void;
r.popBack();
auto t = r.back;
auto w = r.front;
static assert(is(typeof(t) == typeof(w)));
}));
}
unittest
{
struct A {}
struct B
{
void popFront();
@property bool empty();
@property int front();
}
struct C
{
@property bool empty();
@property C save();
void popFront();
@property int front();
void popBack();
@property int back();
}
static assert(!isBidirectionalRange!(A));
static assert(!isBidirectionalRange!(B));
static assert( isBidirectionalRange!(C));
static assert( isBidirectionalRange!(int[]));
static assert( isBidirectionalRange!(char[]));
static assert( isBidirectionalRange!(inout(int)[]));
}
/**
Returns $(D true) if $(D R) is a random-access range. A random-access
range is a bidirectional range that also offers the primitive $(D
opIndex), OR an infinite forward range that offers $(D opIndex). In
either case, the range must either offer $(D length) or be
infinite. The following code should compile for any random-access
range.
----
// range is finite and bidirectional or infinite and forward.
static assert(isBidirectionalRange!R ||
isForwardRange!R && isInfinite!R);
R r = void;
auto e = r[1]; // can index
static assert(is(typeof(e) == typeof(r.front))); // same type for indexed and front
static assert(!isNarrowString!R); // narrow strings cannot be indexed as ranges
static assert(hasLength!R || isInfinite!R); // must have length or be infinite
// $ must work as it does with arrays if opIndex works with $
static if(is(typeof(r[$])))
{
static assert(is(typeof(r.front) == typeof(r[$])));
// $ - 1 doesn't make sense with infinite ranges but needs to work
// with finite ones.
static if(!isInfinite!R)
static assert(is(typeof(r.front) == typeof(r[$ - 1])));
}
----
The semantics of a random-access range (not checkable during
compilation) are assumed to be the following ($(D r) is an object of
type $(D R)): $(UL $(LI $(D r.opIndex(n)) returns a reference to the
$(D n)th element in the range.))
Although $(D char[]) and $(D wchar[]) (as well as their qualified
versions including $(D string) and $(D wstring)) are arrays, $(D
isRandomAccessRange) yields $(D false) for them because they use
variable-length encodings (UTF-8 and UTF-16 respectively). These types
are bidirectional ranges only.
*/
template isRandomAccessRange(R)
{
enum bool isRandomAccessRange = is(typeof(
(inout int = 0)
{
static assert(isBidirectionalRange!R ||
isForwardRange!R && isInfinite!R);
R r = void;
auto e = r[1];
static assert(is(typeof(e) == typeof(r.front)));
static assert(!isNarrowString!R);
static assert(hasLength!R || isInfinite!R);
static if(is(typeof(r[$])))
{
static assert(is(typeof(r.front) == typeof(r[$])));
static if(!isInfinite!R)
static assert(is(typeof(r.front) == typeof(r[$ - 1])));
}
}));
}
unittest
{
struct A {}
struct B
{
void popFront();
@property bool empty();
@property int front();
}
struct C
{
void popFront();
@property bool empty();
@property int front();
void popBack();
@property int back();
}
struct D
{
@property bool empty();
@property D save();
@property int front();
void popFront();
@property int back();
void popBack();
ref int opIndex(uint);
@property size_t length();
alias length opDollar;
//int opSlice(uint, uint);
}
static assert(!isRandomAccessRange!(A));
static assert(!isRandomAccessRange!(B));
static assert(!isRandomAccessRange!(C));
static assert( isRandomAccessRange!(D));
static assert( isRandomAccessRange!(int[]));
static assert( isRandomAccessRange!(inout(int)[]));
}
unittest
{
// Test fix for bug 6935.
struct R
{
@disable this();
@disable static @property R init();
@property bool empty() const { return false; }
@property int front() const { return 0; }
void popFront() {}
@property R save() { return this; }
@property int back() const { return 0; }
void popBack(){}
int opIndex(size_t n) const { return 0; }
@property size_t length() const { return 0; }
alias length opDollar;
void put(int e){ }
}
static assert(isInputRange!R);
static assert(isForwardRange!R);
static assert(isBidirectionalRange!R);
static assert(isRandomAccessRange!R);
static assert(isOutputRange!(R, int));
}
/**
Returns $(D true) iff $(D R) supports the $(D moveFront) primitive,
as well as $(D moveBack) and $(D moveAt) if it's a bidirectional or
random access range. These may be explicitly implemented, or may work
via the default behavior of the module level functions $(D moveFront)
and friends.
*/
template hasMobileElements(R)
{
enum bool hasMobileElements = is(typeof(
(inout int = 0)
{
R r = void;
return moveFront(r);
}))
&& (!isBidirectionalRange!R || is(typeof(
(inout int = 0)
{
R r = void;
return moveBack(r);
})))
&& (!isRandomAccessRange!R || is(typeof(
(inout int = 0)
{
R r = void;
return moveAt(r, 0);
})));
}
unittest
{
static struct HasPostblit
{
this(this) {}
}
auto nonMobile = map!"a"(repeat(HasPostblit.init));
static assert(!hasMobileElements!(typeof(nonMobile)));
static assert( hasMobileElements!(int[]));
static assert( hasMobileElements!(inout(int)[]));
static assert( hasMobileElements!(typeof(iota(1000))));
}
/**
The element type of $(D R). $(D R) does not have to be a range. The
element type is determined as the type yielded by $(D r.front) for an
object $(D r) of type $(D R). For example, $(D ElementType!(T[])) is
$(D T) if $(D T[]) isn't a narrow string; if it is, the element type is
$(D dchar). If $(D R) doesn't have $(D front), $(D ElementType!R) is
$(D void).
*/
template ElementType(R)
{
static if (is(typeof(R.init.front.init) T))
alias T ElementType;
else
alias void ElementType;
}
///
unittest
{
// Standard arrays: returns the type of the elements of the array
static assert(is(ElementType!(byte[]) == byte));
static assert(is(ElementType!(int[]) == int));
// Accessing .front retrieves the decoded dchar
static assert(is(ElementType!(char[]) == dchar)); // rvalue
static assert(is(ElementType!(wchar[]) == dchar)); // rvalue
static assert(is(ElementType!(dchar[]) == dchar)); // lvalue
// Ditto
static assert(is(ElementType!(string) == dchar));
static assert(is(ElementType!(wstring) == dchar));
static assert(is(ElementType!(dstring) == immutable(dchar)));
// For ranges it gets the type of .front.
auto range = iota(0, 10);
static assert(is(ElementType!(typeof(range)) == int));
}
unittest
{
enum XYZ : string { a = "foo" }
auto x = XYZ.a.front;
immutable char[3] a = "abc";
int[] i;
void[] buf;
static assert(is(ElementType!(XYZ) == dchar));
static assert(is(ElementType!(typeof(a)) == dchar));
static assert(is(ElementType!(typeof(i)) == int));
static assert(is(ElementType!(typeof(buf)) == void));
static assert(is(ElementType!(inout(int)[]) == inout(int)));
static assert(is(ElementType!(inout(int[])) == inout(int)));
}
unittest
{
static assert(is(ElementType!(int[5]) == int));
static assert(is(ElementType!(int[0]) == int));
static assert(is(ElementType!(char[5]) == dchar));
static assert(is(ElementType!(char[0]) == dchar));
}
unittest //11336
{
static struct S
{
this(this) @disable;
}
static assert(is(ElementType!(S[]) == S));
}
unittest // 11401
{
// ElementType should also work for non-@propety 'front'
struct E { ushort id; }
struct R
{
E front() { return E.init; }
}
static assert(is(ElementType!R == E));
}
/**
The encoding element type of $(D R). For narrow strings ($(D char[]),
$(D wchar[]) and their qualified variants including $(D string) and
$(D wstring)), $(D ElementEncodingType) is the character type of the
string. For all other types, $(D ElementEncodingType) is the same as
$(D ElementType).
*/
template ElementEncodingType(R)
{
static if (isNarrowString!R)
alias typeof(*lvalueOf!R.ptr) ElementEncodingType;
else
alias ElementType!R ElementEncodingType;
}
///
unittest
{
// internally the range stores the encoded type
static assert(is(ElementEncodingType!(char[]) == char));
static assert(is(ElementEncodingType!(wchar[]) == wchar));
static assert(is(ElementEncodingType!(dchar[]) == dchar));
// ditto
static assert(is(ElementEncodingType!(string) == immutable(char)));
static assert(is(ElementEncodingType!(wstring) == immutable(wchar)));
static assert(is(ElementEncodingType!(dstring) == immutable(dchar)));
static assert(is(ElementEncodingType!(byte[]) == byte));
static assert(is(ElementEncodingType!(int[]) == int));
auto range = iota(0, 10);
static assert(is(ElementEncodingType!(typeof(range)) == int));
}
unittest
{
enum XYZ : string { a = "foo" }
auto x = XYZ.a.front;
immutable char[3] a = "abc";
int[] i;
void[] buf;
static assert(is(ElementType!(XYZ) : dchar));
static assert(is(ElementEncodingType!(char[]) == char));
static assert(is(ElementEncodingType!(string) == immutable char));
static assert(is(ElementType!(typeof(a)) : dchar));
static assert(is(ElementType!(typeof(i)) == int));
static assert(is(ElementEncodingType!(typeof(i)) == int));
static assert(is(ElementType!(typeof(buf)) : void));
static assert(is(ElementEncodingType!(inout char[]) : inout(char)));
}
unittest
{
static assert(is(ElementEncodingType!(int[5]) == int));
static assert(is(ElementEncodingType!(int[0]) == int));
static assert(is(ElementEncodingType!(char[5]) == char));
static assert(is(ElementEncodingType!(char[0]) == char));
}
/**
Returns $(D true) if $(D R) is a forward range and has swappable
elements. The following code should compile for any range
with swappable elements.
----
R r;
static assert(isForwardRange!(R)); // range is forward
swap(r.front, r.front); // can swap elements of the range
----
*/
template hasSwappableElements(R)
{
enum bool hasSwappableElements = isForwardRange!R && is(typeof(
(inout int = 0)
{
R r = void;
swap(r.front, r.front); // can swap elements of the range
}));
}
unittest
{
static assert(!hasSwappableElements!(const int[]));
static assert(!hasSwappableElements!(const(int)[]));
static assert(!hasSwappableElements!(inout(int)[]));
static assert( hasSwappableElements!(int[]));
//static assert( hasSwappableElements!(char[]));
}
/**
Returns $(D true) if $(D R) is a forward range and has mutable
elements. The following code should compile for any range
with assignable elements.
----
R r;
static assert(isForwardRange!R); // range is forward
auto e = r.front;
r.front = e; // can assign elements of the range
----
*/
template hasAssignableElements(R)
{
enum bool hasAssignableElements = isForwardRange!R && is(typeof(
(inout int = 0)
{
R r = void;
static assert(isForwardRange!(R)); // range is forward
auto e = r.front;
r.front = e; // can assign elements of the range
}));
}
unittest
{
static assert(!hasAssignableElements!(const int[]));
static assert(!hasAssignableElements!(const(int)[]));
static assert( hasAssignableElements!(int[]));
static assert(!hasAssignableElements!(inout(int)[]));
}
/**
Tests whether $(D R) has lvalue elements. These are defined as elements that
can be passed by reference and have their address taken.
*/
template hasLvalueElements(R)
{
enum bool hasLvalueElements = is(typeof(
(inout int = 0)
{
void checkRef(ref ElementType!R stuff) {}
R r = void;
static assert(is(typeof(checkRef(r.front))));
}));
}
unittest
{
static assert( hasLvalueElements!(int[]));
static assert( hasLvalueElements!(const(int)[]));
static assert( hasLvalueElements!(inout(int)[]));
static assert( hasLvalueElements!(immutable(int)[]));
static assert(!hasLvalueElements!(typeof(iota(3))));
auto c = chain([1, 2, 3], [4, 5, 6]);
static assert( hasLvalueElements!(typeof(c)));
// bugfix 6336
struct S { immutable int value; }
static assert( isInputRange!(S[]));
static assert( hasLvalueElements!(S[]));
}
/**
Returns $(D true) if $(D R) has a $(D length) member that returns an
integral type. $(D R) does not have to be a range. Note that $(D
length) is an optional primitive as no range must implement it. Some
ranges do not store their length explicitly, some cannot compute it
without actually exhausting the range (e.g. socket streams), and some
other ranges may be infinite.
Although narrow string types ($(D char[]), $(D wchar[]), and their
qualified derivatives) do define a $(D length) property, $(D
hasLength) yields $(D false) for them. This is because a narrow
string's length does not reflect the number of characters, but instead
the number of encoding units, and as such is not useful with
range-oriented algorithms.
*/
template hasLength(R)
{
enum bool hasLength = !isNarrowString!R && is(typeof(
(inout int = 0)
{
R r = void;
static assert(is(typeof(r.length) : ulong));
}));
}
unittest
{
static assert(!hasLength!(char[]));
static assert( hasLength!(int[]));
static assert( hasLength!(inout(int)[]));
struct A { ulong length; }
struct B { size_t length() { return 0; } }
struct C { @property size_t length() { return 0; } }
static assert( hasLength!(A));
static assert(!hasLength!(B));
static assert( hasLength!(C));
}
/**
Returns $(D true) if $(D R) is an infinite input range. An
infinite input range is an input range that has a statically-defined
enumerated member called $(D empty) that is always $(D false),
for example:
----
struct MyInfiniteRange
{
enum bool empty = false;
...
}
----
*/
template isInfinite(R)
{
static if (isInputRange!R && __traits(compiles, { enum e = R.empty; }))
enum bool isInfinite = !R.empty;
else
enum bool isInfinite = false;
}
unittest
{
static assert(!isInfinite!(int[]));
static assert( isInfinite!(Repeat!(int)));
}
/**
Returns $(D true) if $(D R) offers a slicing operator with integral boundaries
that returns a forward range type.
For finite ranges, the result of $(D opSlice) must be of the same type as the
original range type. If the range defines $(D opDollar), then it must support
subtraction.
For infinite ranges, when $(I not) using $(D opDollar), the result of
$(D opSlice) must be the result of $(LREF take) or $(LREF takeExactly) on the
original range (they both return the same type for infinite ranges). However,
when using $(D opDollar), the result of $(D opSlice) must be that of the
original range type.
The following code must compile for $(D hasSlicing) to be $(D true):
----
R r = void;
static if(isInfinite!R)
typeof(take(r, 1)) s = r[1 .. 2];
else
{
static assert(is(typeof(r[1 .. 2]) == R));
R s = r[1 .. 2];
}
s = r[1 .. 2];
static if(is(typeof(r[0 .. $])))
{
static assert(is(typeof(r[0 .. $]) == R));
R t = r[0 .. $];
t = r[0 .. $];
static if(!isInfinite!R)
{
static assert(is(typeof(r[0 .. $ - 1]) == R));
R u = r[0 .. $ - 1];
u = r[0 .. $ - 1];
}
}
static assert(isForwardRange!(typeof(r[1 .. 2])));
static assert(hasLength!(typeof(r[1 .. 2])));
----
*/
template hasSlicing(R)
{
enum bool hasSlicing = isForwardRange!R && !isNarrowString!R && is(typeof(
(inout int = 0)
{
R r = void;
static if(isInfinite!R)
typeof(take(r, 1)) s = r[1 .. 2];
else
{
static assert(is(typeof(r[1 .. 2]) == R));
R s = r[1 .. 2];
}
s = r[1 .. 2];
static if(is(typeof(r[0 .. $])))
{
static assert(is(typeof(r[0 .. $]) == R));
R t = r[0 .. $];
t = r[0 .. $];
static if(!isInfinite!R)
{
static assert(is(typeof(r[0 .. $ - 1]) == R));
R u = r[0 .. $ - 1];
u = r[0 .. $ - 1];
}
}
static assert(isForwardRange!(typeof(r[1 .. 2])));
static assert(hasLength!(typeof(r[1 .. 2])));
}));
}
unittest
{
static assert( hasSlicing!(int[]));
static assert( hasSlicing!(const(int)[]));
static assert(!hasSlicing!(const int[]));
static assert( hasSlicing!(inout(int)[]));
static assert(!hasSlicing!(inout int []));
static assert( hasSlicing!(immutable(int)[]));
static assert(!hasSlicing!(immutable int[]));
static assert(!hasSlicing!string);
static assert( hasSlicing!dstring);
enum rangeFuncs = "@property int front();" ~
"void popFront();" ~
"@property bool empty();" ~
"@property auto save() { return this; }" ~
"@property size_t length();";
struct A { mixin(rangeFuncs); int opSlice(size_t, size_t); }
struct B { mixin(rangeFuncs); B opSlice(size_t, size_t); }
struct C { mixin(rangeFuncs); @disable this(); C opSlice(size_t, size_t); }
struct D { mixin(rangeFuncs); int[] opSlice(size_t, size_t); }
static assert(!hasSlicing!(A));
static assert( hasSlicing!(B));
static assert( hasSlicing!(C));
static assert(!hasSlicing!(D));
struct InfOnes
{
enum empty = false;
void popFront() {}
@property int front() { return 1; }
@property InfOnes save() { return this; }
auto opSlice(size_t i, size_t j) { return takeExactly(this, j - i); }
auto opSlice(size_t i, Dollar d) { return this; }
struct Dollar {}
Dollar opDollar() const { return Dollar.init; }
}
static assert(hasSlicing!InfOnes);
}
/**
This is a best-effort implementation of $(D length) for any kind of
range.
If $(D hasLength!Range), simply returns $(D range.length) without
checking $(D upTo) (when specified).
Otherwise, walks the range through its length and returns the number
of elements seen. Performes $(BIGOH n) evaluations of $(D range.empty)
and $(D range.popFront()), where $(D n) is the effective length of $(D
range).
The $(D upTo) parameter is useful to "cut the losses" in case
the interest is in seeing whether the range has at least some number
of elements. If the parameter $(D upTo) is specified, stops if $(D
upTo) steps have been taken and returns $(D upTo).
Infinite ranges are compatible, provided the parameter $(D upTo) is
specified, in which case the implementation simply returns upTo.
*/
auto walkLength(Range)(Range range)
if (isInputRange!Range && !isInfinite!Range)
{
static if (hasLength!Range)
return range.length;
else
{
size_t result;
for ( ; !range.empty ; range.popFront() )
++result;
return result;
}
}
/// ditto
auto walkLength(Range)(Range range, const size_t upTo)
if (isInputRange!Range)
{
static if (hasLength!Range)
return range.length;
else static if (isInfinite!Range)
return upTo;
else
{
size_t result;
for ( ; result < upTo && !range.empty ; range.popFront() )
++result;
return result;
}
}
unittest
{
//hasLength Range
int[] a = [ 1, 2, 3 ];
assert(walkLength(a) == 3);
assert(walkLength(a, 0) == 3);
assert(walkLength(a, 2) == 3);
assert(walkLength(a, 4) == 3);
//Forward Range
auto b = filter!"true"([1, 2, 3, 4]);
assert(b.walkLength() == 4);
assert(b.walkLength(0) == 0);
assert(b.walkLength(2) == 2);
assert(b.walkLength(4) == 4);
assert(b.walkLength(6) == 4);
//Infinite Range
auto fibs = recurrence!"a[n-1] + a[n-2]"(1, 1);
assert(!__traits(compiles, fibs.walkLength()));
assert(fibs.take(10).walkLength() == 10);
assert(fibs.walkLength(55) == 55);
}
/**
Iterates a bidirectional range backwards. The original range can be
accessed by using the $(D source) property. Applying retro twice to
the same range yields the original range.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(retro(a), [ 5, 4, 3, 2, 1 ][]));
assert(retro(a).source is a);
assert(retro(retro(a)) is a);
----
*/
auto retro(Range)(Range r)
if (isBidirectionalRange!(Unqual!Range))
{
// Check for retro(retro(r)) and just return r in that case
static if (is(typeof(retro(r.source)) == Range))
{
return r.source;
}
else
{
static struct Result()
{
private alias Unqual!Range R;
// User code can get and set source, too
R source;
static if (hasLength!R)
{
private alias CommonType!(size_t, typeof(source.length)) IndexType;
IndexType retroIndex(IndexType n)
{
return source.length - n - 1;
}
}
public:
alias R Source;
@property bool empty() { return source.empty; }
@property auto save()
{
return Result(source.save);
}
@property auto ref front() { return source.back; }
void popFront() { source.popBack(); }
@property auto ref back() { return source.front; }
void popBack() { source.popFront(); }
static if(is(typeof(.moveBack(source))))
{
ElementType!R moveFront()
{
return .moveBack(source);
}
}
static if(is(typeof(.moveFront(source))))
{
ElementType!R moveBack()
{
return .moveFront(source);
}
}
static if (hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
source.back = val;
}
@property auto back(ElementType!R val)
{
source.front = val;
}
}
static if (isRandomAccessRange!(R) && hasLength!(R))
{
auto ref opIndex(IndexType n) { return source[retroIndex(n)]; }
static if (hasAssignableElements!R)
{
void opIndexAssign(ElementType!R val, IndexType n)
{
source[retroIndex(n)] = val;
}
}
static if (is(typeof(.moveAt(source, 0))))
{
ElementType!R moveAt(IndexType index)
{
return .moveAt(source, retroIndex(index));
}
}
static if (hasSlicing!R)
typeof(this) opSlice(IndexType a, IndexType b)
{
return typeof(this)(source[source.length - b .. source.length - a]);
}
}
static if (hasLength!R)
{
@property auto length()
{
return source.length;
}
alias length opDollar;
}
}
return Result!()(r);
}
}
unittest
{
static assert(isBidirectionalRange!(typeof(retro("hello"))));
int[] a;
static assert(is(typeof(a) == typeof(retro(retro(a)))));
assert(retro(retro(a)) is a);
static assert(isRandomAccessRange!(typeof(retro([1, 2, 3]))));
void test(int[] input, int[] witness)
{
auto r = retro(input);
assert(r.front == witness.front);
assert(r.back == witness.back);
assert(equal(r, witness));
}
test([ 1 ], [ 1 ]);
test([ 1, 2 ], [ 2, 1 ]);
test([ 1, 2, 3 ], [ 3, 2, 1 ]);
test([ 1, 2, 3, 4 ], [ 4, 3, 2, 1 ]);
test([ 1, 2, 3, 4, 5 ], [ 5, 4, 3, 2, 1 ]);
test([ 1, 2, 3, 4, 5, 6 ], [ 6, 5, 4, 3, 2, 1 ]);
// static assert(is(Retro!(immutable int[])));
immutable foo = [1,2,3].idup;
retro(foo);
foreach(DummyType; AllDummyRanges) {
static if (!isBidirectionalRange!DummyType) {
static assert(!__traits(compiles, Retro!DummyType));
} else {
DummyType dummyRange;
dummyRange.reinit();
auto myRetro = retro(dummyRange);
static assert(propagatesRangeType!(typeof(myRetro), DummyType));
assert(myRetro.front == 10);
assert(myRetro.back == 1);
assert(myRetro.moveFront() == 10);
assert(myRetro.moveBack() == 1);
static if (isRandomAccessRange!DummyType && hasLength!DummyType) {
assert(myRetro[0] == myRetro.front);
assert(myRetro.moveAt(2) == 8);
static if (DummyType.r == ReturnBy.Reference) {
{
myRetro[9]++;
scope(exit) myRetro[9]--;
assert(dummyRange[0] == 2);
myRetro.front++;
scope(exit) myRetro.front--;
assert(myRetro.front == 11);
myRetro.back++;
scope(exit) myRetro.back--;
assert(myRetro.back == 3);
}
{
myRetro.front = 0xFF;
scope(exit) myRetro.front = 10;
assert(dummyRange.back == 0xFF);
myRetro.back = 0xBB;
scope(exit) myRetro.back = 1;
assert(dummyRange.front == 0xBB);
myRetro[1] = 11;
scope(exit) myRetro[1] = 8;
assert(dummyRange[8] == 11);
}
}
}
}
}
}
unittest
{
auto LL = iota(1L, 4L);
auto r = retro(LL);
assert(equal(r, [3L, 2L, 1L]));
}
/**
Iterates range $(D r) with stride $(D n). If the range is a
random-access range, moves by indexing into the range; otherwise,
moves by successive calls to $(D popFront). Applying stride twice to
the same range results in a stride with a step that is the
product of the two applications.
Throws: $(D Exception) if $(D n == 0).
Example:
----
int[] a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];
assert(equal(stride(a, 3), [ 1, 4, 7, 10 ][]));
assert(stride(stride(a, 2), 3) == stride(a, 6));
----
*/
auto stride(Range)(Range r, size_t n)
if (isInputRange!(Unqual!Range))
{
import std.exception : enforce;
enforce(n > 0, "Stride cannot have step zero.");
static if (is(typeof(stride(r.source, n)) == Range))
{
// stride(stride(r, n1), n2) is stride(r, n1 * n2)
return stride(r.source, r._n * n);
}
else
{
static struct Result
{
private alias Unqual!Range R;
public R source;
private size_t _n;
// Chop off the slack elements at the end
static if (hasLength!R &&
(isRandomAccessRange!R && hasSlicing!R
|| isBidirectionalRange!R))
private void eliminateSlackElements()
{
auto slack = source.length % _n;
if (slack)
{
slack--;
}
else if (!source.empty)
{
slack = min(_n, source.length) - 1;
}
else
{
slack = 0;
}
if (!slack) return;
static if (isRandomAccessRange!R && hasSlicing!R)
{
source = source[0 .. source.length - slack];
}
else static if (isBidirectionalRange!R)
{
foreach (i; 0 .. slack)
{
source.popBack();
}
}
}
static if (isForwardRange!R)
{
@property auto save()
{
return Result(source.save, _n);
}
}
static if (isInfinite!R)
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return source.empty;
}
}
@property auto ref front()
{
return source.front;
}
static if (is(typeof(.moveFront(source))))
{
ElementType!R moveFront()
{
return .moveFront(source);
}
}
static if (hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
source.front = val;
}
}
void popFront()
{
static if (isRandomAccessRange!R && hasLength!R && hasSlicing!R)
{
source = source[min(_n, source.length) .. source.length];
}
else
{
static if (hasLength!R)
{
foreach (i; 0 .. min(source.length, _n))
{
source.popFront();
}
}
else
{
foreach (i; 0 .. _n)
{
source.popFront();
if (source.empty) break;
}
}
}
}
static if (isBidirectionalRange!R && hasLength!R)
{
void popBack()
{
popBackN(source, _n);
}
@property auto ref back()
{
eliminateSlackElements();
return source.back;
}
static if (is(typeof(.moveBack(source))))
{
ElementType!R moveBack()
{
eliminateSlackElements();
return .moveBack(source);
}
}
static if (hasAssignableElements!R)
{
@property auto back(ElementType!R val)
{
eliminateSlackElements();
source.back = val;
}
}
}
static if (isRandomAccessRange!R && hasLength!R)
{
auto ref opIndex(size_t n)
{
return source[_n * n];
}
/**
Forwards to $(D moveAt(source, n)).
*/
static if (is(typeof(.moveAt(source, 0))))
{
ElementType!R moveAt(size_t n)
{
return .moveAt(source, _n * n);
}
}
static if (hasAssignableElements!R)
{
void opIndexAssign(ElementType!R val, size_t n)
{
source[_n * n] = val;
}
}
}
static if (hasSlicing!R && hasLength!R)
typeof(this) opSlice(size_t lower, size_t upper)
{
assert(upper >= lower && upper <= length);
immutable translatedUpper = (upper == 0) ? 0 :
(upper * _n - (_n - 1));
immutable translatedLower = min(lower * _n, translatedUpper);
assert(translatedLower <= translatedUpper);
return typeof(this)(source[translatedLower..translatedUpper], _n);
}
static if (hasLength!R)
{
@property auto length()
{
return (source.length + _n - 1) / _n;
}
alias length opDollar;
}
}
return Result(r, n);
}
}
unittest
{
static assert(isRandomAccessRange!(typeof(stride([1, 2, 3], 2))));
void test(size_t n, int[] input, int[] witness)
{
assert(equal(stride(input, n), witness));
}
test(1, [], []);
int[] arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
assert(stride(stride(arr, 2), 3) is stride(arr, 6));
test(1, arr, arr);
test(2, arr, [1, 3, 5, 7, 9]);
test(3, arr, [1, 4, 7, 10]);
test(4, arr, [1, 5, 9]);
// Test slicing.
auto s1 = stride(arr, 1);
assert(equal(s1[1..4], [2, 3, 4]));
assert(s1[1..4].length == 3);
assert(equal(s1[1..5], [2, 3, 4, 5]));
assert(s1[1..5].length == 4);
assert(s1[0..0].empty);
assert(s1[3..3].empty);
// assert(s1[$ .. $].empty);
assert(s1[s1.opDollar .. s1.opDollar].empty);
auto s2 = stride(arr, 2);
assert(equal(s2[0..2], [1,3]));
assert(s2[0..2].length == 2);
assert(equal(s2[1..5], [3, 5, 7, 9]));
assert(s2[1..5].length == 4);
assert(s2[0..0].empty);
assert(s2[3..3].empty);
// assert(s2[$ .. $].empty);
assert(s2[s2.opDollar .. s2.opDollar].empty);
// Test fix for Bug 5035
auto m = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]; // 3 rows, 4 columns
auto col = stride(m, 4);
assert(equal(col, [1, 1, 1]));
assert(equal(retro(col), [1, 1, 1]));
immutable int[] immi = [ 1, 2, 3 ];
static assert(isRandomAccessRange!(typeof(stride(immi, 1))));
// Check for infiniteness propagation.
static assert(isInfinite!(typeof(stride(repeat(1), 3))));
foreach(DummyType; AllDummyRanges) {
DummyType dummyRange;
dummyRange.reinit();
auto myStride = stride(dummyRange, 4);
// Should fail if no length and bidirectional b/c there's no way
// to know how much slack we have.
static if (hasLength!DummyType || !isBidirectionalRange!DummyType) {
static assert(propagatesRangeType!(typeof(myStride), DummyType));
}
assert(myStride.front == 1);
assert(myStride.moveFront() == 1);
assert(equal(myStride, [1, 5, 9]));
static if (hasLength!DummyType) {
assert(myStride.length == 3);
}
static if (isBidirectionalRange!DummyType && hasLength!DummyType) {
assert(myStride.back == 9);
assert(myStride.moveBack() == 9);
}
static if (isRandomAccessRange!DummyType && hasLength!DummyType) {
assert(myStride[0] == 1);
assert(myStride[1] == 5);
assert(myStride.moveAt(1) == 5);
assert(myStride[2] == 9);
static assert(hasSlicing!(typeof(myStride)));
}
static if (DummyType.r == ReturnBy.Reference) {
// Make sure reference is propagated.
{
myStride.front++;
scope(exit) myStride.front--;
assert(dummyRange.front == 2);
}
{
myStride.front = 4;
scope(exit) myStride.front = 1;
assert(dummyRange.front == 4);
}
static if (isBidirectionalRange!DummyType && hasLength!DummyType) {
{
myStride.back++;
scope(exit) myStride.back--;
assert(myStride.back == 10);
}
{
myStride.back = 111;
scope(exit) myStride.back = 9;
assert(myStride.back == 111);
}
static if (isRandomAccessRange!DummyType) {
{
myStride[1]++;
scope(exit) myStride[1]--;
assert(dummyRange[4] == 6);
}
{
myStride[1] = 55;
scope(exit) myStride[1] = 5;
assert(dummyRange[4] == 55);
}
}
}
}
}
}
unittest
{
auto LL = iota(1L, 10L);
auto s = stride(LL, 3);
assert(equal(s, [1L, 4L, 7L]));
}
/**
Spans multiple ranges in sequence. The function $(D chain) takes any
number of ranges and returns a $(D Chain!(R1, R2,...)) object. The
ranges may be different, but they must have the same element type. The
result is a range that offers the $(D front), $(D popFront), and $(D
empty) primitives. If all input ranges offer random access and $(D
length), $(D Chain) offers them as well.
If only one range is offered to $(D Chain) or $(D chain), the $(D
Chain) type exits the picture by aliasing itself directly to that
range's type.
Example:
----
int[] arr1 = [ 1, 2, 3, 4 ];
int[] arr2 = [ 5, 6 ];
int[] arr3 = [ 7 ];
auto s = chain(arr1, arr2, arr3);
assert(s.length == 7);
assert(s[5] == 6);
assert(equal(s, [1, 2, 3, 4, 5, 6, 7][]));
----
*/
auto chain(Ranges...)(Ranges rs)
if (Ranges.length > 0 &&
allSatisfy!(isInputRange, staticMap!(Unqual, Ranges)) &&
!is(CommonType!(staticMap!(ElementType, staticMap!(Unqual, Ranges))) == void))
{
static if (Ranges.length == 1)
{
return rs[0];
}
else
{
static struct Result
{
private:
alias staticMap!(Unqual, Ranges) R;
alias CommonType!(staticMap!(.ElementType, R)) RvalueElementType;
private template sameET(A)
{
enum sameET = is(.ElementType!A == RvalueElementType);
}
enum bool allSameType = allSatisfy!(sameET, R);
// This doesn't work yet
static if (allSameType)
{
alias ref RvalueElementType ElementType;
}
else
{
alias RvalueElementType ElementType;
}
static if (allSameType && allSatisfy!(hasLvalueElements, R))
{
static ref RvalueElementType fixRef(ref RvalueElementType val)
{
return val;
}
}
else
{
static RvalueElementType fixRef(RvalueElementType val)
{
return val;
}
}
// This is the entire state
R source;
// TODO: use a vtable (or more) instead of linear iteration
public:
this(R input)
{
foreach (i, v; input)
{
source[i] = v;
}
}
import std.typetuple : anySatisfy;
static if (anySatisfy!(isInfinite, R))
{
// Propagate infiniteness.
enum bool empty = false;
}
else
{
@property bool empty()
{
foreach (i, Unused; R)
{
if (!source[i].empty) return false;
}
return true;
}
}
static if (allSatisfy!(isForwardRange, R))
@property auto save()
{
typeof(this) result = this;
foreach (i, Unused; R)
{
result.source[i] = result.source[i].save;
}
return result;
}
void popFront()
{
foreach (i, Unused; R)
{
if (source[i].empty) continue;
source[i].popFront();
return;
}
}
@property auto ref front()
{
foreach (i, Unused; R)
{
if (source[i].empty) continue;
return fixRef(source[i].front);
}
assert(false);
}
static if (allSameType && allSatisfy!(hasAssignableElements, R))
{
// @@@BUG@@@
//@property void front(T)(T v) if (is(T : RvalueElementType))
// Return type must be auto due to Bug 4706.
@property auto front(RvalueElementType v)
{
foreach (i, Unused; R)
{
if (source[i].empty) continue;
source[i].front = v;
return;
}
assert(false);
}
}
static if (allSatisfy!(hasMobileElements, R))
{
RvalueElementType moveFront()
{
foreach (i, Unused; R)
{
if (source[i].empty) continue;
return .moveFront(source[i]);
}
assert(false);
}
}
static if (allSatisfy!(isBidirectionalRange, R))
{
@property auto ref back()
{
foreach_reverse (i, Unused; R)
{
if (source[i].empty) continue;
return fixRef(source[i].back);
}
assert(false);
}
void popBack()
{
foreach_reverse (i, Unused; R)
{
if (source[i].empty) continue;
source[i].popBack();
return;
}
}
static if (allSatisfy!(hasMobileElements, R))
{
RvalueElementType moveBack()
{
foreach_reverse (i, Unused; R)
{
if (source[i].empty) continue;
return .moveBack(source[i]);
}
assert(false);
}
}
static if (allSameType && allSatisfy!(hasAssignableElements, R))
{
// Return type must be auto due to extremely strange bug in DMD's
// function overloading.
@property auto back(RvalueElementType v)
{
foreach_reverse (i, Unused; R)
{
if (source[i].empty) continue;
source[i].back = v;
return;
}
assert(false);
}
}
}
static if (allSatisfy!(hasLength, R))
{
@property size_t length()
{
size_t result;
foreach (i, Unused; R)
{
result += source[i].length;
}
return result;
}
alias length opDollar;
}
static if (allSatisfy!(isRandomAccessRange, R))
{
auto ref opIndex(size_t index)
{
foreach (i, Range; R)
{
static if (isInfinite!(Range))
{
return source[i][index];
}
else
{
immutable length = source[i].length;
if (index < length) return fixRef(source[i][index]);
index -= length;
}
}
assert(false);
}
static if (allSatisfy!(hasMobileElements, R))
{
RvalueElementType moveAt(size_t index)
{
foreach (i, Range; R)
{
static if (isInfinite!(Range))
{
return .moveAt(source[i], index);
}
else
{
immutable length = source[i].length;
if (index < length) return .moveAt(source[i], index);
index -= length;
}
}
assert(false);
}
}
static if (allSameType && allSatisfy!(hasAssignableElements, R))
void opIndexAssign(ElementType v, size_t index)
{
foreach (i, Range; R)
{
static if (isInfinite!(Range))
{
source[i][index] = v;
}
else
{
immutable length = source[i].length;
if (index < length)
{
source[i][index] = v;
return;
}
index -= length;
}
}
assert(false);
}
}
static if (allSatisfy!(hasLength, R) && allSatisfy!(hasSlicing, R))
auto opSlice(size_t begin, size_t end)
{
auto result = this;
foreach (i, Unused; R)
{
immutable len = result.source[i].length;
if (len < begin)
{
result.source[i] = result.source[i]
[len .. len];
begin -= len;
}
else
{
result.source[i] = result.source[i]
[begin .. len];
break;
}
}
auto cut = length;
cut = cut <= end ? 0 : cut - end;
foreach_reverse (i, Unused; R)
{
immutable len = result.source[i].length;
if (cut > len)
{
result.source[i] = result.source[i]
[0 .. 0];
cut -= len;
}
else
{
result.source[i] = result.source[i]
[0 .. len - cut];
break;
}
}
return result;
}
}
return Result(rs);
}
}
unittest
{
{
int[] arr1 = [ 1, 2, 3, 4 ];
int[] arr2 = [ 5, 6 ];
int[] arr3 = [ 7 ];
int[] witness = [ 1, 2, 3, 4, 5, 6, 7 ];
auto s1 = chain(arr1);
static assert(isRandomAccessRange!(typeof(s1)));
auto s2 = chain(arr1, arr2);
static assert(isBidirectionalRange!(typeof(s2)));
static assert(isRandomAccessRange!(typeof(s2)));
s2.front = 1;
auto s = chain(arr1, arr2, arr3);
assert(s[5] == 6);
assert(equal(s, witness));
assert(s[5] == 6);
}
{
int[] arr1 = [ 1, 2, 3, 4 ];
int[] witness = [ 1, 2, 3, 4 ];
assert(equal(chain(arr1), witness));
}
{
uint[] foo = [1,2,3,4,5];
uint[] bar = [1,2,3,4,5];
auto c = chain(foo, bar);
c[3] = 42;
assert(c[3] == 42);
assert(c.moveFront() == 1);
assert(c.moveBack() == 5);
assert(c.moveAt(4) == 5);
assert(c.moveAt(5) == 1);
}
// Make sure bug 3311 is fixed. ChainImpl should compile even if not all
// elements are mutable.
auto c = chain( iota(0, 10), iota(0, 10) );
// Test the case where infinite ranges are present.
auto inf = chain([0,1,2][], cycle([4,5,6][]), [7,8,9][]); // infinite range
assert(inf[0] == 0);
assert(inf[3] == 4);
assert(inf[6] == 4);
assert(inf[7] == 5);
static assert(isInfinite!(typeof(inf)));
immutable int[] immi = [ 1, 2, 3 ];
immutable float[] immf = [ 1, 2, 3 ];
static assert(is(typeof(chain(immi, immf))));
// Check that chain at least instantiates and compiles with every possible
// pair of DummyRange types, in either order.
foreach(DummyType1; AllDummyRanges) {
DummyType1 dummy1;
foreach(DummyType2; AllDummyRanges) {
DummyType2 dummy2;
auto myChain = chain(dummy1, dummy2);
static assert(
propagatesRangeType!(typeof(myChain), DummyType1, DummyType2)
);
assert(myChain.front == 1);
foreach(i; 0..dummyLength) {
myChain.popFront();
}
assert(myChain.front == 1);
static if (isBidirectionalRange!DummyType1 &&
isBidirectionalRange!DummyType2) {
assert(myChain.back == 10);
}
static if (isRandomAccessRange!DummyType1 &&
isRandomAccessRange!DummyType2) {
assert(myChain[0] == 1);
}
static if (hasLvalueElements!DummyType1 && hasLvalueElements!DummyType2)
{
static assert(hasLvalueElements!(typeof(myChain)));
}
else
{
static assert(!hasLvalueElements!(typeof(myChain)));
}
}
}
}
unittest
{
class Foo{}
immutable(Foo)[] a;
immutable(Foo)[] b;
auto c = chain(a, b);
}
/**
$(D roundRobin(r1, r2, r3)) yields $(D r1.front), then $(D r2.front),
then $(D r3.front), after which it pops off one element from each and
continues again from $(D r1). For example, if two ranges are involved,
it alternately yields elements off the two ranges. $(D roundRobin)
stops after it has consumed all ranges (skipping over the ones that
finish early).
Example:
----
int[] a = [ 1, 2, 3, 4];
int[] b = [ 10, 20 ];
assert(equal(roundRobin(a, b), [1, 10, 2, 20, 3, 4]));
----
*/
auto roundRobin(Rs...)(Rs rs)
if (Rs.length > 1 && allSatisfy!(isInputRange, staticMap!(Unqual, Rs)))
{
struct Result
{
import std.conv : to;
public Rs source;
private size_t _current = size_t.max;
@property bool empty()
{
foreach (i, Unused; Rs)
{
if (!source[i].empty) return false;
}
return true;
}
@property auto ref front()
{
static string makeSwitch()
{
string result = "switch (_current) {\n";
foreach (i, R; Rs)
{
auto si = to!string(i);
result ~= "case "~si~": "~
"assert(!source["~si~"].empty); return source["~si~"].front;\n";
}
return result ~ "default: assert(0); }";
}
mixin(makeSwitch());
}
void popFront()
{
static string makeSwitchPopFront()
{
string result = "switch (_current) {\n";
foreach (i, R; Rs)
{
auto si = to!string(i);
result ~= "case "~si~": source["~si~"].popFront(); break;\n";
}
return result ~ "default: assert(0); }";
}
static string makeSwitchIncrementCounter()
{
string result =
"auto next = _current == Rs.length - 1 ? 0 : _current + 1;\n"
"switch (next) {\n";
foreach (i, R; Rs)
{
auto si = to!string(i);
auto si_1 = to!string(i ? i - 1 : Rs.length - 1);
result ~= "case "~si~": "
"if (!source["~si~"].empty) { _current = "~si~"; return; }\n"
"if ("~si~" == _current) { _current = _current.max; return; }\n"
"goto case "~to!string((i + 1) % Rs.length)~";\n";
}
return result ~ "default: assert(0); }";
}
mixin(makeSwitchPopFront());
mixin(makeSwitchIncrementCounter());
}
static if (allSatisfy!(isForwardRange, staticMap!(Unqual, Rs)))
@property auto save()
{
Result result = this;
foreach (i, Unused; Rs)
{
result.source[i] = result.source[i].save;
}
return result;
}
static if (allSatisfy!(hasLength, Rs))
{
@property size_t length()
{
size_t result;
foreach (i, R; Rs)
{
result += source[i].length;
}
return result;
}
alias length opDollar;
}
}
return Result(rs, 0);
}
unittest
{
int[] a = [ 1, 2, 3 ];
int[] b = [ 10, 20, 30, 40 ];
auto r = roundRobin(a, b);
assert(equal(r, [ 1, 10, 2, 20, 3, 30, 40 ]));
}
/**
Iterates a random-access range starting from a given point and
progressively extending left and right from that point. If no initial
point is given, iteration starts from the middle of the
range. Iteration spans the entire range.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(radial(a), [ 3, 4, 2, 5, 1 ]));
a = [ 1, 2, 3, 4 ];
assert(equal(radial(a), [ 2, 3, 1, 4 ]));
----
*/
auto radial(Range, I)(Range r, I startingIndex)
if (isRandomAccessRange!(Unqual!Range) && hasLength!(Unqual!Range) && isIntegral!I)
{
if (!r.empty) ++startingIndex;
return roundRobin(retro(r[0 .. startingIndex]), r[startingIndex .. r.length]);
}
/// Ditto
auto radial(R)(R r)
if (isRandomAccessRange!(Unqual!R) && hasLength!(Unqual!R))
{
return .radial(r, (r.length - !r.empty) / 2);
}
unittest
{
import std.conv : text;
import std.exception : enforce;
void test(int[] input, int[] witness)
{
enforce(equal(radial(input), witness),
text(radial(input), " vs. ", witness));
}
test([], []);
test([ 1 ], [ 1 ]);
test([ 1, 2 ], [ 1, 2 ]);
test([ 1, 2, 3 ], [ 2, 3, 1 ]);
test([ 1, 2, 3, 4 ], [ 2, 3, 1, 4 ]);
test([ 1, 2, 3, 4, 5 ], [ 3, 4, 2, 5, 1 ]);
test([ 1, 2, 3, 4, 5, 6 ], [ 3, 4, 2, 5, 1, 6 ]);
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(radial(a, 1), [ 2, 3, 1, 4, 5 ][]));
static assert(isForwardRange!(typeof(radial(a, 1))));
auto r = radial([1,2,3,4,5]);
for(auto rr = r.save; !rr.empty; rr.popFront())
{
assert(rr.front == moveFront(rr));
}
r.front = 5;
assert(r.front == 5);
// Test instantiation without lvalue elements.
DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random) dummy;
assert(equal(radial(dummy, 4), [5, 6, 4, 7, 3, 8, 2, 9, 1, 10]));
// immutable int[] immi = [ 1, 2 ];
// static assert(is(typeof(radial(immi))));
}
unittest
{
auto LL = iota(1L, 6L);
auto r = radial(LL);
assert(equal(r, [3L, 4L, 2L, 5L, 1L]));
}
/**
Lazily takes only up to $(D n) elements of a range. This is
particularly useful when using with infinite ranges. If the range
offers random access and $(D length), $(D Take) offers them as well.
Example:
----
int[] arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
auto s = take(arr1, 5);
assert(s.length == 5);
assert(s[4] == 5);
assert(equal(s, [ 1, 2, 3, 4, 5 ][]));
----
*/
struct Take(Range)
if (isInputRange!(Unqual!Range) &&
//take _cannot_ test hasSlicing on infinite ranges, because hasSlicing uses
//take for slicing infinite ranges.
!((!isInfinite!(Unqual!Range) && hasSlicing!(Unqual!Range)) || is(Range T == Take!T)))
{
private alias Unqual!Range R;
// User accessible in read and write
public R source;
private size_t _maxAvailable;
alias R Source;
@property bool empty()
{
return _maxAvailable == 0 || source.empty;
}
@property auto ref front()
{
assert(!empty,
"Attempting to fetch the front of an empty "
~ Take.stringof);
return source.front;
}
void popFront()
{
assert(!empty,
"Attempting to popFront() past the end of a "
~ Take.stringof);
source.popFront();
--_maxAvailable;
}
static if (isForwardRange!R)
@property Take save()
{
return Take(source.save, _maxAvailable);
}
static if (hasAssignableElements!R)
@property auto front(ElementType!R v)
{
assert(!empty,
"Attempting to assign to the front of an empty "
~ Take.stringof);
// This has to return auto instead of void because of Bug 4706.
source.front = v;
}
static if (hasMobileElements!R)
{
auto moveFront()
{
assert(!empty,
"Attempting to move the front of an empty "
~ Take.stringof);
return .moveFront(source);
}
}
static if (isInfinite!R)
{
@property size_t length() const
{
return _maxAvailable;
}
alias length opDollar;
}
else static if (hasLength!R)
{
@property size_t length()
{
return min(_maxAvailable, source.length);
}
alias length opDollar;
}
static if (isRandomAccessRange!R)
{
void popBack()
{
assert(!empty,
"Attempting to popBack() past the beginning of a "
~ Take.stringof);
--_maxAvailable;
}
@property auto ref back()
{
assert(!empty,
"Attempting to fetch the back of an empty "
~ Take.stringof);
return source[this.length - 1];
}
auto ref opIndex(size_t index)
{
assert(index < length,
"Attempting to index out of the bounds of a "
~ Take.stringof);
return source[index];
}
static if (hasAssignableElements!R)
{
@property auto back(ElementType!R v)
{
// This has to return auto instead of void because of Bug 4706.
assert(!empty,
"Attempting to assign to the back of an empty "
~ Take.stringof);
source[this.length - 1] = v;
}
void opIndexAssign(ElementType!R v, size_t index)
{
assert(index < length,
"Attempting to index out of the bounds of a "
~ Take.stringof);
source[index] = v;
}
}
static if (hasMobileElements!R)
{
auto moveBack()
{
assert(!empty,
"Attempting to move the back of an empty "
~ Take.stringof);
return .moveAt(source, this.length - 1);
}
auto moveAt(size_t index)
{
assert(index < length,
"Attempting to index out of the bounds of a "
~ Take.stringof);
return .moveAt(source, index);
}
}
}
// Nonstandard
@property size_t maxLength() const
{
return _maxAvailable;
}
}
// This template simply aliases itself to R and is useful for consistency in
// generic code.
template Take(R)
if (isInputRange!(Unqual!R) &&
((!isInfinite!(Unqual!R) && hasSlicing!(Unqual!R)) || is(R T == Take!T)))
{
alias R Take;
}
// take for finite ranges with slicing
/// ditto
Take!R take(R)(R input, size_t n)
if (isInputRange!(Unqual!R) && !isInfinite!(Unqual!R) && hasSlicing!(Unqual!R))
{
// @@@BUG@@@
//return input[0 .. min(n, $)];
return input[0 .. min(n, input.length)];
}
// take(take(r, n1), n2)
Take!R take(R)(R input, size_t n)
if (is(R T == Take!T))
{
return R(input.source, min(n, input._maxAvailable));
}
// Regular take for input ranges
Take!(R) take(R)(R input, size_t n)
if (isInputRange!(Unqual!R) && (isInfinite!(Unqual!R) || !hasSlicing!(Unqual!R) && !is(R T == Take!T)))
{
return Take!R(input, n);
}
unittest
{
int[] arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
auto s = take(arr1, 5);
assert(s.length == 5);
assert(s[4] == 5);
assert(equal(s, [ 1, 2, 3, 4, 5 ][]));
assert(equal(retro(s), [ 5, 4, 3, 2, 1 ][]));
// Test fix for bug 4464.
static assert(is(typeof(s) == Take!(int[])));
static assert(is(typeof(s) == int[]));
// Test using narrow strings.
auto myStr = "This is a string.";
auto takeMyStr = take(myStr, 7);
assert(equal(takeMyStr, "This is"));
// Test fix for bug 5052.
auto takeMyStrAgain = take(takeMyStr, 4);
assert(equal(takeMyStrAgain, "This"));
static assert (is (typeof(takeMyStrAgain) == typeof(takeMyStr)));
takeMyStrAgain = take(takeMyStr, 10);
assert(equal(takeMyStrAgain, "This is"));
foreach(DummyType; AllDummyRanges) {
DummyType dummy;
auto t = take(dummy, 5);
alias typeof(t) T;
static if (isRandomAccessRange!DummyType) {
static assert(isRandomAccessRange!T);
assert(t[4] == 5);
assert(moveAt(t, 1) == t[1]);
assert(t.back == moveBack(t));
} else static if (isForwardRange!DummyType) {
static assert(isForwardRange!T);
}
for(auto tt = t; !tt.empty; tt.popFront())
{
assert(tt.front == moveFront(tt));
}
// Bidirectional ranges can't be propagated properly if they don't
// also have random access.
assert(equal(t, [1,2,3,4,5]));
//Test that take doesn't wrap the result of take.
assert(take(t, 4) == take(dummy, 4));
}
immutable myRepeat = repeat(1);
static assert(is(Take!(typeof(myRepeat))));
}
unittest
{
// Check that one can declare variables of all Take types,
// and that they match the return type of the corresponding
// take(). (See issue 4464.)
int[] r1;
Take!(int[]) t1;
t1 = take(r1, 1);
string r2;
Take!string t2;
t2 = take(r2, 1);
Take!(Take!string) t3;
t3 = take(t2, 1);
}
unittest
{
alias R1 = typeof(repeat(1));
alias R2 = typeof(cycle([1]));
alias TR1 = Take!R1;
alias TR2 = Take!R2;
static assert(isBidirectionalRange!TR1);
static assert(isBidirectionalRange!TR2);
}
/**
Similar to $(LREF take), but assumes that $(D range) has at least $(D
n) elements. Consequently, the result of $(D takeExactly(range, n))
always defines the $(D length) property (and initializes it to $(D n))
even when $(D range) itself does not define $(D length).
The result of $(D takeExactly) is identical to that of $(LREF take) in
cases where the original range defines $(D length) or is infinite.
*/
auto takeExactly(R)(R range, size_t n)
if (isInputRange!R)
{
static if (is(typeof(takeExactly(range._input, n)) == R))
{
assert(n <= range._n,
"Attempted to take more than the length of the range with takeExactly.");
// takeExactly(takeExactly(r, n1), n2) has the same type as
// takeExactly(r, n1) and simply returns takeExactly(r, n2)
range._n = n;
return range;
}
//Also covers hasSlicing!R for finite ranges.
else static if (hasLength!R)
{
assert(n <= range.length,
"Attempted to take more than the length of the range with takeExactly.");
return take(range, n);
}
else static if (isInfinite!R)
return Take!R(range, n);
else
{
static struct Result
{
R _input;
private size_t _n;
@property bool empty() const { return !_n; }
@property auto ref front()
{
assert(_n > 0, "front() on an empty " ~ Result.stringof);
return _input.front;
}
void popFront() { _input.popFront(); --_n; }
@property size_t length() const { return _n; }
alias length opDollar;
static if (isForwardRange!R)
@property auto save()
{
return Result(_input.save, _n);
}
static if (hasMobileElements!R)
{
auto moveFront()
{
assert(!empty,
"Attempting to move the front of an empty "
~ typeof(this).stringof);
return .moveFront(_input);
}
}
static if (hasAssignableElements!R)
{
@property auto ref front(ElementType!R v)
{
assert(!empty,
"Attempting to assign to the front of an empty "
~ typeof(this).stringof);
return _input.front = v;
}
}
}
return Result(range, n);
}
}
unittest
{
auto a = [ 1, 2, 3, 4, 5 ];
auto b = takeExactly(a, 3);
assert(equal(b, [1, 2, 3]));
static assert(is(typeof(b.length) == size_t));
assert(b.length == 3);
assert(b.front == 1);
assert(b.back == 3);
auto c = takeExactly(b, 2);
auto d = filter!"a > 0"(a);
auto e = takeExactly(d, 3);
assert(equal(e, [1, 2, 3]));
static assert(is(typeof(e.length) == size_t));
assert(e.length == 3);
assert(e.front == 1);
assert(equal(takeExactly(e, 3), [1, 2, 3]));
//Test that take and takeExactly are the same for ranges which define length
//but aren't sliceable.
struct L
{
@property auto front() { return _arr[0]; }
@property bool empty() { return _arr.empty; }
void popFront() { _arr.popFront(); }
@property size_t length() { return _arr.length; }
int[] _arr;
}
static assert(is(typeof(take(L(a), 3)) == typeof(takeExactly(L(a), 3))));
assert(take(L(a), 3) == takeExactly(L(a), 3));
//Test that take and takeExactly are the same for ranges which are sliceable.
static assert(is(typeof(take(a, 3)) == typeof(takeExactly(a, 3))));
assert(take(a, 3) == takeExactly(a, 3));
//Test that take and takeExactly are the same for infinite ranges.
auto inf = repeat(1);
static assert(is(typeof(take(inf, 5)) == Take!(typeof(inf))));
assert(take(inf, 5) == takeExactly(inf, 5));
//Test that take and takeExactly are _not_ the same for ranges which don't
//define length.
static assert(!is(typeof(take(filter!"true"(a), 3)) == typeof(takeExactly(filter!"true"(a), 3))));
foreach(DummyType; AllDummyRanges)
{
{
DummyType dummy;
auto t = takeExactly(dummy, 5);
//Test that takeExactly doesn't wrap the result of takeExactly.
assert(takeExactly(t, 4) == takeExactly(dummy, 4));
}
static if(hasMobileElements!DummyType)
{
{
auto t = takeExactly(DummyType.init, 4);
assert(t.moveFront() == 1);
assert(equal(t, [1, 2, 3, 4]));
}
}
static if(hasAssignableElements!DummyType)
{
{
auto t = takeExactly(DummyType.init, 4);
t.front = 9;
assert(equal(t, [9, 2, 3, 4]));
}
}
}
}
/**
Returns a range with at most one element; for example, $(D
takeOne([42, 43, 44])) returns a range consisting of the integer $(D
42). Calling $(D popFront()) off that range renders it empty.
----
auto s = takeOne([42, 43, 44]);
static assert(isRandomAccessRange!(typeof(s)));
assert(s.length == 1);
assert(!s.empty);
assert(s.front == 42);
s.front() = 43;
assert(s.front == 43);
assert(s.back == 43);
assert(s[0] == 43);
s.popFront();
assert(s.length == 0);
assert(s.empty);
----
In effect $(D takeOne(r)) is somewhat equivalent to $(D take(r, 1)) but in
certain interfaces it is important to know statically that the range may only
have at most one element.
The type returned by $(D takeOne) is a random-access range with length
regardless of $(D R)'s capabilities (another feature that distinguishes
$(D takeOne) from $(D take)).
*/
auto takeOne(R)(R source) if (isInputRange!R)
{
static if (hasSlicing!R)
{
return source[0 .. !source.empty];
}
else
{
static struct Result
{
private R _source;
private bool _empty = true;
@property bool empty() const { return _empty; }
@property auto ref front() { assert(!empty); return _source.front; }
void popFront() { assert(!empty); _empty = true; }
void popBack() { assert(!empty); _empty = true; }
@property auto save() { return Result(_source.save, empty); }
@property auto ref back() { assert(!empty); return _source.front; }
@property size_t length() const { return !empty; }
alias length opDollar;
auto ref opIndex(size_t n) { assert(n < length); return _source.front; }
auto opSlice(size_t m, size_t n)
{
assert(m <= n && n < length);
return n > m ? this : Result(_source, false);
}
// Non-standard property
@property R source() { return _source; }
}
return Result(source, source.empty);
}
}
unittest
{
auto s = takeOne([42, 43, 44]);
static assert(isRandomAccessRange!(typeof(s)));
assert(s.length == 1);
assert(!s.empty);
assert(s.front == 42);
s.front = 43;
assert(s.front == 43);
assert(s.back == 43);
assert(s[0] == 43);
s.popFront();
assert(s.length == 0);
assert(s.empty);
}
/++
Returns an empty range which is statically known to be empty and is
guaranteed to have $(D length) and be random access regardless of $(D R)'s
capabilities.
Examples:
--------------------
auto range = takeNone!(int[])();
assert(range.length == 0);
assert(range.empty);
--------------------
+/
auto takeNone(R)()
if(isInputRange!R)
{
return typeof(takeOne(R.init)).init;
}
unittest
{
auto range = takeNone!(int[])();
assert(range.length == 0);
assert(range.empty);
enum ctfe = takeNone!(int[])();
static assert(ctfe.length == 0);
static assert(ctfe.empty);
}
/++
Creates an empty range from the given range in $(BIGOH 1). If it can, it
will return the same range type. If not, it will return
$(D takeExactly(range, 0)).
Examples:
--------------------
assert(takeNone([42, 27, 19]).empty);
assert(takeNone("dlang.org").empty);
assert(takeNone(filter!"true"([42, 27, 19])).empty);
--------------------
+/
auto takeNone(R)(R range)
if(isInputRange!R)
{
//Makes it so that calls to takeNone which don't use UFCS still work with a
//member version if it's defined.
static if(is(typeof(R.takeNone)))
auto retval = range.takeNone();
//@@@BUG@@@ 8339
else static if(isDynamicArray!R)/+ ||
(is(R == struct) && __traits(compiles, {auto r = R.init;}) && R.init.empty))+/
{
auto retval = R.init;
}
//An infinite range sliced at [0 .. 0] would likely still not be empty...
else static if(hasSlicing!R && !isInfinite!R)
auto retval = range[0 .. 0];
else
auto retval = takeExactly(range, 0);
//@@@BUG@@@ 7892 prevents this from being done in an out block.
assert(retval.empty);
return retval;
}
//Verify Examples.
unittest
{
assert(takeNone([42, 27, 19]).empty);
assert(takeNone("dlang.org").empty);
assert(takeNone(filter!"true"([42, 27, 19])).empty);
}
unittest
{
string genInput()
{
return "@property bool empty() { return _arr.empty; }" ~
"@property auto front() { return _arr.front; }" ~
"void popFront() { _arr.popFront(); }" ~
"static assert(isInputRange!(typeof(this)));";
}
static struct NormalStruct
{
//Disabled to make sure that the takeExactly version is used.
@disable this();
this(int[] arr) { _arr = arr; }
mixin(genInput());
int[] _arr;
}
static struct SliceStruct
{
@disable this();
this(int[] arr) { _arr = arr; }
mixin(genInput());
@property auto save() { return this; }
auto opSlice(size_t i, size_t j) { return typeof(this)(_arr[i .. j]); }
@property size_t length() { return _arr.length; }
int[] _arr;
}
static struct InitStruct
{
mixin(genInput());
int[] _arr;
}
static struct TakeNoneStruct
{
this(int[] arr) { _arr = arr; }
@disable this();
mixin(genInput());
auto takeNone() { return typeof(this)(null); }
int[] _arr;
}
static class NormalClass
{
this(int[] arr) {_arr = arr;}
mixin(genInput());
int[] _arr;
}
static class SliceClass
{
this(int[] arr) { _arr = arr; }
mixin(genInput());
@property auto save() { return new typeof(this)(_arr); }
auto opSlice(size_t i, size_t j) { return new typeof(this)(_arr[i .. j]); }
@property size_t length() { return _arr.length; }
int[] _arr;
}
static class TakeNoneClass
{
this(int[] arr) { _arr = arr; }
mixin(genInput());
auto takeNone() { return new typeof(this)(null); }
int[] _arr;
}
import std.string : format;
foreach(range; TypeTuple!(`[1, 2, 3, 4, 5]`,
`"hello world"`,
`"hello world"w`,
`"hello world"d`,
`SliceStruct([1, 2, 3])`,
//@@@BUG@@@ 8339 forces this to be takeExactly
//`InitStruct([1, 2, 3])`,
`TakeNoneStruct([1, 2, 3])`))
{
mixin(format("enum a = takeNone(%s).empty;", range));
assert(a, typeof(range).stringof);
mixin(format("assert(takeNone(%s).empty);", range));
mixin(format("static assert(is(typeof(%s) == typeof(takeNone(%s))), typeof(%s).stringof);",
range, range, range));
}
foreach(range; TypeTuple!(`NormalStruct([1, 2, 3])`,
`InitStruct([1, 2, 3])`))
{
mixin(format("enum a = takeNone(%s).empty;", range));
assert(a, typeof(range).stringof);
mixin(format("assert(takeNone(%s).empty);", range));
mixin(format("static assert(is(typeof(takeExactly(%s, 0)) == typeof(takeNone(%s))), typeof(%s).stringof);",
range, range, range));
}
//Don't work in CTFE.
auto normal = new NormalClass([1, 2, 3]);
assert(takeNone(normal).empty);
static assert(is(typeof(takeExactly(normal, 0)) == typeof(takeNone(normal))), typeof(normal).stringof);
auto slice = new SliceClass([1, 2, 3]);
assert(takeNone(slice).empty);
static assert(is(SliceClass == typeof(takeNone(slice))), typeof(slice).stringof);
auto taken = new TakeNoneClass([1, 2, 3]);
assert(takeNone(taken).empty);
static assert(is(TakeNoneClass == typeof(takeNone(taken))), typeof(taken).stringof);
auto filtered = filter!"true"([1, 2, 3, 4, 5]);
assert(takeNone(filtered).empty);
//@@@BUG@@@ 8339 and 5941 force this to be takeExactly
//static assert(is(typeof(filtered) == typeof(takeNone(filtered))), typeof(filtered).stringof);
}
/++
Convenience function which calls
$(D range.$(LREF popFrontN)(n)) and returns $(D range). $(D drop)
makes it easier to pop elements from a range
and then pass it to another function within a single expression,
whereas $(D popFrontN) would require multiple statements.
$(D dropBack) provides the same functionality but instead calls
$(D range.popBackN(n)).
Note: $(D drop) and $(D dropBack) will only pop $(I up to)
$(D n) elements but will stop if the range is empty first.
Examples:
--------------------
assert([0, 2, 1, 5, 0, 3].drop(3) == [5, 0, 3]);
assert("hello world".drop(6) == "world");
assert("hello world".drop(50).empty);
assert("hello world".take(6).drop(3).equal("lo "));
--------------------
--------------------
//Remove all but the first two elements
auto a = DList!int(0, 1, 9, 9, 9);
a.remove(a[].drop(2));
assert(a[].equal(a[].take(2)));
--------------------
--------------------
assert([0, 2, 1, 5, 0, 3].dropBack(3) == [0, 2, 1]);
assert("hello world".dropBack(6) == "hello");
assert("hello world".dropBack(50).empty);
assert("hello world".drop(4).dropBack(4).equal("o w"));
--------------------
--------------------
//insert before the last two elements
auto a = DList!int(0, 1, 2, 5, 6);
a.insertAfter(a[].dropBack(2), [3, 4]);
assert(a[].equal(iota(0, 7)));
--------------------
+/
R drop(R)(R range, size_t n)
if(isInputRange!R)
{
range.popFrontN(n);
return range;
}
/// ditto
R dropBack(R)(R range, size_t n)
if(isBidirectionalRange!R)
{
range.popBackN(n);
return range;
}
//Verify Examples
unittest
{
assert([0, 2, 1, 5, 0, 3].drop(3) == [5, 0, 3]);
assert("hello world".drop(6) == "world");
assert("hello world".drop(50).empty);
assert("hello world".take(6).drop(3).equal("lo "));
}
unittest
{
import std.container : DList;
//Remove all but the first two elements
auto a = DList!int(0, 1, 9, 9, 9, 9);
a.remove(a[].drop(2));
assert(a[].equal(a[].take(2)));
}
unittest
{
assert(drop("", 5).empty);
assert(equal(drop(filter!"true"([0, 2, 1, 5, 0, 3]), 3), [5, 0, 3]));
}
unittest
{
assert([0, 2, 1, 5, 0, 3].dropBack(3) == [0, 2, 1]);
assert("hello world".dropBack(6) == "hello");
assert("hello world".dropBack(50).empty);
assert("hello world".drop(4).dropBack(4).equal("o w"));
}
unittest
{
import std.container : DList;
//insert before the last two elements
auto a = DList!int(0, 1, 2, 5, 6);
a.insertAfter(a[].dropBack(2), [3, 4]);
assert(a[].equal(iota(0, 7)));
}
/++
Similar to $(LREF drop) and $(D dropBack) but they call
$(D range.$(LREF popFrontExactly)(n)) and $(D range.popBackExactly(n))
instead.
Note: Unlike $(D drop), $(D dropExactly) will assume that the
range holds at least $(D n) elements. This makes $(D dropExactly)
faster than $(D drop), but it also means that if $(D range) does
not contain at least $(D n) elements, it will attempt to call $(D popFront)
on an empty range, which is undefined behavior. So, only use
$(D popFrontExactly) when it is guaranteed that $(D range) holds at least
$(D n) elements.
+/
R dropExactly(R)(R range, size_t n)
if(isInputRange!R)
{
popFrontExactly(range, n);
return range;
}
/// ditto
R dropBackExactly(R)(R range, size_t n)
if(isBidirectionalRange!R)
{
popBackExactly(range, n);
return range;
}
unittest
{
//RA+slicing
auto a = [1, 2, 3];
assert(a.dropExactly(1) == [2, 3]);
assert(a.dropBackExactly(1) == [1, 2]);
//UTF string
string s = "日本語";
assert(s.dropExactly(1) == "本語");
assert(s.dropBackExactly(1) == "日本");
//Bidirectional
auto bd = filterBidirectional!"true"([1, 2, 3]);
assert(bd.dropExactly(1).equal([2, 3]));
assert(bd.dropBackExactly(1).equal([1, 2]));
}
/++
Convenience function which calls
$(D range.popFront()) and returns $(D range). $(D dropOne)
makes it easier to pop an element from a range
and then pass it to another function within a single expression,
whereas $(D popFront) would require multiple statements.
$(D dropBackOne) provides the same functionality but instead calls
$(D range.popBack()).
Example:
----
auto dl = DList!int(9, 1, 2, 3, 9);
assert(dl[].dropOne().dropBackOne().equal([1, 2, 3]));
----
+/
R dropOne(R)(R range)
if (isInputRange!R)
{
range.popFront();
return range;
}
/// ditto
R dropBackOne(R)(R range)
if (isBidirectionalRange!R)
{
range.popBack();
return range;
}
unittest
{
import std.container : DList;
auto dl = DList!int(9, 1, 2, 3, 9);
assert(dl[].dropOne().dropBackOne().equal([1, 2, 3]));
}
unittest
{
//RA+slicing
auto a = [1, 2, 3];
assert(a.dropOne() == [2, 3]);
assert(a.dropBackOne() == [1, 2]);
//UTF string
string s = "日本語";
assert(s.dropOne() == "本語");
assert(s.dropBackOne() == "日本");
//Bidirectional
auto bd = filterBidirectional!"true"([1, 2, 3]);
assert(bd.dropOne().equal([2, 3]));
assert(bd.dropBackOne().equal([1, 2]));
}
/**
Eagerly advances $(D r) itself (not a copy) up to $(D n) times (by
calling $(D r.popFront)). $(D popFrontN) takes $(D r) by $(D ref),
so it mutates the original range. Completes in $(BIGOH 1) steps for ranges
that support slicing and have length.
Completes in $(BIGOH n) time for all other ranges.
Returns:
How much $(D r) was actually advanced, which may be less than $(D n) if
$(D r) did not have at least $(D n) elements.
$(D popBackN) will behave the same but instead removes elements from
the back of the (bidirectional) range instead of the front.
Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
a.popFrontN(2);
assert(a == [ 3, 4, 5 ]);
a.popFrontN(7);
assert(a == [ ]);
----
----
int[] a = [ 1, 2, 3, 4, 5 ];
a.popBackN(2);
assert(a == [ 1, 2, 3 ]);
a.popBackN(7);
assert(a == [ ]);
----
*/
size_t popFrontN(Range)(ref Range r, size_t n)
if (isInputRange!Range)
{
static if (hasLength!Range)
n = min(n, r.length);
static if (hasSlicing!Range && is(typeof(r = r[n .. $])))
{
r = r[n .. $];
}
else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
{
r = r[n .. r.length];
}
else
{
static if (hasLength!Range)
{
foreach (i; 0 .. n)
r.popFront();
}
else
{
foreach (i; 0 .. n)
{
if (r.empty) return i;
r.popFront();
}
}
}
return n;
}
/// ditto
size_t popBackN(Range)(ref Range r, size_t n)
if (isBidirectionalRange!Range)
{
static if (hasLength!Range)
n = min(n, r.length);
static if (hasSlicing!Range && is(typeof(r = r[0 .. $ - n])))
{
r = r[0 .. $ - n];
}
else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
{
r = r[0 .. r.length - n];
}
else
{
static if (hasLength!Range)
{
foreach (i; 0 .. n)
r.popBack();
}
else
{
foreach (i; 0 .. n)
{
if (r.empty) return i;
r.popBack();
}
}
}
return n;
}
unittest
{
int[] a = [ 1, 2, 3, 4, 5 ];
a.popFrontN(2);
assert(a == [ 3, 4, 5 ]);
a.popFrontN(7);
assert(a == [ ]);
}
unittest
{
auto LL = iota(1L, 7L);
auto r = popFrontN(LL, 2);
assert(equal(LL, [3L, 4L, 5L, 6L]));
assert(r == 2);
}
unittest
{
int[] a = [ 1, 2, 3, 4, 5 ];
a.popBackN(2);
assert(a == [ 1, 2, 3 ]);
a.popBackN(7);
assert(a == [ ]);
}
unittest
{
auto LL = iota(1L, 7L);
auto r = popBackN(LL, 2);
assert(equal(LL, [1L, 2L, 3L, 4L]));
assert(r == 2);
}
/**
Eagerly advances $(D r) itself (not a copy) exactly $(D n) times (by
calling $(D r.popFront)). $(D popFrontExactly) takes $(D r) by $(D ref),
so it mutates the original range. Completes in $(BIGOH 1) steps for ranges
that support slicing, and have either length or are infinite.
Completes in $(BIGOH n) time for all other ranges.
Note: Unlike $(LREF popFrontN), $(D popFrontExactly) will assume that the
range holds at least $(D n) elements. This makes $(D popFrontExactly)
faster than $(D popFrontN), but it also means that if $(D range) does
not contain at least $(D n) elements, it will attempt to call $(D popFront)
on an empty range, which is undefined behavior. So, only use
$(D popFrontExactly) when it is guaranteed that $(D range) holds at least
$(D n) elements.
$(D popBackExactly) will behave the same but instead removes elements from
the back of the (bidirectional) range instead of the front.
*/
void popFrontExactly(Range)(ref Range r, size_t n)
if (isInputRange!Range)
{
static if (hasLength!Range)
assert(n <= r.length, "range is smaller than amount of items to pop");
static if (hasSlicing!Range && is(typeof(r = r[n .. $])))
r = r[n .. $];
else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
r = r[n .. r.length];
else
foreach (i; 0 .. n)
r.popFront();
}
/// ditto
void popBackExactly(Range)(ref Range r, size_t n)
if (isBidirectionalRange!Range)
{
static if (hasLength!Range)
assert(n <= r.length, "range is smaller than amount of items to pop");
static if (hasSlicing!Range && is(typeof(r = r[0 .. $ - n])))
r = r[0 .. $ - n];
else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
r = r[0 .. r.length - n];
else
foreach (i; 0 .. n)
r.popBack();
}
unittest
{
//RA+slicing
auto a = [1, 2, 3];
a.popFrontExactly(1);
assert(a == [2, 3]);
a.popBackExactly(1);
assert(a == [2]);
//UTF string
string s = "日本語";
s.popFrontExactly(1);
assert(s == "本語");
s.popBackExactly(1);
assert(s == "本");
//Bidirectional
auto bd = filterBidirectional!"true"([1, 2, 3]);
bd.popFrontExactly(1);
assert(bd.equal([2, 3]));
bd.popBackExactly(1);
assert(bd.equal([2]));
}
/**
Repeats one value forever.
Models an infinite bidirectional and random access range, with slicing.
*/
struct Repeat(T)
{
private T _value;
@property inout(T) front() inout { return _value; }
@property inout(T) back() inout { return _value; }
enum bool empty = false;
void popFront() {}
void popBack() {}
@property auto save() inout { return this; }
inout(T) opIndex(size_t) inout { return _value; }
auto opSlice(size_t i, size_t j)
in
{
import core.exception : RangeError;
if (i > j) throw new RangeError();
}
body
{
return this.takeExactly(j - i);
}
private static struct DollarToken {}
enum opDollar = DollarToken.init;
auto opSlice(size_t, DollarToken) inout { return this; }
}
/// Ditto
Repeat!T repeat(T)(T value) { return Repeat!T(value); }
///
unittest
{
assert(equal(5.repeat().take(4), [ 5, 5, 5, 5 ]));
}
unittest
{
auto r = repeat(5);
alias R = typeof(r);
static assert(isBidirectionalRange!R);
static assert(isForwardRange!R);
static assert(isInfinite!R);
static assert(hasSlicing!R);
assert(r.back == 5);
assert(r.front == 5);
assert(r.take(4).equal([ 5, 5, 5, 5 ]));
assert(r[0 .. 4].equal([ 5, 5, 5, 5 ]));
R r2 = r[5 .. $];
}
/**
Repeats $(D value) exactly $(D n) times. Equivalent to $(D
take(repeat(value), n)).
*/
Take!(Repeat!T) repeat(T)(T value, size_t n)
{
return take(repeat(value), n);
}
///
unittest
{
assert(equal(5.repeat(4), 5.repeat().take(4)));
}
/**
Repeats the given forward range ad infinitum. If the original range is
infinite (fact that would make $(D Cycle) the identity application),
$(D Cycle) detects that and aliases itself to the range type
itself. If the original range has random access, $(D Cycle) offers
random access and also offers a constructor taking an initial position
$(D index). $(D Cycle) works with static arrays in addition to ranges,
mostly for performance reasons.
Example:
----
assert(equal(take(cycle([1, 2][]), 5), [ 1, 2, 1, 2, 1 ][]));
----
Tip: This is a great way to implement simple circular buffers.
*/
struct Cycle(R)
if (isForwardRange!R && !isInfinite!R)
{
static if (isRandomAccessRange!R && hasLength!R)
{
private R _original;
private size_t _index;
this(R input, size_t index = 0)
{
_original = input;
_index = index;
}
@property auto ref front()
{
return _original[_index % _original.length];
}
static if (is(typeof((cast(const R)_original)[0])) &&
is(typeof((cast(const R)_original).length)))
{
@property auto ref front() const
{
return _original[_index % _original.length];
}
}
static if (hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
_original[_index % _original.length] = val;
}
}
enum bool empty = false;
void popFront()
{
++_index;
}
auto ref opIndex(size_t n)
{
return _original[(n + _index) % _original.length];
}
static if (is(typeof((cast(const R)_original)[0])) &&
is(typeof((cast(const R)_original).length)))
{
auto ref opIndex(size_t n) const
{
return _original[(n + _index) % _original.length];
}
}
static if (hasAssignableElements!R)
{
auto opIndexAssign(ElementType!R val, size_t n)
{
_original[(n + _index) % _original.length] = val;
}
}
@property Cycle save()
{
//No need to call _original.save, because Cycle never actually modifies _original
return Cycle(_original, _index);
}
private static struct DollarToken {}
enum opDollar = DollarToken.init;
auto opSlice(size_t i, size_t j)
in
{
import core.exception : RangeError;
if (i > j) throw new RangeError();
}
body
{
return this[i .. $].takeExactly(j - i);
}
auto opSlice(size_t i, DollarToken)
{
return typeof(this)(_original, _index + i);
}
}
else
{
private R _original;
private R _current;
this(R input)
{
_original = input;
_current = input.save;
}
@property auto ref front()
{
return _current.front;
}
static if (is(typeof((cast(const R)_current).front)))
{
@property auto ref front() const
{
return _current.front;
}
}
static if (hasAssignableElements!R)
{
@property auto front(ElementType!R val)
{
return _current.front = val;
}
}
enum bool empty = false;
void popFront()
{
_current.popFront();
if (_current.empty) _current = _original;
}
@property Cycle save()
{
//No need to call _original.save, because Cycle never actually modifies _original
Cycle ret = this;
ret._original = _original;
ret._current = _current.save;
return ret;
}
}
}
template Cycle(R)
if (isInfinite!R)
{
alias Cycle = R;
}
struct Cycle(R)
if (isStaticArray!R)
{
private alias ElementType = typeof(R.init[0]);
private ElementType* _ptr;
private size_t _index;
nothrow:
this(ref R input, size_t index = 0)
{
_ptr = input.ptr;
_index = index;
}
@property ref inout(ElementType) front() inout
{
return _ptr[_index % R.length];
}
enum bool empty = false;
void popFront()
{
++_index;
}
ref inout(ElementType) opIndex(size_t n) inout
{
return _ptr[(n + _index) % R.length];
}
@property inout(Cycle) save() inout
{
return this;
}
private static struct DollarToken {}
enum opDollar = DollarToken.init;
auto opSlice(size_t i, size_t j)
in
{
import core.exception : RangeError;
if (i > j) throw new RangeError();
}
body
{
return this[i .. $].takeExactly(j - i);
}
inout(typeof(this)) opSlice(size_t i, DollarToken) inout
{
return Cycle(*cast(R*)_ptr, _index + i);
}
}
/// Ditto
Cycle!R cycle(R)(R input)
if (isForwardRange!R && !isInfinite!R)
{
return Cycle!R(input);
}
/// Ditto
Cycle!R cycle(R)(R input, size_t index = 0)
if (isRandomAccessRange!R && !isInfinite!R)
{
return Cycle!R(input, index);
}
Cycle!R cycle(R)(R input)
if (isInfinite!R)
{
return input;
}
Cycle!R cycle(R)(ref R input, size_t index = 0)
if (isStaticArray!R)
{
return Cycle!R(input, index);
}
unittest
{
assert(equal(take(cycle([1, 2][]), 5), [ 1, 2, 1, 2, 1 ][]));
static assert(isForwardRange!(Cycle!(uint[])));
// Make sure ref is getting propagated properly.
int[] nums = [1,2,3];
auto c2 = cycle(nums);
c2[3]++;
assert(nums[0] == 2);
immutable int[] immarr = [1, 2, 3];
auto cycleimm = cycle(immarr);
foreach(DummyType; AllDummyRanges)
{
static if (isForwardRange!DummyType)
{
DummyType dummy;
auto cy = cycle(dummy);
static assert(isForwardRange!(typeof(cy)));
auto t = take(cy, 20);
assert(equal(t, [1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10]));
const cRange = cy;
assert(cRange.front == 1);
static if (hasAssignableElements!DummyType)
{
{
cy.front = 66;
scope(exit) cy.front = 1;
assert(dummy.front == 66);
}
static if (isRandomAccessRange!DummyType)
{
import core.exception : RangeError;
import std.exception : assertThrown;
{
cy[10] = 66;
scope(exit) cy[10] = 1;
assert(dummy.front == 66);
}
assert(cRange[10] == 1);
}
}
static if(hasSlicing!DummyType)
{
auto slice = cy[5 .. 15];
assert(equal(slice, [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]));
static assert(is(typeof(slice) == typeof(takeExactly(cy, 5))));
auto infSlice = cy[7 .. $];
assert(equal(take(infSlice, 5), [8, 9, 10, 1, 2]));
static assert(isInfinite!(typeof(infSlice)));
}
}
}
}
unittest // For static arrays.
{
int[3] a = [ 1, 2, 3 ];
static assert(isStaticArray!(typeof(a)));
auto c = cycle(a);
assert(a.ptr == c._ptr);
assert(equal(take(cycle(a), 5), [ 1, 2, 3, 1, 2 ][]));
static assert(isForwardRange!(typeof(c)));
// Test qualifiers on slicing.
alias C = typeof(c);
static assert(is(typeof(c[1 .. $]) == C));
const cConst = c;
static assert(is(typeof(cConst[1 .. $]) == const(C)));
}
unittest // For infinite ranges
{
struct InfRange
{
void popFront() { }
@property int front() { return 0; }
enum empty = false;
}
InfRange i;
auto c = cycle(i);
assert (c == i);
}
private template lengthType(R) { alias typeof((inout int = 0){ R r = void; return r.length; }()) lengthType; }
/**
Iterate several ranges in lockstep. The element type is a proxy tuple
that allows accessing the current element in the $(D n)th range by
using $(D e[n]).
Example:
----
int[] a = [ 1, 2, 3 ];
string[] b = [ "a", "b", "c" ];
// prints 1:a 2:b 3:c
foreach (e; zip(a, b))
{
write(e[0], ':', e[1], ' ');
}
----
$(D Zip) offers the lowest range facilities of all components, e.g. it
offers random access iff all ranges offer random access, and also
offers mutation and swapping if all ranges offer it. Due to this, $(D
Zip) is extremely powerful because it allows manipulating several
ranges in lockstep. For example, the following code sorts two arrays
in parallel:
----
int[] a = [ 1, 2, 3 ];
string[] b = [ "a", "b", "c" ];
sort!("a[0] > b[0]")(zip(a, b));
assert(a == [ 3, 2, 1 ]);
assert(b == [ "c", "b", "a" ]);
----
*/
struct Zip(Ranges...)
if (Ranges.length && allSatisfy!(isInputRange, Ranges))
{
alias R = Ranges;
R ranges;
alias Tuple!(staticMap!(.ElementType, R)) ElementType;
StoppingPolicy stoppingPolicy = StoppingPolicy.shortest;
/**
Builds an object. Usually this is invoked indirectly by using the
$(LREF zip) function.
*/
this(R rs, StoppingPolicy s = StoppingPolicy.shortest)
{
stoppingPolicy = s;
foreach (i, Unused; R)
{
ranges[i] = rs[i];
}
}
/**
Returns $(D true) if the range is at end. The test depends on the
stopping policy.
*/
static if (allSatisfy!(isInfinite, R))
{
// BUG: Doesn't propagate infiniteness if only some ranges are infinite
// and s == StoppingPolicy.longest. This isn't fixable in the
// current design since StoppingPolicy is known only at runtime.
enum bool empty = false;
}
else
{
@property bool empty()
{
import std.exception : enforce;
final switch (stoppingPolicy)
{
case StoppingPolicy.shortest:
foreach (i, Unused; R)
{
if (ranges[i].empty) return true;
}
return false;
case StoppingPolicy.longest:
foreach (i, Unused; R)
{
if (!ranges[i].empty) return false;
}
return true;
case StoppingPolicy.requireSameLength:
foreach (i, Unused; R[1 .. $])
{
enforce(ranges[0].empty ==
ranges[i + 1].empty,
"Inequal-length ranges passed to Zip");
}
return ranges[0].empty;
}
assert(false);
}
}
static if (allSatisfy!(isForwardRange, R))
@property Zip save()
{
Zip result = this;
foreach (i, Unused; R)
{
result.ranges[i] = result.ranges[i].save;
}
return result;
}
private void emplaceIfCan(T)(T* addr)
{
import std.conv : emplace;
static if(__traits(compiles, emplace(addr)))
emplace(addr);
else
throw new Exception("Range with non-default constructable elements exhausted.");
}
/**
Returns the current iterated element.
*/
@property ElementType front()
{
import std.conv : emplace;
ElementType result = void;
foreach (i, Unused; R)
{
auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
if (ranges[i].empty)
{
emplaceIfCan(addr);
}
else
{
emplace(addr, ranges[i].front);
}
}
return result;
}
static if (allSatisfy!(hasAssignableElements, R))
{
/**
Sets the front of all iterated ranges.
*/
@property void front(ElementType v)
{
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
ranges[i].front = v[i];
}
}
}
}
/**
Moves out the front.
*/
static if (allSatisfy!(hasMobileElements, R))
{
ElementType moveFront()
{
import std.conv : emplace;
ElementType result = void;
foreach (i, Unused; R)
{
auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
if (!ranges[i].empty)
{
emplace(addr, .moveFront(ranges[i]));
}
else
{
emplaceIfCan(addr);
}
}
return result;
}
}
/**
Returns the rightmost element.
*/
static if (allSatisfy!(isBidirectionalRange, R))
{
@property ElementType back()
{
import std.conv : emplace;
ElementType result = void;
foreach (i, Unused; R)
{
auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
if (!ranges[i].empty)
{
emplace(addr, ranges[i].back);
}
else
{
emplaceIfCan(addr);
}
}
return result;
}
/**
Moves out the back.
*/
static if (allSatisfy!(hasMobileElements, R))
{
ElementType moveBack()
{
import std.conv : emplace;
ElementType result = void;
foreach (i, Unused; R)
{
auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
if (!ranges[i].empty)
{
emplace(addr, .moveBack(ranges[i]));
}
else
{
emplaceIfCan(addr);
}
}
return result;
}
}
/**
Returns the current iterated element.
*/
static if (allSatisfy!(hasAssignableElements, R))
{
@property void back(ElementType v)
{
foreach (i, Unused; R)
{
if (!ranges[i].empty)
{
ranges[i].back = v[i];
}
}
}
}
}
/**
Advances to the next element in all controlled ranges.
*/
void popFront()
{
import std.exception : enforce;
final switch (stoppingPolicy)
{
case StoppingPolicy.shortest:
foreach (i, Unused; R)
{
assert(!ranges[i].empty);
ranges[i].popFront();
}
break;
case StoppingPolicy.longest:
foreach (i, Unused; R)
{
if (!ranges[i].empty) ranges[i].popFront();
}
break;
case StoppingPolicy.requireSameLength:
foreach (i, Unused; R)
{
enforce(!ranges[i].empty, "Invalid Zip object");
ranges[i].popFront();
}
break;
}
}
static if (allSatisfy!(isBidirectionalRange, R))
/**
Calls $(D popBack) for all controlled ranges.
*/
void popBack()
{
import std.exception : enforce;
final switch (stoppingPolicy)
{
case StoppingPolicy.shortest:
foreach (i, Unused; R)
{
assert(!ranges[i].empty);
ranges[i].popBack();
}
break;
case StoppingPolicy.longest:
foreach (i, Unused; R)
{
if (!ranges[i].empty) ranges[i].popBack();
}
break;
case StoppingPolicy.requireSameLength:
foreach (i, Unused; R)
{
enforce(!ranges[i].empty, "Invalid Zip object");
ranges[i].popBack();
}
break;
}
}
/**
Returns the length of this range. Defined only if all ranges define
$(D length).
*/
static if (allSatisfy!(hasLength, R))
{
@property auto length()
{
CommonType!(staticMap!(lengthType, R)) result = ranges[0].length;
if (stoppingPolicy == StoppingPolicy.requireSameLength)
return result;
foreach (i, Unused; R[1 .. $])
{
if (stoppingPolicy == StoppingPolicy.shortest)
{
result = min(ranges[i + 1].length, result);
}
else
{
assert(stoppingPolicy == StoppingPolicy.longest);
result = max(ranges[i + 1].length, result);
}
}
return result;
}
alias length opDollar;
}
/**
Returns a slice of the range. Defined only if all range define
slicing.
*/
static if (allSatisfy!(hasSlicing, R))
auto opSlice(size_t from, size_t to)
{
import std.conv : emplace;
//Slicing an infinite range yields the type Take!R
//For finite ranges, the type Take!R aliases to R
Zip!(staticMap!(Take, R)) result = void;
emplace(&result.stoppingPolicy, stoppingPolicy);
foreach (i, Unused; R)
{
emplace(&result.ranges[i], ranges[i][from .. to]);
}
return result;
}
static if (allSatisfy!(isRandomAccessRange, R))
{
/**
Returns the $(D n)th element in the composite range. Defined if all
ranges offer random access.
*/
ElementType opIndex(size_t n)
{
import std.conv : emplace;
ElementType result = void;
foreach (i, Range; R)
{
auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
emplace(addr, ranges[i][n]);
}
return result;
}
static if (allSatisfy!(hasAssignableElements, R))
{
/**
Assigns to the $(D n)th element in the composite range. Defined if
all ranges offer random access.
*/
void opIndexAssign(ElementType v, size_t n)
{
foreach (i, Range; R)
{
ranges[i][n] = v[i];
}
}
}
/**
Destructively reads the $(D n)th element in the composite
range. Defined if all ranges offer random access.
*/
static if (allSatisfy!(hasMobileElements, R))
{
ElementType moveAt(size_t n)
{
import std.conv : emplace;
ElementType result = void;
foreach (i, Range; R)
{
auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
emplace(addr, .moveAt(ranges[i], n));
}
return result;
}
}
}
}
/// Ditto
auto zip(Ranges...)(Ranges ranges)
if (Ranges.length && allSatisfy!(isInputRange, Ranges))
{
return Zip!Ranges(ranges);
}
/// Ditto
auto zip(Ranges...)(StoppingPolicy sp, Ranges ranges)
if (Ranges.length && allSatisfy!(isInputRange, Ranges))
{
return Zip!Ranges(ranges, sp);
}
/**
Dictates how iteration in a $(D Zip) should stop. By default stop at
the end of the shortest of all ranges.
*/
enum StoppingPolicy
{
/// Stop when the shortest range is exhausted
shortest,
/// Stop when the longest range is exhausted
longest,
/// Require that all ranges are equal
requireSameLength,
}
unittest
{
import std.exception : assertThrown, assertNotThrown;
int[] a = [ 1, 2, 3 ];
float[] b = [ 1.0, 2.0, 3.0 ];
foreach (e; zip(a, b))
{
assert(e[0] == e[1]);
}
swap(a[0], a[1]);
auto z = zip(a, b);
//swap(z.front(), z.back());
sort!("a[0] < b[0]")(zip(a, b));
assert(a == [1, 2, 3]);
assert(b == [2.0, 1.0, 3.0]);
z = zip(StoppingPolicy.requireSameLength, a, b);
assertNotThrown((z.popBack(), z.popBack(), z.popBack()));
assert(z.empty);
assertThrown(z.popBack());
a = [ 1, 2, 3 ];
b = [ 1.0, 2.0, 3.0 ];
sort!("a[0] > b[0]")(zip(StoppingPolicy.requireSameLength, a, b));
assert(a == [3, 2, 1]);
assert(b == [3.0, 2.0, 1.0]);
a = [];
b = [];
assert(zip(StoppingPolicy.requireSameLength, a, b).empty);
// Test infiniteness propagation.
static assert(isInfinite!(typeof(zip(repeat(1), repeat(1)))));
// Test stopping policies with both value and reference.
auto a1 = [1, 2];
auto a2 = [1, 2, 3];
auto stuff = tuple(tuple(a1, a2),
tuple(filter!"a"(a1), filter!"a"(a2)));
alias Zip!(immutable(int)[], immutable(float)[]) FOO;
foreach(t; stuff.expand) {
auto arr1 = t[0];
auto arr2 = t[1];
auto zShortest = zip(arr1, arr2);
assert(equal(map!"a[0]"(zShortest), [1, 2]));
assert(equal(map!"a[1]"(zShortest), [1, 2]));
try {
auto zSame = zip(StoppingPolicy.requireSameLength, arr1, arr2);
foreach(elem; zSame) {}
assert(0);
} catch { /* It's supposed to throw.*/ }
auto zLongest = zip(StoppingPolicy.longest, arr1, arr2);
assert(!zLongest.ranges[0].empty);
assert(!zLongest.ranges[1].empty);
zLongest.popFront();
zLongest.popFront();
assert(!zLongest.empty);
assert(zLongest.ranges[0].empty);
assert(!zLongest.ranges[1].empty);
zLongest.popFront();
assert(zLongest.empty);
}
// BUG 8900
static assert(__traits(compiles, zip([1, 2], repeat('a'))));
static assert(__traits(compiles, zip(repeat('a'), [1, 2])));
// Doesn't work yet. Issues w/ emplace.
// static assert(is(Zip!(immutable int[], immutable float[])));
// These unittests pass, but make the compiler consume an absurd amount
// of RAM and time. Therefore, they should only be run if explicitly
// uncommented when making changes to Zip. Also, running them using
// make -fwin32.mak unittest makes the compiler completely run out of RAM.
// You need to test just this module.
/+
foreach(DummyType1; AllDummyRanges) {
DummyType1 d1;
foreach(DummyType2; AllDummyRanges) {
DummyType2 d2;
auto r = zip(d1, d2);
assert(equal(map!"a[0]"(r), [1,2,3,4,5,6,7,8,9,10]));
assert(equal(map!"a[1]"(r), [1,2,3,4,5,6,7,8,9,10]));
static if (isForwardRange!DummyType1 && isForwardRange!DummyType2) {
static assert(isForwardRange!(typeof(r)));
}
static if (isBidirectionalRange!DummyType1 &&
isBidirectionalRange!DummyType2) {
static assert(isBidirectionalRange!(typeof(r)));
}
static if (isRandomAccessRange!DummyType1 &&
isRandomAccessRange!DummyType2) {
static assert(isRandomAccessRange!(typeof(r)));
}
}
}
+/
}
unittest
{
auto a = [5,4,3,2,1];
auto b = [3,1,2,5,6];
auto z = zip(a, b);
sort!"a[0] < b[0]"(z);
assert(a == [1, 2, 3, 4, 5]);
assert(b == [6, 5, 2, 1, 3]);
}
unittest
{
auto LL = iota(1L, 1000L);
auto z = zip(LL, [4]);
assert(equal(z, [tuple(1L,4)]));
auto LL2 = iota(0L, 500L);
auto z2 = zip([7], LL2);
assert(equal(z2, [tuple(7, 0L)]));
}
// Text for Issue 11196
unittest
{
import std.exception : assertThrown;
static struct S { @disable this(); }
static assert(__traits(compiles, zip((S[5]).init[])));
auto z = zip(StoppingPolicy.longest, cast(S[]) null, new int[1]);
assertThrown(zip(StoppingPolicy.longest, cast(S[]) null, new int[1]).front);
}
/*
Generate lockstep's opApply function as a mixin string.
If withIndex is true prepend a size_t index to the delegate.
*/
private string lockstepMixin(Ranges...)(bool withIndex)
{
import std.string : format, outdent;
string[] params;
string[] emptyChecks;
string[] dgArgs;
string[] popFronts;
if (withIndex)
{
params ~= "size_t";
dgArgs ~= "index";
}
foreach (idx, Range; Ranges)
{
params ~= format("%sElementType!(Ranges[%s])", hasLvalueElements!Range ? "ref " : "", idx);
emptyChecks ~= format("!ranges[%s].empty", idx);
dgArgs ~= format("ranges[%s].front", idx);
popFronts ~= format("ranges[%s].popFront();", idx);
}
return format(
q{
int opApply(scope int delegate(%s) dg)
{
import std.exception : enforce;
auto ranges = _ranges;
int res;
%s
while (%s)
{
res = dg(%s);
if (res) break;
%s
%s
}
if (_stoppingPolicy == StoppingPolicy.requireSameLength)
{
foreach(range; ranges)
enforce(range.empty);
}
return res;
}
}, params.join(", "), withIndex ? "size_t index = 0;" : "",
emptyChecks.join(" && "), dgArgs.join(", "),
popFronts.join("\n "),
withIndex ? "index++;" : "").outdent();
}
/**
Iterate multiple ranges in lockstep using a $(D foreach) loop. If only a single
range is passed in, the $(D Lockstep) aliases itself away. If the
ranges are of different lengths and $(D s) == $(D StoppingPolicy.shortest)
stop after the shortest range is empty. If the ranges are of different
lengths and $(D s) == $(D StoppingPolicy.requireSameLength), throw an
exception. $(D s) may not be $(D StoppingPolicy.longest), and passing this
will throw an exception.
By default $(D StoppingPolicy) is set to $(D StoppingPolicy.shortest).
BUGS: If a range does not offer lvalue access, but $(D ref) is used in the
$(D foreach) loop, it will be silently accepted but any modifications
to the variable will not be propagated to the underlying range.
Examples:
---
auto arr1 = [1,2,3,4,5];
auto arr2 = [6,7,8,9,10];
foreach(ref a, ref b; lockstep(arr1, arr2))
{
a += b;
}
assert(arr1 == [7,9,11,13,15]);
// Lockstep also supports iterating with an index variable:
foreach(index, a, b; lockstep(arr1, arr2)) {
writefln("Index %s: a = %s, b = %s", index, a, b);
}
---
*/
struct Lockstep(Ranges...)
if (Ranges.length > 1 && allSatisfy!(isInputRange, Ranges))
{
this(R ranges, StoppingPolicy sp = StoppingPolicy.shortest)
{
import std.exception : enforce;
_ranges = ranges;
enforce(sp != StoppingPolicy.longest,
"Can't use StoppingPolicy.Longest on Lockstep.");
_stoppingPolicy = sp;
}
mixin(lockstepMixin!Ranges(false));
mixin(lockstepMixin!Ranges(true));
private:
alias R = Ranges;
R _ranges;
StoppingPolicy _stoppingPolicy;
}
// For generic programming, make sure Lockstep!(Range) is well defined for a
// single range.
template Lockstep(Range)
{
alias Range Lockstep;
}
/// Ditto
Lockstep!(Ranges) lockstep(Ranges...)(Ranges ranges)
if (allSatisfy!(isInputRange, Ranges))
{
return Lockstep!(Ranges)(ranges);
}
/// Ditto
Lockstep!(Ranges) lockstep(Ranges...)(Ranges ranges, StoppingPolicy s)
if (allSatisfy!(isInputRange, Ranges))
{
static if (Ranges.length > 1)
return Lockstep!Ranges(ranges, s);
else
return ranges[0];
}
unittest
{
import std.conv : to;
// The filters are to make these the lowest common forward denominator ranges,
// i.e. w/o ref return, random access, length, etc.
auto foo = filter!"a"([1,2,3,4,5]);
immutable bar = [6f,7f,8f,9f,10f].idup;
auto l = lockstep(foo, bar);
// Should work twice. These are forward ranges with implicit save.
foreach(i; 0..2)
{
uint[] res1;
float[] res2;
foreach(a, ref b; l) {
res1 ~= a;
res2 ~= b;
}
assert(res1 == [1,2,3,4,5]);
assert(res2 == [6,7,8,9,10]);
assert(bar == [6f,7f,8f,9f,10f]);
}
// Doc example.
auto arr1 = [1,2,3,4,5];
auto arr2 = [6,7,8,9,10];
foreach(ref a, ref b; lockstep(arr1, arr2))
{
a += b;
}
assert(arr1 == [7,9,11,13,15]);
// Make sure StoppingPolicy.requireSameLength doesn't throw.
auto ls = lockstep(arr1, arr2, StoppingPolicy.requireSameLength);
foreach(a, b; ls) {}
// Make sure StoppingPolicy.requireSameLength throws.
arr2.popBack();
ls = lockstep(arr1, arr2, StoppingPolicy.requireSameLength);
try {
foreach(a, b; ls) {}
assert(0);
} catch {}
// Just make sure 1-range case instantiates. This hangs the compiler
// when no explicit stopping policy is specified due to Bug 4652.
auto stuff = lockstep([1,2,3,4,5], StoppingPolicy.shortest);
// Test with indexing.
uint[] res1;
float[] res2;
size_t[] indices;
foreach(i, a, b; lockstep(foo, bar))
{
indices ~= i;
res1 ~= a;
res2 ~= b;
}
assert(indices == to!(size_t[])([0, 1, 2, 3, 4]));
assert(res1 == [1,2,3,4,5]);
assert(res2 == [6f,7f,8f,9f,10f]);
// Make sure we've worked around the relevant compiler bugs and this at least
// compiles w/ >2 ranges.
lockstep(foo, foo, foo);
// Make sure it works with const.
const(int[])[] foo2 = [[1, 2, 3]];
const(int[])[] bar2 = [[4, 5, 6]];
auto c = chain(foo2, bar2);
foreach(f, b; lockstep(c, c)) {}
// Regression 10468
foreach (x, y; lockstep(iota(0, 10), iota(0, 10))) { }
}
/**
Creates a mathematical sequence given the initial values and a
recurrence function that computes the next value from the existing
values. The sequence comes in the form of an infinite forward
range. The type $(D Recurrence) itself is seldom used directly; most
often, recurrences are obtained by calling the function $(D
recurrence).
When calling $(D recurrence), the function that computes the next
value is specified as a template argument, and the initial values in
the recurrence are passed as regular arguments. For example, in a
Fibonacci sequence, there are two initial values (and therefore a
state size of 2) because computing the next Fibonacci value needs the
past two values.
If the function is passed in string form, the state has name $(D "a")
and the zero-based index in the recurrence has name $(D "n"). The
given string must return the desired value for $(D a[n]) given $(D a[n
- 1]), $(D a[n - 2]), $(D a[n - 3]),..., $(D a[n - stateSize]). The
state size is dictated by the number of arguments passed to the call
to $(D recurrence). The $(D Recurrence) struct itself takes care of
managing the recurrence's state and shifting it appropriately.
Example:
----
// a[0] = 1, a[1] = 1, and compute a[n+1] = a[n-1] + a[n]
auto fib = recurrence!("a[n-1] + a[n-2]")(1, 1);
// print the first 10 Fibonacci numbers
foreach (e; take(fib, 10)) { writeln(e); }
// print the first 10 factorials
foreach (e; take(recurrence!("a[n-1] * n")(1), 10)) { writeln(e); }
----
*/
struct Recurrence(alias fun, StateType, size_t stateSize)
{
private import std.functional : binaryFun;
StateType[stateSize] _state;
size_t _n;
this(StateType[stateSize] initial) { _state = initial; }
void popFront()
{
// The cast here is reasonable because fun may cause integer
// promotion, but needs to return a StateType to make its operation
// closed. Therefore, we have no other choice.
_state[_n % stateSize] = cast(StateType) binaryFun!(fun, "a", "n")(
cycle(_state), _n + stateSize);
++_n;
}
@property StateType front()
{
return _state[_n % stateSize];
}
@property typeof(this) save()
{
return this;
}
enum bool empty = false;
}
/// Ditto
Recurrence!(fun, CommonType!(State), State.length)
recurrence(alias fun, State...)(State initial)
{
CommonType!(State)[State.length] state;
foreach (i, Unused; State)
{
state[i] = initial[i];
}
return typeof(return)(state);
}
unittest
{
auto fib = recurrence!("a[n-1] + a[n-2]")(1, 1);
static assert(isForwardRange!(typeof(fib)));
int[] witness = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ];
assert(equal(take(fib, 10), witness));
foreach (e; take(fib, 10)) {}
auto fact = recurrence!("n * a[n-1]")(1);
assert( equal(take(fact, 10), [1, 1, 2, 2*3, 2*3*4, 2*3*4*5, 2*3*4*5*6,
2*3*4*5*6*7, 2*3*4*5*6*7*8, 2*3*4*5*6*7*8*9][]) );
auto piapprox = recurrence!("a[n] + (n & 1 ? 4.0 : -4.0) / (2 * n + 3)")(4.0);
foreach (e; take(piapprox, 20)) {}
// Thanks to yebblies for this test and the associated fix
auto r = recurrence!"a[n-2]"(1, 2);
witness = [1, 2, 1, 2, 1];
assert(equal(take(r, 5), witness));
}
/**
$(D Sequence) is similar to $(D Recurrence) except that iteration is
presented in the so-called $(WEB en.wikipedia.org/wiki/Closed_form,
closed form). This means that the $(D n)th element in the series is
computable directly from the initial values and $(D n) itself. This
implies that the interface offered by $(D Sequence) is a random-access
range, as opposed to the regular $(D Recurrence), which only offers
forward iteration.
The state of the sequence is stored as a $(D Tuple) so it can be
heterogeneous.
Example:
----
// a[0] = 1, a[1] = 2, a[n] = a[0] + n * a[1]
auto odds = sequence!("a[0] + n * a[1]")(1, 2);
----
*/
struct Sequence(alias fun, State)
{
private:
import std.functional : binaryFun;
alias binaryFun!(fun, "a", "n") compute;
alias typeof(compute(State.init, cast(size_t) 1)) ElementType;
State _state;
size_t _n;
ElementType _cache;
static struct DollarToken{}
public:
this(State initial, size_t n = 0)
{
_state = initial;
_n = n;
_cache = compute(_state, _n);
}
@property ElementType front()
{
return _cache;
}
ElementType moveFront()
{
return move(this._cache);
}
void popFront()
{
_cache = compute(_state, ++_n);
}
enum opDollar = DollarToken();
auto opSlice(size_t lower, size_t upper)
in
{
assert(upper >= lower);
}
body
{
return typeof(this)(_state, _n + lower).take(upper - lower);
}
auto opSlice(size_t lower, DollarToken)
{
return typeof(this)(_state, _n + lower);
}
ElementType opIndex(size_t n)
{
return compute(_state, n + _n);
}
enum bool empty = false;
@property Sequence save() { return this; }
}
/// Ditto
Sequence!(fun, Tuple!(State)) sequence(alias fun, State...)(State args)
{
return typeof(return)(tuple(args));
}
unittest
{
auto y = Sequence!("a[0] + n * a[1]", Tuple!(int, int))
(tuple(0, 4));
static assert(isForwardRange!(typeof(y)));
//@@BUG
//auto y = sequence!("a[0] + n * a[1]")(0, 4);
//foreach (e; take(y, 15))
{} //writeln(e);
auto odds = Sequence!("a[0] + n * a[1]", Tuple!(int, int))(
tuple(1, 2));
for(int currentOdd = 1; currentOdd <= 21; currentOdd += 2) {
assert(odds.front == odds[0]);
assert(odds[0] == currentOdd);
odds.popFront();
}
}
unittest
{
// documentation example
auto odds = sequence!("a[0] + n * a[1]")(1, 2);
assert(odds.front == 1);
odds.popFront();
assert(odds.front == 3);
odds.popFront();
assert(odds.front == 5);
}
unittest
{
auto odds = sequence!("a[0] + n * a[1]")(1, 2);
static assert(hasSlicing!(typeof(odds)));
//Note: don't use drop or take as the target of an equal,
//since they'll both just forward to opSlice, making the tests irrelevant
// static slicing tests
assert(equal(odds[0 .. 5], [1, 3, 5, 7, 9]));
assert(equal(odds[3 .. 7], [7, 9, 11, 13]));
// relative slicing test, testing slicing is NOT agnostic of state
auto odds_less5 = odds.drop(5); //this should actually call odds[5 .. $]
assert(equal(odds_less5[0 .. 3], [11, 13, 15]));
assert(equal(odds_less5[0 .. 10], odds[5 .. 15]));
//Infinite slicing tests
odds = odds[10 .. $];
assert(equal(odds.take(3), [21, 23, 25]));
}
/**
Returns a range that goes through the numbers $(D begin), $(D begin +
step), $(D begin + 2 * step), $(D ...), up to and excluding $(D
end). The range offered is a random access range. The two-arguments
version has $(D step = 1). If $(D begin < end && step < 0) or $(D
begin > end && step > 0) or $(D begin == end), then an empty range is
returned.
Throws:
$(D Exception) if $(D begin != end && step == 0), an exception is
thrown.
Example:
----
auto r = iota(0, 10, 1);
assert(equal(r, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
r = iota(0, 11, 3);
assert(equal(r, [0, 3, 6, 9][]));
assert(r[2] == 6);
auto rf = iota(0.0, 0.5, 0.1);
assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4]));
----
*/
auto iota(B, E, S)(B begin, E end, S step)
if ((isIntegral!(CommonType!(B, E)) || isPointer!(CommonType!(B, E)))
&& isIntegral!S)
{
import std.conv : unsigned;
alias CommonType!(Unqual!B, Unqual!E) Value;
alias Unqual!S StepType;
alias typeof(unsigned((end - begin) / step)) IndexType;
static struct Result
{
private Value current, pastLast;
private StepType step;
this(Value current, Value pastLast, StepType step)
{
import std.exception : enforce;
if ((current < pastLast && step >= 0) ||
(current > pastLast && step <= 0))
{
enforce(step != 0);
this.step = step;
this.current = current;
if (step > 0)
{
this.pastLast = pastLast - 1;
this.pastLast -= (this.pastLast - current) % step;
}
else
{
this.pastLast = pastLast + 1;
this.pastLast += (current - this.pastLast) % -step;
}
this.pastLast += step;
}
else
{
// Initialize an empty range
this.current = this.pastLast = current;
this.step = 1;
}
}
@property bool empty() const { return current == pastLast; }
@property inout(Value) front() inout { assert(!empty); return current; }
void popFront() { assert(!empty); current += step; }
@property inout(Value) back() inout { assert(!empty); return pastLast - step; }
void popBack() { assert(!empty); pastLast -= step; }
@property auto save() { return this; }
inout(Value) opIndex(ulong n) inout
{
assert(n < this.length);
// Just cast to Value here because doing so gives overflow behavior
// consistent with calling popFront() n times.
return cast(inout Value) (current + step * n);
}
inout(Result) opSlice() inout { return this; }
inout(Result) opSlice(ulong lower, ulong upper) inout
{
assert(upper >= lower && upper <= this.length);
return cast(inout Result)Result(cast(Value)(current + lower * step),
cast(Value)(pastLast - (length - upper) * step),
step);
}
@property IndexType length() const
{
if (step > 0)
{
return unsigned((pastLast - current) / step);
}
else
{
return unsigned((current - pastLast) / -step);
}
}
alias length opDollar;
}
return Result(begin, end, step);
}
/// Ditto
auto iota(B, E)(B begin, E end)
if (isFloatingPoint!(CommonType!(B, E)))
{
return iota(begin, end, 1.0);
}
/// Ditto
auto iota(B, E)(B begin, E end)
if (isIntegral!(CommonType!(B, E)) || isPointer!(CommonType!(B, E)))
{
import std.conv : unsigned;
alias CommonType!(Unqual!B, Unqual!E) Value;
alias typeof(unsigned(end - begin)) IndexType;
static struct Result
{
private Value current, pastLast;
this(Value current, Value pastLast)
{
if (current < pastLast)
{
this.current = current;
this.pastLast = pastLast;
}
else
{
// Initialize an empty range
this.current = this.pastLast = current;
}
}
@property bool empty() const { return current == pastLast; }
@property inout(Value) front() inout { assert(!empty); return current; }
void popFront() { assert(!empty); ++current; }
@property inout(Value) back() inout { assert(!empty); return cast(inout(Value))(pastLast - 1); }
void popBack() { assert(!empty); --pastLast; }
@property auto save() { return this; }
inout(Value) opIndex(ulong n) inout
{
assert(n < this.length);
// Just cast to Value here because doing so gives overflow behavior
// consistent with calling popFront() n times.
return cast(inout Value) (current + n);
}
inout(Result) opSlice() inout { return this; }
inout(Result) opSlice(ulong lower, ulong upper) inout
{
assert(upper >= lower && upper <= this.length);
return cast(inout Result)Result(cast(Value)(current + lower),
cast(Value)(pastLast - (length - upper)));
}
@property IndexType length() const
{
return unsigned(pastLast - current);
}
alias length opDollar;
}
return Result(begin, end);
}
/// Ditto
auto iota(E)(E end)
{
E begin = 0;
return iota(begin, end);
}
// Specialization for floating-point types
auto iota(B, E, S)(B begin, E end, S step)
if (isFloatingPoint!(CommonType!(B, E, S)))
{
alias Unqual!(CommonType!(B, E, S)) Value;
static struct Result
{
private Value start, step;
private size_t index, count;
this(Value start, Value end, Value step)
{
import std.conv : to;
import std.exception : enforce;
this.start = start;
this.step = step;
enforce(step != 0);
immutable fcount = (end - start) / step;
enforce(fcount >= 0, "iota: incorrect startup parameters");
count = to!size_t(fcount);
auto pastEnd = start + count * step;
if (step > 0)
{
if (pastEnd < end) ++count;
assert(start + count * step >= end);
}
else
{
if (pastEnd > end) ++count;
assert(start + count * step <= end);
}
}
@property bool empty() const { return index == count; }
@property Value front() const { assert(!empty); return start + step * index; }
void popFront()
{
assert(!empty);
++index;
}
@property Value back() const
{
assert(!empty);
return start + step * (count - 1);
}
void popBack()
{
assert(!empty);
--count;
}
@property auto save() { return this; }
Value opIndex(size_t n) const
{
assert(n < count);
return start + step * (n + index);
}
inout(Result) opSlice() inout
{
return this;
}
inout(Result) opSlice(size_t lower, size_t upper) inout
{
assert(upper >= lower && upper <= count);
Result ret = this;
ret.index += lower;
ret.count = upper - lower + ret.index;
return cast(inout Result)ret;
}
@property size_t length() const
{
return count - index;
}
alias length opDollar;
}
return Result(begin, end, step);
}
unittest
{
import std.math : approxEqual, nextUp, nextDown;
static assert(hasLength!(typeof(iota(0, 2))));
auto r = iota(0, 10, 1);
assert(r[$ - 1] == 9);
assert(equal(r, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
auto rSlice = r[2..8];
assert(equal(rSlice, [2, 3, 4, 5, 6, 7]));
rSlice.popFront();
assert(rSlice[0] == rSlice.front);
assert(rSlice.front == 3);
rSlice.popBack();
assert(rSlice[rSlice.length - 1] == rSlice.back);
assert(rSlice.back == 6);
rSlice = r[0..4];
assert(equal(rSlice, [0, 1, 2, 3]));
auto rr = iota(10);
assert(equal(rr, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
r = iota(0, -10, -1);
assert(equal(r, [0, -1, -2, -3, -4, -5, -6, -7, -8, -9][]));
rSlice = r[3..9];
assert(equal(rSlice, [-3, -4, -5, -6, -7, -8]));
r = iota(0, -6, -3);
assert(equal(r, [0, -3][]));
rSlice = r[1..2];
assert(equal(rSlice, [-3]));
r = iota(0, -7, -3);
assert(equal(r, [0, -3, -6][]));
rSlice = r[1..3];
assert(equal(rSlice, [-3, -6]));
r = iota(0, 11, 3);
assert(equal(r, [0, 3, 6, 9][]));
assert(r[2] == 6);
rSlice = r[1..3];
assert(equal(rSlice, [3, 6]));
int[] a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
auto r1 = iota(a.ptr, a.ptr + a.length, 1);
assert(r1.front == a.ptr);
assert(r1.back == a.ptr + a.length - 1);
auto rf = iota(0.0, 0.5, 0.1);
assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4][]));
assert(rf.length == 5);
rf.popFront();
assert(rf.length == 4);
auto rfSlice = rf[1..4];
assert(rfSlice.length == 3);
assert(approxEqual(rfSlice, [0.2, 0.3, 0.4]));
rfSlice.popFront();
assert(approxEqual(rfSlice[0], 0.3));
rf.popFront();
assert(rf.length == 3);
rfSlice = rf[1..3];
assert(rfSlice.length == 2);
assert(approxEqual(rfSlice, [0.3, 0.4]));
assert(approxEqual(rfSlice[0], 0.3));
// With something just above 0.5
rf = iota(0.0, nextUp(0.5), 0.1);
assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5][]));
rf.popBack();
assert(rf[rf.length - 1] == rf.back);
assert(approxEqual(rf.back, 0.4));
assert(rf.length == 5);
// going down
rf = iota(0.0, -0.5, -0.1);
assert(approxEqual(rf, [0.0, -0.1, -0.2, -0.3, -0.4][]));
rfSlice = rf[2..5];
assert(approxEqual(rfSlice, [-0.2, -0.3, -0.4]));
rf = iota(0.0, nextDown(-0.5), -0.1);
assert(approxEqual(rf, [0.0, -0.1, -0.2, -0.3, -0.4, -0.5][]));
// iota of longs
auto rl = iota(5_000_000L);
assert(rl.length == 5_000_000L);
// iota of longs with steps
auto iota_of_longs_with_steps = iota(50L, 101L, 10);
assert(iota_of_longs_with_steps.length == 6);
assert(equal(iota_of_longs_with_steps, [50L, 60L, 70L, 80L, 90L, 100L]));
// iota of unsigned zero length (issue 6222, actually trying to consume it
// is the only way to find something is wrong because the public
// properties are all correct)
auto iota_zero_unsigned = iota(0, 0u, 3);
assert(count(iota_zero_unsigned) == 0);
// unsigned reverse iota can be buggy if .length doesn't take them into
// account (issue 7982).
assert(iota(10u, 0u, -1).length == 10);
assert(iota(10u, 0u, -2).length == 5);
assert(iota(uint.max, uint.max-10, -1).length == 10);
assert(iota(uint.max, uint.max-10, -2).length == 5);
assert(iota(uint.max, 0u, -1).length == uint.max);
// Issue 8920
foreach (Type; TypeTuple!(byte, ubyte, short, ushort,
int, uint, long, ulong))
{
Type val;
foreach (i; iota(cast(Type)0, cast(Type)10)) { val++; }
assert(val == 10);
}
}
unittest
{
auto idx = new size_t[100];
copy(iota(0, idx.length), idx);
}
unittest
{
foreach(range; TypeTuple!(iota(2, 27, 4),
iota(3, 9),
iota(2.7, 12.3, .1),
iota(3.2, 9.7)))
{
const cRange = range;
const e = cRange.empty;
const f = cRange.front;
const b = cRange.back;
const i = cRange[2];
const s1 = cRange[];
const s2 = cRange[0 .. 3];
const l = cRange.length;
}
//The ptr stuff can't be done at compile time, so we unfortunately end
//up with some code duplication here.
auto arr = [0, 5, 3, 5, 5, 7, 9, 2, 0, 42, 7, 6];
{
const cRange = iota(arr.ptr, arr.ptr + arr.length, 3);
const e = cRange.empty;
const f = cRange.front;
const b = cRange.back;
const i = cRange[2];
const s1 = cRange[];
const s2 = cRange[0 .. 3];
const l = cRange.length;
}
{
const cRange = iota(arr.ptr, arr.ptr + arr.length);
const e = cRange.empty;
const f = cRange.front;
const b = cRange.back;
const i = cRange[2];
const s1 = cRange[];
const s2 = cRange[0 .. 3];
const l = cRange.length;
}
}
/**
Options for the $(LREF FrontTransversal) and $(LREF Transversal) ranges
(below).
*/
enum TransverseOptions
{
/**
When transversed, the elements of a range of ranges are assumed to
have different lengths (e.g. a jagged array).
*/
assumeJagged, //default
/**
The transversal enforces that the elements of a range of ranges have
all the same length (e.g. an array of arrays, all having the same
length). Checking is done once upon construction of the transversal
range.
*/
enforceNotJagged,
/**
The transversal assumes, without verifying, that the elements of a
range of ranges have all the same length. This option is useful if
checking was already done from the outside of the range.
*/
assumeNotJagged,
}
/**
Given a range of ranges, iterate transversally through the first
elements of each of the enclosed ranges.
Example:
----
int[][] x = new int[][2];
x[0] = [1, 2];
x[1] = [3, 4];
auto ror = frontTransversal(x);
assert(equal(ror, [ 1, 3 ][]));
---
*/
struct FrontTransversal(Ror,
TransverseOptions opt = TransverseOptions.assumeJagged)
{
alias Unqual!(Ror) RangeOfRanges;
alias .ElementType!RangeOfRanges RangeType;
alias .ElementType!RangeType ElementType;
private void prime()
{
static if (opt == TransverseOptions.assumeJagged)
{
while (!_input.empty && _input.front.empty)
{
_input.popFront();
}
static if (isBidirectionalRange!RangeOfRanges)
{
while (!_input.empty && _input.back.empty)
{
_input.popBack();
}
}
}
}
/**
Construction from an input.
*/
this(RangeOfRanges input)
{
_input = input;
prime();
static if (opt == TransverseOptions.enforceNotJagged)
// (isRandomAccessRange!RangeOfRanges
// && hasLength!RangeType)
{
import std.exception : enforce;
if (empty) return;
immutable commonLength = _input.front.length;
foreach (e; _input)
{
enforce(e.length == commonLength);
}
}
}
/**
Forward range primitives.
*/
static if (isInfinite!RangeOfRanges)
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return _input.empty;
}
}
/// Ditto
@property auto ref front()
{
assert(!empty);
return _input.front.front;
}
/// Ditto
static if (hasMobileElements!RangeType)
{
ElementType moveFront()
{
return .moveFront(_input.front);
}
}
static if (hasAssignableElements!RangeType)
{
@property auto front(ElementType val)
{
_input.front.front = val;
}
}
/// Ditto
void popFront()
{
assert(!empty);
_input.popFront();
prime();
}
/**
Duplicates this $(D frontTransversal). Note that only the encapsulating
range of range will be duplicated. Underlying ranges will not be
duplicated.
*/
static if (isForwardRange!RangeOfRanges)
{
@property FrontTransversal save()
{
return FrontTransversal(_input.save);
}
}
static if (isBidirectionalRange!RangeOfRanges)
{
/**
Bidirectional primitives. They are offered if $(D
isBidirectionalRange!RangeOfRanges).
*/
@property auto ref back()
{
assert(!empty);
return _input.back.front;
}
/// Ditto
void popBack()
{
assert(!empty);
_input.popBack();
prime();
}
/// Ditto
static if (hasMobileElements!RangeType)
{
ElementType moveBack()
{
return .moveFront(_input.back);
}
}
static if (hasAssignableElements!RangeType)
{
@property auto back(ElementType val)
{
_input.back.front = val;
}
}
}
static if (isRandomAccessRange!RangeOfRanges &&
(opt == TransverseOptions.assumeNotJagged ||
opt == TransverseOptions.enforceNotJagged))
{
/**
Random-access primitive. It is offered if $(D
isRandomAccessRange!RangeOfRanges && (opt ==
TransverseOptions.assumeNotJagged || opt ==
TransverseOptions.enforceNotJagged)).
*/
auto ref opIndex(size_t n)
{
return _input[n].front;
}
/// Ditto
static if (hasMobileElements!RangeType)
{
ElementType moveAt(size_t n)
{
return .moveFront(_input[n]);
}
}
/// Ditto
static if (hasAssignableElements!RangeType)
{
void opIndexAssign(ElementType val, size_t n)
{
_input[n].front = val;
}
}
/**
Slicing if offered if $(D RangeOfRanges) supports slicing and all the
conditions for supporting indexing are met.
*/
static if (hasSlicing!RangeOfRanges)
{
typeof(this) opSlice(size_t lower, size_t upper)
{
return typeof(this)(_input[lower..upper]);
}
}
}
auto opSlice() { return this; }
private:
RangeOfRanges _input;
}
/// Ditto
FrontTransversal!(RangeOfRanges, opt) frontTransversal(
TransverseOptions opt = TransverseOptions.assumeJagged,
RangeOfRanges)
(RangeOfRanges rr)
{
return typeof(return)(rr);
}
unittest {
static assert(is(FrontTransversal!(immutable int[][])));
foreach(DummyType; AllDummyRanges) {
auto dummies =
[DummyType.init, DummyType.init, DummyType.init, DummyType.init];
foreach(i, ref elem; dummies) {
// Just violate the DummyRange abstraction to get what I want.
elem.arr = elem.arr[i..$ - (3 - i)];
}
auto ft = frontTransversal!(TransverseOptions.assumeNotJagged)(dummies);
static if (isForwardRange!DummyType) {
static assert(isForwardRange!(typeof(ft)));
}
assert(equal(ft, [1, 2, 3, 4]));
// Test slicing.
assert(equal(ft[0..2], [1, 2]));
assert(equal(ft[1..3], [2, 3]));
assert(ft.front == ft.moveFront());
assert(ft.back == ft.moveBack());
assert(ft.moveAt(1) == ft[1]);
// Test infiniteness propagation.
static assert(isInfinite!(typeof(frontTransversal(repeat("foo")))));
static if (DummyType.r == ReturnBy.Reference) {
{
ft.front++;
scope(exit) ft.front--;
assert(dummies.front.front == 2);
}
{
ft.front = 5;
scope(exit) ft.front = 1;
assert(dummies[0].front == 5);
}
{
ft.back = 88;
scope(exit) ft.back = 4;
assert(dummies.back.front == 88);
}
{
ft[1] = 99;
scope(exit) ft[1] = 2;
assert(dummies[1].front == 99);
}
}
}
}
/**
Given a range of ranges, iterate transversally through the the $(D
n)th element of each of the enclosed ranges. All elements of the
enclosing range must offer random access.
Example:
----
int[][] x = new int[][2];
x[0] = [1, 2];
x[1] = [3, 4];
auto ror = transversal(x, 1);
assert(equal(ror, [ 2, 4 ][]));
---
*/
struct Transversal(Ror,
TransverseOptions opt = TransverseOptions.assumeJagged)
{
private alias Unqual!Ror RangeOfRanges;
private alias ElementType!RangeOfRanges InnerRange;
private alias ElementType!InnerRange E;
private void prime()
{
static if (opt == TransverseOptions.assumeJagged)
{
while (!_input.empty && _input.front.length <= _n)
{
_input.popFront();
}
static if (isBidirectionalRange!RangeOfRanges)
{
while (!_input.empty && _input.back.length <= _n)
{
_input.popBack();
}
}
}
}
/**
Construction from an input and an index.
*/
this(RangeOfRanges input, size_t n)
{
_input = input;
_n = n;
prime();
static if (opt == TransverseOptions.enforceNotJagged)
{
import std.exception : enforce;
if (empty) return;
immutable commonLength = _input.front.length;
foreach (e; _input)
{
enforce(e.length == commonLength);
}
}
}
/**
Forward range primitives.
*/
static if (isInfinite!(RangeOfRanges))
{
enum bool empty = false;
}
else
{
@property bool empty()
{
return _input.empty;
}
}
/// Ditto
@property auto ref front()
{
assert(!empty);
return _input.front[_n];
}
/// Ditto
static if (hasMobileElements!InnerRange)
{
E moveFront()
{
return .moveAt(_input.front, _n);
}
}
/// Ditto
static if (hasAssignableElements!InnerRange)
{
@property auto front(E val)
{
_input.front[_n] = val;
}
}
/// Ditto
void popFront()
{
assert(!empty);
_input.popFront();
prime();
}
/// Ditto
static if (isForwardRange!RangeOfRanges)
{
@property typeof(this) save()
{
auto ret = this;
ret._input = _input.save;
return ret;
}
}
static if (isBidirectionalRange!RangeOfRanges)
{
/**
Bidirectional primitives. They are offered if $(D
isBidirectionalRange!RangeOfRanges).
*/
@property auto ref back()
{
return _input.back[_n];
}
/// Ditto
void popBack()
{
assert(!empty);
_input.popBack();
prime();
}
/// Ditto
static if (hasMobileElements!InnerRange)
{
E moveBack()
{
return .moveAt(_input.back, _n);
}
}
/// Ditto
static if (hasAssignableElements!InnerRange)
{
@property auto back(E val)
{
_input.back[_n] = val;
}
}
}
static if (isRandomAccessRange!RangeOfRanges &&
(opt == TransverseOptions.assumeNotJagged ||
opt == TransverseOptions.enforceNotJagged))
{
/**
Random-access primitive. It is offered if $(D
isRandomAccessRange!RangeOfRanges && (opt ==
TransverseOptions.assumeNotJagged || opt ==
TransverseOptions.enforceNotJagged)).
*/
auto ref opIndex(size_t n)
{
return _input[n][_n];
}
/// Ditto
static if (hasMobileElements!InnerRange)
{
E moveAt(size_t n)
{
return .moveAt(_input[n], _n);
}
}
/// Ditto
static if (hasAssignableElements!InnerRange)
{
void opIndexAssign(E val, size_t n)
{
_input[n][_n] = val;
}
}
/// Ditto
static if(hasLength!RangeOfRanges)
{
@property size_t length()
{
return _input.length;
}
alias length opDollar;
}
/**
Slicing if offered if $(D RangeOfRanges) supports slicing and all the
conditions for supporting indexing are met.
*/
static if (hasSlicing!RangeOfRanges)
{
typeof(this) opSlice(size_t lower, size_t upper)
{
return typeof(this)(_input[lower..upper], _n);
}
}
}
auto opSlice() { return this; }
private:
RangeOfRanges _input;
size_t _n;
}
/// Ditto
Transversal!(RangeOfRanges, opt) transversal
(TransverseOptions opt = TransverseOptions.assumeJagged, RangeOfRanges)
(RangeOfRanges rr, size_t n)
{
return typeof(return)(rr, n);
}
unittest
{
int[][] x = new int[][2];
x[0] = [ 1, 2 ];
x[1] = [3, 4];
auto ror = transversal!(TransverseOptions.assumeNotJagged)(x, 1);
auto witness = [ 2, 4 ];
uint i;
foreach (e; ror) assert(e == witness[i++]);
assert(i == 2);
assert(ror.length == 2);
static assert(is(Transversal!(immutable int[][])));
// Make sure ref, assign is being propagated.
{
ror.front++;
scope(exit) ror.front--;
assert(x[0][1] == 3);
}
{
ror.front = 5;
scope(exit) ror.front = 2;
assert(x[0][1] == 5);
assert(ror.moveFront() == 5);
}
{
ror.back = 999;
scope(exit) ror.back = 4;
assert(x[1][1] == 999);
assert(ror.moveBack() == 999);
}
{
ror[0] = 999;
scope(exit) ror[0] = 2;
assert(x[0][1] == 999);
assert(ror.moveAt(0) == 999);
}
// Test w/o ref return.
alias DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random) D;
auto drs = [D.init, D.init];
foreach(num; 0..10) {
auto t = transversal!(TransverseOptions.enforceNotJagged)(drs, num);
assert(t[0] == t[1]);
assert(t[1] == num + 1);
}
static assert(isInfinite!(typeof(transversal(repeat([1,2,3]), 1))));
// Test slicing.
auto mat = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]];
auto mat1 = transversal!(TransverseOptions.assumeNotJagged)(mat, 1)[1..3];
assert(mat1[0] == 6);
assert(mat1[1] == 10);
}
struct Transposed(RangeOfRanges)
{
//alias typeof(map!"a.front"(RangeOfRanges.init)) ElementType;
this(RangeOfRanges input)
{
this._input = input;
}
@property auto front()
{
return map!"a.front"(_input);
}
void popFront()
{
foreach (ref e; _input)
{
if (e.empty) continue;
e.popFront();
}
}
// ElementType opIndex(size_t n)
// {
// return _input[n].front;
// }
@property bool empty()
{
foreach (e; _input)
if (!e.empty) return false;
return true;
}
@property Transposed save()
{
return Transposed(_input.save);
}
auto opSlice() { return this; }
private:
RangeOfRanges _input;
}
auto transposed(RangeOfRanges)(RangeOfRanges rr)
{
return Transposed!RangeOfRanges(rr);
}
unittest
{
int[][] x = new int[][2];
x[0] = [1, 2];
x[1] = [3, 4];
auto tr = transposed(x);
int[][] witness = [ [ 1, 3 ], [ 2, 4 ] ];
uint i;
foreach (e; tr)
{
assert(array(e) == witness[i++]);
}
}
/**
This struct takes two ranges, $(D source) and $(D indices), and creates a view
of $(D source) as if its elements were reordered according to $(D indices).
$(D indices) may include only a subset of the elements of $(D source) and
may also repeat elements.
$(D Source) must be a random access range. The returned range will be
bidirectional or random-access if $(D Indices) is bidirectional or
random-access, respectively.
Examples:
---
auto source = [1, 2, 3, 4, 5];
auto indices = [4, 3, 1, 2, 0, 4];
auto ind = indexed(source, indices);
assert(equal(ind, [5, 4, 2, 3, 1, 5]));
// When elements of indices are duplicated and Source has lvalue elements,
// these are aliased in ind.
ind[0]++;
assert(ind[0] == 6);
assert(ind[5] == 6);
---
*/
struct Indexed(Source, Indices)
if(isRandomAccessRange!Source && isInputRange!Indices &&
is(typeof(Source.init[ElementType!(Indices).init])))
{
this(Source source, Indices indices)
{
this._source = source;
this._indices = indices;
}
/// Range primitives
@property auto ref front()
{
assert(!empty);
return _source[_indices.front];
}
/// Ditto
void popFront()
{
assert(!empty);
_indices.popFront();
}
static if(isInfinite!Indices)
{
enum bool empty = false;
}
else
{
/// Ditto
@property bool empty()
{
return _indices.empty;
}
}
static if(isForwardRange!Indices)
{
/// Ditto
@property typeof(this) save()
{
// Don't need to save _source because it's never consumed.
return typeof(this)(_source, _indices.save);
}
}
/// Ditto
static if(hasAssignableElements!Source)
{
@property auto ref front(ElementType!Source newVal)
{
assert(!empty);
return _source[_indices.front] = newVal;
}
}
static if(hasMobileElements!Source)
{
/// Ditto
auto moveFront()
{
assert(!empty);
return .moveAt(_source, _indices.front);
}
}
static if(isBidirectionalRange!Indices)
{
/// Ditto
@property auto ref back()
{
assert(!empty);
return _source[_indices.back];
}
/// Ditto
void popBack()
{
assert(!empty);
_indices.popBack();
}
/// Ditto
static if(hasAssignableElements!Source)
{
@property auto ref back(ElementType!Source newVal)
{
assert(!empty);
return _source[_indices.back] = newVal;
}
}
static if(hasMobileElements!Source)
{
/// Ditto
auto moveBack()
{
assert(!empty);
return .moveAt(_source, _indices.back);
}
}
}
static if(hasLength!Indices)
{
/// Ditto
@property size_t length()
{
return _indices.length;
}
alias length opDollar;
}
static if(isRandomAccessRange!Indices)
{
/// Ditto
auto ref opIndex(size_t index)
{
return _source[_indices[index]];
}
/// Ditto
typeof(this) opSlice(size_t a, size_t b)
{
return typeof(this)(_source, _indices[a..b]);
}
static if(hasAssignableElements!Source)
{
/// Ditto
auto opIndexAssign(ElementType!Source newVal, size_t index)
{
return _source[_indices[index]] = newVal;
}
}
static if(hasMobileElements!Source)
{
/// Ditto
auto moveAt(size_t index)
{
return .moveAt(_source, _indices[index]);
}
}
}
// All this stuff is useful if someone wants to index an Indexed
// without adding a layer of indirection.
/**
Returns the source range.
*/
@property Source source()
{
return _source;
}
/**
Returns the indices range.
*/
@property Indices indices()
{
return _indices;
}
static if(isRandomAccessRange!Indices)
{
/**
Returns the physical index into the source range corresponding to a
given logical index. This is useful, for example, when indexing
an $(D Indexed) without adding another layer of indirection.
Examples:
---
auto ind = indexed([1, 2, 3, 4, 5], [1, 3, 4]);
assert(ind.physicalIndex(0) == 1);
---
*/
size_t physicalIndex(size_t logicalIndex)
{
return _indices[logicalIndex];
}
}
private:
Source _source;
Indices _indices;
}
/// Ditto
Indexed!(Source, Indices) indexed(Source, Indices)(Source source, Indices indices)
{
return typeof(return)(source, indices);
}
unittest
{
{
// Test examples.
auto ind = indexed([1, 2, 3, 4, 5], [1, 3, 4]);
assert(ind.physicalIndex(0) == 1);
}
auto source = [1, 2, 3, 4, 5];
auto indices = [4, 3, 1, 2, 0, 4];
auto ind = indexed(source, indices);
assert(equal(ind, [5, 4, 2, 3, 1, 5]));
assert(equal(retro(ind), [5, 1, 3, 2, 4, 5]));
// When elements of indices are duplicated and Source has lvalue elements,
// these are aliased in ind.
ind[0]++;
assert(ind[0] == 6);
assert(ind[5] == 6);
foreach(DummyType; AllDummyRanges)
{
auto d = DummyType.init;
auto r = indexed([1, 2, 3, 4, 5], d);
static assert(propagatesRangeType!(DummyType, typeof(r)));
static assert(propagatesLength!(DummyType, typeof(r)));
}
}
/**
This range iterates over fixed-sized chunks of size $(D chunkSize) of a
$(D source) range. $(D Source) must be a forward range.
If $(D !isInfinite!Source) and $(D source.walkLength) is not evenly
divisible by $(D chunkSize), the back element of this range will contain
fewer than $(D chunkSize) elements.
Examples:
---
auto source = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
auto chunks = chunks(source, 4);
assert(chunks[0] == [1, 2, 3, 4]);
assert(chunks[1] == [5, 6, 7, 8]);
assert(chunks[2] == [9, 10]);
assert(chunks.back == chunks[2]);
assert(chunks.front == chunks[0]);
assert(chunks.length == 3);
---
*/
struct Chunks(Source)
if (isForwardRange!Source)
{
/// Standard constructor
this(Source source, size_t chunkSize)
{
assert(chunkSize != 0, "Cannot create a Chunk with an empty chunkSize");
_source = source;
_chunkSize = chunkSize;
}
/// Forward range primitives. Always present.
@property auto front()
{
assert(!empty);
return _source.save.take(_chunkSize);
}
/// Ditto
void popFront()
{
assert(!empty);
_source.popFrontN(_chunkSize);
}
static if (!isInfinite!Source)
/// Ditto
@property bool empty()
{
return _source.empty;
}
else
// undocumented
enum empty = false;
/// Ditto
@property typeof(this) save()
{
return typeof(this)(_source.save, _chunkSize);
}
static if (hasLength!Source)
{
/// Length. Only if $(D hasLength!Source) is $(D true)
@property size_t length()
{
// Note: _source.length + _chunkSize may actually overflow.
// We cast to ulong to mitigate the problem on x86 machines.
// For x64 machines, we just suppose we'll never overflow.
// The "safe" code would require either an extra branch, or a
// modulo operation, which is too expensive for such a rare case
return cast(size_t)((cast(ulong)(_source.length) + _chunkSize - 1) / _chunkSize);
}
//Note: No point in defining opDollar here without slicing.
//opDollar is defined below in the hasSlicing!Source section
}
static if (hasSlicing!Source)
{
//Used for various purposes
private enum hasSliceToEnd = is(typeof(Source.init[_chunkSize .. $]) == Source);
/**
Indexing and slicing operations. Provided only if
$(D hasSlicing!Source) is $(D true).
*/
auto opIndex(size_t index)
{
immutable start = index * _chunkSize;
immutable end = start + _chunkSize;
static if (isInfinite!Source)
return _source[start .. end];
else
{
immutable len = _source.length;
assert(start < len, "chunks index out of bounds");
return _source[start .. min(end, len)];
}
}
/// Ditto
static if (hasLength!Source)
typeof(this) opSlice(size_t lower, size_t upper)
{
assert(lower <= upper && upper <= length, "chunks slicing index out of bounds");
immutable len = _source.length;
return chunks(_source[min(lower * _chunkSize, len) .. min(upper * _chunkSize, len)], _chunkSize);
}
else static if (hasSliceToEnd)
//For slicing an infinite chunk, we need to slice the source to the end.
typeof(takeExactly(this, 0)) opSlice(size_t lower, size_t upper)
{
assert(lower <= upper, "chunks slicing index out of bounds");
return chunks(_source[lower * _chunkSize .. $], _chunkSize).takeExactly(upper - lower);
}
static if (isInfinite!Source)
{
static if (hasSliceToEnd)
{
private static struct DollarToken{}
DollarToken opDollar()
{
return DollarToken();
}
//Slice to dollar
typeof(this) opSlice(size_t lower, DollarToken)
{
return typeof(this)(_source[lower * _chunkSize .. $], _chunkSize);
}
}
}
else
{
//Dollar token carries a static type, with no extra information.
//It can lazily transform into _source.length on algorithmic
//operations such as : chunks[$/2, $-1];
private static struct DollarToken
{
Chunks!Source* mom;
@property size_t momLength()
{
return mom.length;
}
alias momLength this;
}
DollarToken opDollar()
{
return DollarToken(&this);
}
//Slice overloads optimized for using dollar. Without this, to slice to end, we would...
//1. Evaluate chunks.length
//2. Multiply by _chunksSize
//3. To finally just compare it (with min) to the original length of source (!)
//These overloads avoid that.
typeof(this) opSlice(DollarToken, DollarToken)
{
static if (hasSliceToEnd)
return chunks(_source[$ .. $], _chunkSize);
else
{
immutable len = _source.length;
return chunks(_source[len .. len], _chunkSize);
}
}
typeof(this) opSlice(size_t lower, DollarToken)
{
assert(lower <= length, "chunks slicing index out of bounds");
static if (hasSliceToEnd)
return chunks(_source[min(lower * _chunkSize, _source.length) .. $], _chunkSize);
else
{
immutable len = _source.length;
return chunks(_source[min(lower * _chunkSize, len) .. len], _chunkSize);
}
}
typeof(this) opSlice(DollarToken, size_t upper)
{
assert(upper == length, "chunks slicing index out of bounds");
return this[$ .. $];
}
}
}
//Bidirectional range primitives
static if (hasSlicing!Source && hasLength!Source)
{
/**
Bidirectional range primitives. Provided only if both
$(D hasSlicing!Source) and $(D hasLength!Source) are $(D true).
*/
@property auto back()
{
assert(!empty, "back called on empty chunks");
immutable len = _source.length;
immutable start = (len - 1) / _chunkSize * _chunkSize;
return _source[start .. len];
}
/// Ditto
void popBack()
{
assert(!empty, "popBack() called on empty chunks");
immutable end = (_source.length - 1) / _chunkSize * _chunkSize;
_source = _source[0 .. end];
}
}
private:
Source _source;
size_t _chunkSize;
}
/// Ditto
Chunks!Source chunks(Source)(Source source, size_t chunkSize)
if (isForwardRange!Source)
{
return typeof(return)(source, chunkSize);
}
unittest
{
auto source = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
auto chunks = chunks(source, 4);
assert(chunks[0] == [1, 2, 3, 4]);
assert(chunks[1] == [5, 6, 7, 8]);
assert(chunks[2] == [9, 10]);
assert(chunks.back == chunks[2]);
assert(chunks.front == chunks[0]);
assert(chunks.length == 3);
assert(equal(retro(array(chunks)), array(retro(chunks))));
auto chunks2 = chunks.save;
chunks.popFront();
assert(chunks[0] == [5, 6, 7, 8]);
assert(chunks[1] == [9, 10]);
chunks2.popBack();
assert(chunks2[1] == [5, 6, 7, 8]);
assert(chunks2.length == 2);
static assert(isRandomAccessRange!(typeof(chunks)));
}
unittest
{
//Extra toying with slicing and indexing.
auto chunks1 = [0, 0, 1, 1, 2, 2, 3, 3, 4].chunks(2);
auto chunks2 = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4].chunks(2);
assert (chunks1.length == 5);
assert (chunks2.length == 5);
assert (chunks1[4] == [4]);
assert (chunks2[4] == [4, 4]);
assert (chunks1.back == [4]);
assert (chunks2.back == [4, 4]);
assert (chunks1[0 .. 1].equal([[0, 0]]));
assert (chunks1[0 .. 2].equal([[0, 0], [1, 1]]));
assert (chunks1[4 .. 5].equal([[4]]));
assert (chunks2[4 .. 5].equal([[4, 4]]));
assert (chunks1[0 .. 0].equal((int[][]).init));
assert (chunks1[5 .. 5].equal((int[][]).init));
assert (chunks2[5 .. 5].equal((int[][]).init));
//Fun with opDollar
assert (chunks1[$ .. $].equal((int[][]).init)); //Quick
assert (chunks2[$ .. $].equal((int[][]).init)); //Quick
assert (chunks1[$ - 1 .. $].equal([[4]])); //Semiquick
assert (chunks2[$ - 1 .. $].equal([[4, 4]])); //Semiquick
assert (chunks1[$ .. 5].equal((int[][]).init)); //Semiquick
assert (chunks2[$ .. 5].equal((int[][]).init)); //Semiquick
assert (chunks1[$ / 2 .. $ - 1].equal([[2, 2], [3, 3]])); //Slow
}
unittest
{
//ForwardRange
auto r = filter!"true"([1, 2, 3, 4, 5]).chunks(2);
assert(equal!"equal(a, b)"(r, [[1, 2], [3, 4], [5]]));
//InfiniteRange w/o RA
auto fibsByPairs = recurrence!"a[n-1] + a[n-2]"(1, 1).chunks(2);
assert(equal!`equal(a, b)`(fibsByPairs.take(2), [[ 1, 1], [ 2, 3]]));
//InfiniteRange w/ RA and slicing
auto odds = sequence!("a[0] + n * a[1]")(1, 2);
auto oddsByPairs = odds.chunks(2);
assert(equal!`equal(a, b)`(oddsByPairs.take(2), [[ 1, 3], [ 5, 7]]));
//Requires phobos#991 for Sequence to have slice to end
static assert(hasSlicing!(typeof(odds)));
assert(equal!`equal(a, b)`(oddsByPairs[3 .. 5], [[13, 15], [17, 19]]));
assert(equal!`equal(a, b)`(oddsByPairs[3 .. $].take(2), [[13, 15], [17, 19]]));
}
private struct OnlyResult(T, size_t arity)
{
private this(Values...)(auto ref Values values)
{
this.data = [values];
}
bool empty() @property
{
return frontIndex >= backIndex;
}
T front() @property
{
assert(!empty);
return data[frontIndex];
}
void popFront()
{
assert(!empty);
++frontIndex;
}
T back() @property
{
assert(!empty);
return data[backIndex - 1];
}
void popBack()
{
assert(!empty);
--backIndex;
}
OnlyResult save() @property
{
return this;
}
size_t length() @property
{
return backIndex - frontIndex;
}
alias opDollar = length;
T opIndex(size_t idx)
{
// data[i + idx] will not throw a RangeError
// when i + idx points to elements popped
// with popBack
version(assert)
{
import core.exception : RangeError;
if (idx >= length)
throw new RangeError;
}
return data[frontIndex + idx];
}
OnlyResult opSlice()
{
return this;
}
OnlyResult opSlice(size_t from, size_t to)
{
OnlyResult result = this;
result.frontIndex += from;
result.backIndex = this.frontIndex + to;
version(assert)
{
import core.exception : RangeError;
if (to < from || to > length)
throw new RangeError;
}
return result;
}
private size_t frontIndex = 0;
private size_t backIndex = arity;
// @@@BUG@@@ 10643
version(none)
{
static if(hasElaborateAssign!T)
private T[arity] data;
else
private T[arity] data = void;
}
else
private T[arity] data;
}
// Specialize for single-element results
private struct OnlyResult(T, size_t arity : 1)
{
@property T front() { assert(!_empty); return _value; }
@property T back() { assert(!_empty); return _value; }
@property bool empty() const { return _empty; }
@property size_t length() const { return !_empty; }
@property auto save() { return this; }
void popFront() { assert(!_empty); _empty = true; }
void popBack() { assert(!_empty); _empty = true; }
alias opDollar = length;
T opIndex(size_t i)
{
version (assert)
{
import core.exception : RangeError;
if (_empty || i != 0)
throw new RangeError;
}
return _value;
}
OnlyResult opSlice()
{
return this;
}
OnlyResult opSlice(size_t from, size_t to)
{
version (assert)
{
import core.exception : RangeError;
if (from > to || to > length)
throw new RangeError;
}
OnlyResult copy = this;
copy._empty = _empty || from == to;
return copy;
}
private Unqual!T _value;
private bool _empty = false;
}
// Specialize for the empty range
private struct OnlyResult(T, size_t arity : 0)
{
private static struct EmptyElementType {}
bool empty() @property { return true; }
size_t length() @property { return 0; }
alias opDollar = length;
EmptyElementType front() @property { assert(false); }
void popFront() { assert(false); }
EmptyElementType back() @property { assert(false); }
void popBack() { assert(false); }
OnlyResult save() @property { return this; }
EmptyElementType opIndex(size_t i)
{
version(assert)
{
import core.exception : RangeError;
throw new RangeError;
}
assert(false);
}
OnlyResult opSlice() { return this; }
OnlyResult opSlice(size_t from, size_t to)
{
version(assert)
{
import core.exception : RangeError;
if (from != 0 || to != 0)
throw new RangeError;
}
return this;
}
}
/**
Assemble $(D values) into a range that carries all its
elements in-situ.
Useful when a single value or multiple disconnected values
must be passed to an algorithm expecting a range, without
having to perform dynamic memory allocation.
As copying the range means copying all elements, it can be
safely returned from functions. For the same reason, copying
the returned range may be expensive for a large number of arguments.
*/
auto only(Values...)(auto ref Values values)
if(!is(CommonType!Values == void) || Values.length == 0)
{
return OnlyResult!(CommonType!Values, Values.length)(values);
}
///
unittest
{
assert(equal(only('♡'), "♡"));
assert([1, 2, 3, 4].findSplitBefore(only(3))[0] == [1, 2]);
assert(only("one", "two", "three").joiner(" ").equal("one two three"));
import std.uni;
string title = "The D Programming Language";
assert(filter!isUpper(title).map!only().join(".") == "T.D.P.L");
}
version(unittest)
{
// Verify that the same common type and same arity
// results in the same template instantiation
static assert(is(typeof(only(byte.init, int.init)) ==
typeof(only(int.init, byte.init))));
static assert(is(typeof(only((const(char)[]).init, string.init)) ==
typeof(only((const(char)[]).init, (const(char)[]).init))));
}
// Tests the zero-element result
unittest
{
auto emptyRange = only();
alias EmptyRange = typeof(emptyRange);
static assert(isInputRange!EmptyRange);
static assert(isForwardRange!EmptyRange);
static assert(isBidirectionalRange!EmptyRange);
static assert(isRandomAccessRange!EmptyRange);
static assert(hasLength!EmptyRange);
static assert(hasSlicing!EmptyRange);
assert(emptyRange.empty);
assert(emptyRange.length == 0);
assert(emptyRange.equal(emptyRange[]));
assert(emptyRange.equal(emptyRange.save));
assert(emptyRange[0 .. 0].equal(emptyRange));
}
// Tests the single-element result
unittest
{
foreach (x; tuple(1, '1', 1.0, "1", [1]))
{
auto a = only(x);
typeof(x)[] e = [];
assert(a.front == x);
assert(a.back == x);
assert(!a.empty);
assert(a.length == 1);
assert(equal(a, a[]));
assert(equal(a, a[0..1]));
assert(equal(a[0..0], e));
assert(equal(a[1..1], e));
assert(a[0] == x);
auto b = a.save;
assert(equal(a, b));
a.popFront();
assert(a.empty && a.length == 0 && a[].empty);
b.popBack();
assert(b.empty && b.length == 0 && b[].empty);
alias typeof(a) A;
static assert(isInputRange!A);
static assert(isForwardRange!A);
static assert(isBidirectionalRange!A);
static assert(isRandomAccessRange!A);
static assert(hasLength!A);
static assert(hasSlicing!A);
}
auto imm = only!(immutable int)(1);
immutable int[] imme = [];
assert(imm.front == 1);
assert(imm.back == 1);
assert(!imm.empty);
assert(imm.length == 1);
assert(equal(imm, imm[]));
assert(equal(imm, imm[0..1]));
assert(equal(imm[0..0], imme));
assert(equal(imm[1..1], imme));
assert(imm[0] == 1);
}
// Tests multiple-element results
unittest
{
static assert(!__traits(compiles, only(1, "1")));
auto nums = only!(byte, uint, long)(1, 2, 3);
static assert(is(ElementType!(typeof(nums)) == long));
assert(nums.length == 3);
foreach(i; 0 .. 3)
assert(nums[i] == i + 1);
auto saved = nums.save;
foreach(i; 1 .. 4)
{
assert(nums.front == nums[0]);
assert(nums.front == i);
nums.popFront();
assert(nums.length == 3 - i);
}
assert(nums.empty);
assert(saved.equal(only(1, 2, 3)));
assert(saved.equal(saved[]));
assert(saved[0 .. 1].equal(only(1)));
assert(saved[0 .. 2].equal(only(1, 2)));
assert(saved[0 .. 3].equal(saved));
assert(saved[1 .. 3].equal(only(2, 3)));
assert(saved[2 .. 3].equal(only(3)));
assert(saved[0 .. 0].empty);
assert(saved[3 .. 3].empty);
alias data = TypeTuple!("one", "two", "three", "four");
static joined =
["one two", "one two three", "one two three four"];
string[] joinedRange = joined;
foreach(argCount; TypeTuple!(2, 3, 4))
{
auto values = only(data[0 .. argCount]);
alias Values = typeof(values);
static assert(is(ElementType!Values == string));
static assert(isInputRange!Values);
static assert(isForwardRange!Values);
static assert(isBidirectionalRange!Values);
static assert(isRandomAccessRange!Values);
static assert(hasSlicing!Values);
static assert(hasLength!Values);
assert(values.length == argCount);
assert(values[0 .. $].equal(values[0 .. values.length]));
assert(values.joiner(" ").equal(joinedRange.front));
joinedRange.popFront();
}
assert(saved.retro.equal(only(3, 2, 1)));
assert(saved.length == 3);
assert(saved.back == 3);
saved.popBack();
assert(saved.length == 2);
assert(saved.back == 2);
assert(saved.front == 1);
saved.popFront();
assert(saved.length == 1);
assert(saved.front == 2);
saved.popBack();
assert(saved.empty);
auto imm = only!(immutable int, immutable int)(42, 24);
alias Imm = typeof(imm);
static assert(is(ElementType!Imm == immutable(int)));
assert(imm.front == 42);
imm.popFront();
assert(imm.front == 24);
imm.popFront();
assert(imm.empty);
static struct Test { int* a; }
immutable(Test) test;
only(test, test); // Works with mutable indirection
}
/**
Moves the front of $(D r) out and returns it. Leaves $(D r.front) in a
destroyable state that does not allocate any resources (usually equal
to its $(D .init) value).
*/
ElementType!R moveFront(R)(R r)
{
static if (is(typeof(&r.moveFront))) {
return r.moveFront();
} else static if (!hasElaborateCopyConstructor!(ElementType!R)) {
return r.front;
} else static if (is(typeof(&(r.front())) == ElementType!R*)) {
return move(r.front);
} else {
static assert(0,
"Cannot move front of a range with a postblit and an rvalue front.");
}
}
unittest
{
struct R
{
@property ref int front() { static int x = 42; return x; }
this(this){}
}
R r;
assert(moveFront(r) == 42);
}
/**
Moves the back of $(D r) out and returns it. Leaves $(D r.back) in a
destroyable state that does not allocate any resources (usually equal
to its $(D .init) value).
*/
ElementType!R moveBack(R)(R r)
{
static if (is(typeof(&r.moveBack))) {
return r.moveBack();
} else static if (!hasElaborateCopyConstructor!(ElementType!R)) {
return r.back;
} else static if (is(typeof(&(r.back())) == ElementType!R*)) {
return move(r.back);
} else {
static assert(0,
"Cannot move back of a range with a postblit and an rvalue back.");
}
}
unittest
{
struct TestRange
{
int payload;
@property bool empty() { return false; }
@property TestRange save() { return this; }
@property ref int front() { return payload; }
@property ref int back() { return payload; }
void popFront() { }
void popBack() { }
}
static assert(isBidirectionalRange!TestRange);
TestRange r;
auto x = moveBack(r);
}
/**
Moves element at index $(D i) of $(D r) out and returns it. Leaves $(D
r.front) in a destroyable state that does not allocate any resources
(usually equal to its $(D .init) value).
*/
ElementType!R moveAt(R, I)(R r, I i) if (isIntegral!I)
{
static if (is(typeof(&r.moveAt))) {
return r.moveAt(i);
} else static if (!hasElaborateCopyConstructor!(ElementType!(R))) {
return r[i];
} else static if (is(typeof(&r[i]) == ElementType!R*)) {
return move(r[i]);
} else {
static assert(0,
"Cannot move element of a range with a postblit and rvalue elements.");
}
}
unittest
{
auto a = [ 1, 2, 3 ];
assert(moveFront(a) == 1);
// define a perfunctory input range
struct InputRange
{
@property bool empty() { return false; }
@property int front() { return 42; }
void popFront() {}
int moveFront() { return 43; }
}
InputRange r;
assert(moveFront(r) == 43);
foreach(DummyType; AllDummyRanges) {
auto d = DummyType.init;
assert(moveFront(d) == 1);
static if (isBidirectionalRange!DummyType) {
assert(moveBack(d) == 10);
}
static if (isRandomAccessRange!DummyType) {
assert(moveAt(d, 2) == 3);
}
}
}
/**These interfaces are intended to provide virtual function-based wrappers
* around input ranges with element type E. This is useful where a well-defined
* binary interface is required, such as when a DLL function or virtual function
* needs to accept a generic range as a parameter. Note that
* $(LREF isInputRange) and friends check for conformance to structural
* interfaces, not for implementation of these $(D interface) types.
*
* Examples:
* ---
* void useRange(InputRange!int range) {
* // Function body.
* }
*
* // Create a range type.
* auto squares = map!"a * a"(iota(10));
*
* // Wrap it in an interface.
* auto squaresWrapped = inputRangeObject(squares);
*
* // Use it.
* useRange(squaresWrapped);
* ---
*
* Limitations:
*
* These interfaces are not capable of forwarding $(D ref) access to elements.
*
* Infiniteness of the wrapped range is not propagated.
*
* Length is not propagated in the case of non-random access ranges.
*
* See_Also:
* $(LREF inputRangeObject)
*/
interface InputRange(E) {
///
@property E front();
///
E moveFront();
///
void popFront();
///
@property bool empty();
/* Measurements of the benefits of using opApply instead of range primitives
* for foreach, using timings for iterating over an iota(100_000_000) range
* with an empty loop body, using the same hardware in each case:
*
* Bare Iota struct, range primitives: 278 milliseconds
* InputRangeObject, opApply: 436 milliseconds (1.57x penalty)
* InputRangeObject, range primitives: 877 milliseconds (3.15x penalty)
*/
/**$(D foreach) iteration uses opApply, since one delegate call per loop
* iteration is faster than three virtual function calls.
*/
int opApply(int delegate(E));
/// Ditto
int opApply(int delegate(size_t, E));
}
/**Interface for a forward range of type $(D E).*/
interface ForwardRange(E) : InputRange!E {
///
@property ForwardRange!E save();
}
/**Interface for a bidirectional range of type $(D E).*/
interface BidirectionalRange(E) : ForwardRange!(E) {
///
@property BidirectionalRange!E save();
///
@property E back();
///
E moveBack();
///
void popBack();
}
/**Interface for a finite random access range of type $(D E).*/
interface RandomAccessFinite(E) : BidirectionalRange!(E) {
///
@property RandomAccessFinite!E save();
///
E opIndex(size_t);
///
E moveAt(size_t);
///
@property size_t length();
///
alias length opDollar;
// Can't support slicing until issues with requiring slicing for all
// finite random access ranges are fully resolved.
version(none) {
///
RandomAccessFinite!E opSlice(size_t, size_t);
}
}
/**Interface for an infinite random access range of type $(D E).*/
interface RandomAccessInfinite(E) : ForwardRange!E {
///
E moveAt(size_t);
///
@property RandomAccessInfinite!E save();
///
E opIndex(size_t);
}
/**Adds assignable elements to InputRange.*/
interface InputAssignable(E) : InputRange!E {
///
@property void front(E newVal);
}
/**Adds assignable elements to ForwardRange.*/
interface ForwardAssignable(E) : InputAssignable!E, ForwardRange!E {
///
@property ForwardAssignable!E save();
}
/**Adds assignable elements to BidirectionalRange.*/
interface BidirectionalAssignable(E) : ForwardAssignable!E, BidirectionalRange!E {
///
@property BidirectionalAssignable!E save();
///
@property void back(E newVal);
}
/**Adds assignable elements to RandomAccessFinite.*/
interface RandomFiniteAssignable(E) : RandomAccessFinite!E, BidirectionalAssignable!E {
///
@property RandomFiniteAssignable!E save();
///
void opIndexAssign(E val, size_t index);
}
/**Interface for an output range of type $(D E). Usage is similar to the
* $(D InputRange) interface and descendants.*/
interface OutputRange(E) {
///
void put(E);
}
// CTFE function that generates mixin code for one put() method for each
// type E.
private string putMethods(E...)()
{
import std.conv : to;
string ret;
foreach (ti, Unused; E)
{
ret ~= "void put(E[" ~ to!string(ti) ~ "] e) { .put(_range, e); }";
}
return ret;
}
/**Implements the $(D OutputRange) interface for all types E and wraps the
* $(D put) method for each type $(D E) in a virtual function.
*/
class OutputRangeObject(R, E...) : staticMap!(OutputRange, E) {
// @BUG 4689: There should be constraints on this template class, but
// DMD won't let me put them in.
private R _range;
this(R range) {
this._range = range;
}
mixin(putMethods!E());
}
/**Returns the interface type that best matches $(D R).*/
template MostDerivedInputRange(R) if (isInputRange!(Unqual!R)) {
private alias ElementType!R E;
static if (isRandomAccessRange!R) {
static if (isInfinite!R) {
alias RandomAccessInfinite!E MostDerivedInputRange;
} else static if (hasAssignableElements!R) {
alias RandomFiniteAssignable!E MostDerivedInputRange;
} else {
alias RandomAccessFinite!E MostDerivedInputRange;
}
} else static if (isBidirectionalRange!R) {
static if (hasAssignableElements!R) {
alias BidirectionalAssignable!E MostDerivedInputRange;
} else {
alias BidirectionalRange!E MostDerivedInputRange;
}
} else static if (isForwardRange!R) {
static if (hasAssignableElements!R) {
alias ForwardAssignable!E MostDerivedInputRange;
} else {
alias ForwardRange!E MostDerivedInputRange;
}
} else {
static if (hasAssignableElements!R) {
alias InputAssignable!E MostDerivedInputRange;
} else {
alias InputRange!E MostDerivedInputRange;
}
}
}
/**Implements the most derived interface that $(D R) works with and wraps
* all relevant range primitives in virtual functions. If $(D R) is already
* derived from the $(D InputRange) interface, aliases itself away.
*/
template InputRangeObject(R) if (isInputRange!(Unqual!R)) {
static if (is(R : InputRange!(ElementType!R))) {
alias R InputRangeObject;
} else static if (!is(Unqual!R == R)) {
alias InputRangeObject!(Unqual!R) InputRangeObject;
} else {
///
class InputRangeObject : MostDerivedInputRange!(R) {
private R _range;
private alias ElementType!R E;
this(R range) {
this._range = range;
}
@property E front() { return _range.front; }
E moveFront() {
return .moveFront(_range);
}
void popFront() { _range.popFront(); }
@property bool empty() { return _range.empty; }
static if (isForwardRange!R) {
@property typeof(this) save() {
return new typeof(this)(_range.save);
}
}
static if (hasAssignableElements!R) {
@property void front(E newVal) {
_range.front = newVal;
}
}
static if (isBidirectionalRange!R) {
@property E back() { return _range.back; }
E moveBack() {
return .moveBack(_range);
}
void popBack() { return _range.popBack(); }
static if (hasAssignableElements!R) {
@property void back(E newVal) {
_range.back = newVal;
}
}
}
static if (isRandomAccessRange!R) {
E opIndex(size_t index) {
return _range[index];
}
E moveAt(size_t index) {
return .moveAt(_range, index);
}
static if (hasAssignableElements!R) {
void opIndexAssign(E val, size_t index) {
_range[index] = val;
}
}
static if (!isInfinite!R) {
@property size_t length() {
return _range.length;
}
alias length opDollar;
// Can't support slicing until all the issues with
// requiring slicing support for finite random access
// ranges are resolved.
version(none) {
typeof(this) opSlice(size_t lower, size_t upper) {
return new typeof(this)(_range[lower..upper]);
}
}
}
}
// Optimization: One delegate call is faster than three virtual
// function calls. Use opApply for foreach syntax.
int opApply(int delegate(E) dg) {
int res;
for(auto r = _range; !r.empty; r.popFront()) {
res = dg(r.front);
if (res) break;
}
return res;
}
int opApply(int delegate(size_t, E) dg) {
int res;
size_t i = 0;
for(auto r = _range; !r.empty; r.popFront()) {
res = dg(i, r.front);
if (res) break;
i++;
}
return res;
}
}
}
}
/**Convenience function for creating an $(D InputRangeObject) of the proper type.
* See $(LREF InputRange) for an example.
*/
InputRangeObject!R inputRangeObject(R)(R range) if (isInputRange!R) {
static if (is(R : InputRange!(ElementType!R))) {
return range;
} else {
return new InputRangeObject!R(range);
}
}
/**Convenience function for creating an $(D OutputRangeObject) with a base range
* of type $(D R) that accepts types $(D E).
Examples:
---
uint[] outputArray;
auto app = appender(&outputArray);
auto appWrapped = outputRangeObject!(uint, uint[])(app);
static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
static assert(is(typeof(appWrapped) : OutputRange!(uint)));
---
*/
template outputRangeObject(E...) {
///
OutputRangeObject!(R, E) outputRangeObject(R)(R range) {
return new OutputRangeObject!(R, E)(range);
}
}
unittest {
static void testEquality(R)(iInputRange r1, R r2) {
assert(equal(r1, r2));
}
auto arr = [1,2,3,4];
RandomFiniteAssignable!int arrWrapped = inputRangeObject(arr);
static assert(isRandomAccessRange!(typeof(arrWrapped)));
// static assert(hasSlicing!(typeof(arrWrapped)));
static assert(hasLength!(typeof(arrWrapped)));
arrWrapped[0] = 0;
assert(arr[0] == 0);
assert(arr.moveFront() == 0);
assert(arr.moveBack() == 4);
assert(arr.moveAt(1) == 2);
foreach(elem; arrWrapped) {}
foreach(i, elem; arrWrapped) {}
assert(inputRangeObject(arrWrapped) is arrWrapped);
foreach(DummyType; AllDummyRanges) {
auto d = DummyType.init;
static assert(propagatesRangeType!(DummyType,
typeof(inputRangeObject(d))));
static assert(propagatesRangeType!(DummyType,
MostDerivedInputRange!DummyType));
InputRange!uint wrapped = inputRangeObject(d);
assert(equal(wrapped, d));
}
// Test output range stuff.
auto app = appender!(uint[])();
auto appWrapped = outputRangeObject!(uint, uint[])(app);
static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
static assert(is(typeof(appWrapped) : OutputRange!(uint)));
appWrapped.put(1);
appWrapped.put([2, 3]);
assert(app.data.length == 3);
assert(equal(app.data, [1,2,3]));
}
/**
Returns true if $(D fn) accepts variables of type T1 and T2 in any order.
The following code should compile:
---
T1 foo();
T2 bar();
fn(foo(), bar());
fn(bar(), foo());
---
*/
template isTwoWayCompatible(alias fn, T1, T2)
{
enum isTwoWayCompatible = is(typeof( (){
T1 foo();
T2 bar();
fn(foo(), bar());
fn(bar(), foo());
}
));
}
/**
Policy used with the searching primitives $(D lowerBound), $(D
upperBound), and $(D equalRange) of $(LREF SortedRange) below.
*/
enum SearchPolicy
{
/**
Searches with a step that is grows linearly (1, 2, 3,...)
leading to a quadratic search schedule (indexes tried are 0, 1,
3, 6, 10, 15, 21, 28,...) Once the search overshoots its target,
the remaining interval is searched using binary search. The
search is completed in $(BIGOH sqrt(n)) time. Use it when you
are reasonably confident that the value is around the beginning
of the range.
*/
trot,
/**
Performs a $(LUCKY galloping search algorithm), i.e. searches
with a step that doubles every time, (1, 2, 4, 8, ...) leading
to an exponential search schedule (indexes tried are 0, 1, 3,
7, 15, 31, 63,...) Once the search overshoots its target, the
remaining interval is searched using binary search. A value is
found in $(BIGOH log(n)) time.
*/
gallop,
/**
Searches using a classic interval halving policy. The search
starts in the middle of the range, and each search step cuts
the range in half. This policy finds a value in $(BIGOH log(n))
time but is less cache friendly than $(D gallop) for large
ranges. The $(D binarySearch) policy is used as the last step
of $(D trot), $(D gallop), $(D trotBackwards), and $(D
gallopBackwards) strategies.
*/
binarySearch,
/**
Similar to $(D trot) but starts backwards. Use it when
confident that the value is around the end of the range.
*/
trotBackwards,
/**
Similar to $(D gallop) but starts backwards. Use it when
confident that the value is around the end of the range.
*/
gallopBackwards
}
/**
Represents a sorted random-access range. In addition to the regular
range primitives, supports fast operations using binary search. To
obtain a $(D SortedRange) from an unsorted range $(D r), use
$(XREF algorithm, sort) which sorts $(D r) in place and returns the
corresponding $(D SortedRange). To construct a $(D SortedRange)
from a range $(D r) that is known to be already sorted, use
$(LREF assumeSorted) described below.
Example:
----
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.contains(3));
assert(!r.contains(32));
auto r1 = sort!"a > b"(a);
assert(r1.contains(3));
assert(!r1.contains(32));
assert(r1.release() == [ 64, 52, 42, 3, 2, 1 ]);
----
$(D SortedRange) could accept ranges weaker than random-access, but it
is unable to provide interesting functionality for them. Therefore,
$(D SortedRange) is currently restricted to random-access ranges.
No copy of the original range is ever made. If the underlying range is
changed concurrently with its corresponding $(D SortedRange) in ways
that break its sortedness, $(D SortedRange) will work erratically.
Example:
----
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.contains(42));
swap(a[3], a[5]); // illegal to break sortedness of original range
assert(!r.contains(42)); // passes although it shouldn't
----
*/
struct SortedRange(Range, alias pred = "a < b")
if (isRandomAccessRange!Range && hasLength!Range)
{
private import std.functional : binaryFun;
private alias binaryFun!pred predFun;
private bool geq(L, R)(L lhs, R rhs)
{
return !predFun(lhs, rhs);
}
private bool gt(L, R)(L lhs, R rhs)
{
return predFun(rhs, lhs);
}
private Range _input;
// Undocummented because a clearer way to invoke is by calling
// assumeSorted.
this(Range input)
{
this._input = input;
if(!__ctfe)
debug
{
import core.bitop : bsr;
import std.conv : text;
import std.random : MinstdRand, uniform;
// Check the sortedness of the input
if (this._input.length < 2) return;
immutable size_t msb = bsr(this._input.length) + 1;
assert(msb > 0 && msb <= this._input.length);
immutable step = this._input.length / msb;
static MinstdRand gen;
immutable start = uniform(0, step, gen);
auto st = stride(this._input, step);
assert(isSorted!pred(st), text(st));
}
}
/// Range primitives.
@property bool empty() //const
{
return this._input.empty;
}
/// Ditto
@property auto save()
{
// Avoid the constructor
typeof(this) result = this;
result._input = _input.save;
return result;
}
/// Ditto
@property auto front()
{
return _input.front;
}
/// Ditto
void popFront()
{
_input.popFront();
}
/// Ditto
@property auto back()
{
return _input.back;
}
/// Ditto
void popBack()
{
_input.popBack();
}
/// Ditto
auto opIndex(size_t i)
{
return _input[i];
}
/// Ditto
static if (hasSlicing!Range)
auto opSlice(size_t a, size_t b)
{
assert(a <= b);
typeof(this) result = this;
result._input = _input[a .. b];// skip checking
return result;
}
/// Ditto
@property size_t length() //const
{
return _input.length;
}
alias length opDollar;
/**
Releases the controlled range and returns it.
*/
auto release()
{
return move(_input);
}
// Assuming a predicate "test" that returns 0 for a left portion
// of the range and then 1 for the rest, returns the index at
// which the first 1 appears. Used internally by the search routines.
private size_t getTransitionIndex(SearchPolicy sp, alias test, V)(V v)
if (sp == SearchPolicy.binarySearch)
{
size_t first = 0, count = _input.length;
while (count > 0)
{
immutable step = count / 2, it = first + step;
if (!test(_input[it], v))
{
first = it + 1;
count -= step + 1;
}
else
{
count = step;
}
}
return first;
}
// Specialization for trot and gallop
private size_t getTransitionIndex(SearchPolicy sp, alias test, V)(V v)
if (sp == SearchPolicy.trot || sp == SearchPolicy.gallop)
{
if (empty || test(front, v)) return 0;
immutable count = length;
if (count == 1) return 1;
size_t below = 0, above = 1, step = 2;
while (!test(_input[above], v))
{
// Still too small, update below and increase gait
below = above;
immutable next = above + step;
if (next >= count)
{
// Overshot - the next step took us beyond the end. So
// now adjust next and simply exit the loop to do the
// binary search thingie.
above = count;
break;
}
// Still in business, increase step and continue
above = next;
static if (sp == SearchPolicy.trot)
++step;
else
step <<= 1;
}
return below + this[below .. above].getTransitionIndex!(
SearchPolicy.binarySearch, test, V)(v);
}
// Specialization for trotBackwards and gallopBackwards
private size_t getTransitionIndex(SearchPolicy sp, alias test, V)(V v)
if (sp == SearchPolicy.trotBackwards || sp == SearchPolicy.gallopBackwards)
{
immutable count = length;
if (empty || !test(back, v)) return count;
if (count == 1) return 0;
size_t below = count - 2, above = count - 1, step = 2;
while (test(_input[below], v))
{
// Still too large, update above and increase gait
above = below;
if (below < step)
{
// Overshot - the next step took us beyond the end. So
// now adjust next and simply fall through to do the
// binary search thingie.
below = 0;
break;
}
// Still in business, increase step and continue
below -= step;
static if (sp == SearchPolicy.trot)
++step;
else
step <<= 1;
}
return below + this[below .. above].getTransitionIndex!(
SearchPolicy.binarySearch, test, V)(v);
}
// lowerBound
/**
This function uses binary search with policy $(D sp) to find the
largest left subrange on which $(D pred(x, value)) is $(D true) for
all $(D x) (e.g., if $(D pred) is "less than", returns the portion of
the range with elements strictly smaller than $(D value)). The search
schedule and its complexity are documented in
$(LREF SearchPolicy). See also STL's
$(WEB sgi.com/tech/stl/lower_bound.html, lower_bound).
Example:
----
auto a = assumeSorted([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]);
auto p = a.lowerBound(4);
assert(equal(p, [ 0, 1, 2, 3 ]));
----
*/
auto lowerBound(SearchPolicy sp = SearchPolicy.binarySearch, V)(V value)
if (isTwoWayCompatible!(predFun, ElementType!Range, V))
{
return this[0 .. getTransitionIndex!(sp, geq)(value)];
}
// upperBound
/**
This function uses binary search with policy $(D sp) to find the
largest right subrange on which $(D pred(value, x)) is $(D true)
for all $(D x) (e.g., if $(D pred) is "less than", returns the
portion of the range with elements strictly greater than $(D
value)). The search schedule and its complexity are documented in
$(LREF SearchPolicy). See also STL's
$(WEB sgi.com/tech/stl/lower_bound.html,upper_bound).
Example:
----
auto a = assumeSorted([ 1, 2, 3, 3, 3, 4, 4, 5, 6 ]);
auto p = a.upperBound(3);
assert(equal(p, [4, 4, 5, 6]));
----
*/
auto upperBound(SearchPolicy sp = SearchPolicy.binarySearch, V)(V value)
if (isTwoWayCompatible!(predFun, ElementType!Range, V))
{
return this[getTransitionIndex!(sp, gt)(value) .. length];
}
// equalRange
/**
Returns the subrange containing all elements $(D e) for which both $(D
pred(e, value)) and $(D pred(value, e)) evaluate to $(D false) (e.g.,
if $(D pred) is "less than", returns the portion of the range with
elements equal to $(D value)). Uses a classic binary search with
interval halving until it finds a value that satisfies the condition,
then uses $(D SearchPolicy.gallopBackwards) to find the left boundary
and $(D SearchPolicy.gallop) to find the right boundary. These
policies are justified by the fact that the two boundaries are likely
to be near the first found value (i.e., equal ranges are relatively
small). Completes the entire search in $(BIGOH log(n)) time. See also
STL's $(WEB sgi.com/tech/stl/equal_range.html, equal_range).
Example:
----
auto a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto r = equalRange(a, 3);
assert(equal(r, [ 3, 3, 3 ]));
----
*/
auto equalRange(V)(V value)
if (isTwoWayCompatible!(predFun, ElementType!Range, V))
{
size_t first = 0, count = _input.length;
while (count > 0)
{
immutable step = count / 2;
auto it = first + step;
if (predFun(_input[it], value))
{
// Less than value, bump left bound up
first = it + 1;
count -= step + 1;
}
else if (predFun(value, _input[it]))
{
// Greater than value, chop count
count = step;
}
else
{
// Equal to value, do binary searches in the
// leftover portions
// Gallop towards the left end as it's likely nearby
immutable left = first
+ this[first .. it]
.lowerBound!(SearchPolicy.gallopBackwards)(value).length;
first += count;
// Gallop towards the right end as it's likely nearby
immutable right = first
- this[it + 1 .. first]
.upperBound!(SearchPolicy.gallop)(value).length;
return this[left .. right];
}
}
return this.init;
}
// trisect
/**
Returns a tuple $(D r) such that $(D r[0]) is the same as the result
of $(D lowerBound(value)), $(D r[1]) is the same as the result of $(D
equalRange(value)), and $(D r[2]) is the same as the result of $(D
upperBound(value)). The call is faster than computing all three
separately. Uses a search schedule similar to $(D
equalRange). Completes the entire search in $(BIGOH log(n)) time.
Example:
----
auto a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto r = assumeSorted(a).trisect(3);
assert(equal(r[0], [ 1, 2 ]));
assert(equal(r[1], [ 3, 3, 3 ]));
assert(equal(r[2], [ 4, 4, 5, 6 ]));
----
*/
auto trisect(V)(V value)
if (isTwoWayCompatible!(predFun, ElementType!Range, V))
{
size_t first = 0, count = _input.length;
while (count > 0)
{
immutable step = count / 2;
auto it = first + step;
if (predFun(_input[it], value))
{
// Less than value, bump left bound up
first = it + 1;
count -= step + 1;
}
else if (predFun(value, _input[it]))
{
// Greater than value, chop count
count = step;
}
else
{
// Equal to value, do binary searches in the
// leftover portions
// Gallop towards the left end as it's likely nearby
immutable left = first
+ this[first .. it]
.lowerBound!(SearchPolicy.gallopBackwards)(value).length;
first += count;
// Gallop towards the right end as it's likely nearby
immutable right = first
- this[it + 1 .. first]
.upperBound!(SearchPolicy.gallop)(value).length;
return tuple(this[0 .. left], this[left .. right],
this[right .. length]);
}
}
// No equal element was found
return tuple(this[0 .. first], this.init, this[first .. length]);
}
// contains
/**
Returns $(D true) if and only if $(D value) can be found in $(D
range), which is assumed to be sorted. Performs $(BIGOH log(r.length))
evaluations of $(D pred). See also STL's $(WEB
sgi.com/tech/stl/binary_search.html, binary_search).
*/
bool contains(V)(V value)
{
size_t first = 0, count = _input.length;
while (count > 0)
{
immutable step = count / 2, it = first + step;
if (predFun(_input[it], value))
{
// Less than value, bump left bound up
first = it + 1;
count -= step + 1;
}
else if (predFun(value, _input[it]))
{
// Greater than value, chop count
count = step;
}
else
{
// Found!!!
return true;
}
}
return false;
}
}
// Doc examples
unittest
{
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.contains(3));
assert(!r.contains(32));
auto r1 = sort!"a > b"(a);
assert(r1.contains(3));
assert(!r1.contains(32));
assert(r1.release() == [ 64, 52, 42, 3, 2, 1 ]);
}
unittest
{
auto a = [ 10, 20, 30, 30, 30, 40, 40, 50, 60 ];
auto r = assumeSorted(a).trisect(30);
assert(equal(r[0], [ 10, 20 ]));
assert(equal(r[1], [ 30, 30, 30 ]));
assert(equal(r[2], [ 40, 40, 50, 60 ]));
r = assumeSorted(a).trisect(35);
assert(equal(r[0], [ 10, 20, 30, 30, 30 ]));
assert(r[1].empty);
assert(equal(r[2], [ 40, 40, 50, 60 ]));
}
unittest
{
auto a = [ "A", "AG", "B", "E", "F" ];
auto r = assumeSorted!"cmp(a,b) < 0"(a).trisect("B"w);
assert(equal(r[0], [ "A", "AG" ]));
assert(equal(r[1], [ "B" ]));
assert(equal(r[2], [ "E", "F" ]));
r = assumeSorted!"cmp(a,b) < 0"(a).trisect("A"d);
assert(r[0].empty);
assert(equal(r[1], [ "A" ]));
assert(equal(r[2], [ "AG", "B", "E", "F" ]));
}
unittest
{
static void test(SearchPolicy pol)()
{
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(equal(r.lowerBound(42), [1, 2, 3]));
assert(equal(r.lowerBound!(pol)(42), [1, 2, 3]));
assert(equal(r.lowerBound!(pol)(41), [1, 2, 3]));
assert(equal(r.lowerBound!(pol)(43), [1, 2, 3, 42]));
assert(equal(r.lowerBound!(pol)(51), [1, 2, 3, 42]));
assert(equal(r.lowerBound!(pol)(3), [1, 2]));
assert(equal(r.lowerBound!(pol)(55), [1, 2, 3, 42, 52]));
assert(equal(r.lowerBound!(pol)(420), a));
assert(equal(r.lowerBound!(pol)(0), a[0 .. 0]));
assert(equal(r.upperBound!(pol)(42), [52, 64]));
assert(equal(r.upperBound!(pol)(41), [42, 52, 64]));
assert(equal(r.upperBound!(pol)(43), [52, 64]));
assert(equal(r.upperBound!(pol)(51), [52, 64]));
assert(equal(r.upperBound!(pol)(53), [64]));
assert(equal(r.upperBound!(pol)(55), [64]));
assert(equal(r.upperBound!(pol)(420), a[0 .. 0]));
assert(equal(r.upperBound!(pol)(0), a));
}
test!(SearchPolicy.trot)();
test!(SearchPolicy.gallop)();
test!(SearchPolicy.trotBackwards)();
test!(SearchPolicy.gallopBackwards)();
test!(SearchPolicy.binarySearch)();
}
unittest
{
// Check for small arrays
int[] a;
auto r = assumeSorted(a);
a = [ 1 ];
r = assumeSorted(a);
a = [ 1, 2 ];
r = assumeSorted(a);
a = [ 1, 2, 3 ];
r = assumeSorted(a);
}
unittest
{
auto a = [ 1, 2, 3, 42, 52, 64 ];
auto r = assumeSorted(a);
assert(r.contains(42));
swap(a[3], a[5]); // illegal to break sortedness of original range
assert(!r.contains(42)); // passes although it shouldn't
}
unittest
{
immutable(int)[] arr = [ 1, 2, 3 ];
auto s = assumeSorted(arr);
}
/**
Assumes $(D r) is sorted by predicate $(D pred) and returns the
corresponding $(D SortedRange!(pred, R)) having $(D r) as support. To
keep the checking costs low, the cost is $(BIGOH 1) in release mode
(no checks for sortedness are performed). In debug mode, a few random
elements of $(D r) are checked for sortedness. The size of the sample
is proportional $(BIGOH log(r.length)). That way, checking has no
effect on the complexity of subsequent operations specific to sorted
ranges (such as binary search). The probability of an arbitrary
unsorted range failing the test is very high (however, an
almost-sorted range is likely to pass it). To check for sortedness at
cost $(BIGOH n), use $(XREF algorithm,isSorted).
*/
auto assumeSorted(alias pred = "a < b", R)(R r)
if (isRandomAccessRange!(Unqual!R))
{
return SortedRange!(Unqual!R, pred)(r);
}
unittest
{
static assert(isRandomAccessRange!(SortedRange!(int[])));
int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
auto p = assumeSorted(a).lowerBound(4);
assert(equal(p, [0, 1, 2, 3]));
p = assumeSorted(a).lowerBound(5);
assert(equal(p, [0, 1, 2, 3, 4]));
p = assumeSorted(a).lowerBound(6);
assert(equal(p, [ 0, 1, 2, 3, 4, 5]));
p = assumeSorted(a).lowerBound(6.9);
assert(equal(p, [ 0, 1, 2, 3, 4, 5, 6]));
}
unittest
{
int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto p = assumeSorted(a).upperBound(3);
assert(equal(p, [4, 4, 5, 6 ]));
p = assumeSorted(a).upperBound(4.2);
assert(equal(p, [ 5, 6 ]));
}
unittest
{
import std.conv : text;
int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto p = assumeSorted(a).equalRange(3);
assert(equal(p, [ 3, 3, 3 ]), text(p));
p = assumeSorted(a).equalRange(4);
assert(equal(p, [ 4, 4 ]), text(p));
p = assumeSorted(a).equalRange(2);
assert(equal(p, [ 2 ]));
p = assumeSorted(a).equalRange(0);
assert(p.empty);
p = assumeSorted(a).equalRange(7);
assert(p.empty);
p = assumeSorted(a).equalRange(3.0);
assert(equal(p, [ 3, 3, 3]));
}
unittest
{
int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
if (a.length)
{
auto b = a[a.length / 2];
//auto r = sort(a);
//assert(r.contains(b));
}
}
unittest
{
auto a = [ 5, 7, 34, 345, 677 ];
auto r = assumeSorted(a);
a = null;
r = assumeSorted(a);
a = [ 1 ];
r = assumeSorted(a);
bool ok = true;
try
{
auto r2 = assumeSorted([ 677, 345, 34, 7, 5 ]);
debug ok = false;
}
catch (Throwable)
{
}
assert(ok);
}
/++
Wrapper which effectively makes it possible to pass a range by reference.
Both the original range and the RefRange will always have the exact same
elements. Any operation done on one will affect the other. So, for instance,
if it's passed to a function which would implicitly copy the original range
if it were passed to it, the original range is $(I not) copied but is
consumed as if it were a reference type.
Note that $(D save) works as normal and operates on a new range, so if
$(D save) is ever called on the RefRange, then no operations on the saved
range will affect the original.
Examples:
--------------------
import std.algorithm;
ubyte[] buffer = [1, 9, 45, 12, 22];
auto found1 = find(buffer, 45);
assert(found1 == [45, 12, 22]);
assert(buffer == [1, 9, 45, 12, 22]);
auto wrapped1 = refRange(&buffer);
auto found2 = find(wrapped1, 45);
assert(*found2.ptr == [45, 12, 22]);
assert(buffer == [45, 12, 22]);
auto found3 = find(wrapped2.save, 22);
assert(*found3.ptr == [22]);
assert(buffer == [45, 12, 22]);
string str = "hello world";
auto wrappedStr = refRange(&str);
assert(str.front == 'h');
str.popFrontN(5);
assert(str == " world");
assert(wrappedStr.front == ' ');
assert(*wrappedStr.ptr == " world");
--------------------
+/
struct RefRange(R)
if(isForwardRange!R)
{
public:
/++ +/
this(R* range) @safe pure nothrow
{
_range = range;
}
/++
This does not assign the pointer of $(D rhs) to this $(D RefRange).
Rather it assigns the range pointed to by $(D rhs) to the range pointed
to by this $(D RefRange). This is because $(I any) operation on a
$(D RefRange) is the same is if it occurred to the original range. The
one exception is when a $(D RefRange) is assigned $(D null) either
directly or because $(D rhs) is $(D null). In that case, $(D RefRange)
no longer refers to the original range but is $(D null).
Examples:
--------------------
ubyte[] buffer1 = [1, 2, 3, 4, 5];
ubyte[] buffer2 = [6, 7, 8, 9, 10];
auto wrapped1 = refRange(&buffer1);
auto wrapped2 = refRange(&buffer2);
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
assert(buffer1 != buffer2);
wrapped1 = wrapped2;
//Everything points to the same stuff as before.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
//But buffer1 has changed due to the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [6, 7, 8, 9, 10]);
buffer2 = [11, 12, 13, 14, 15];
//Everything points to the same stuff as before.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
//But buffer2 has changed due to the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [11, 12, 13, 14, 15]);
wrapped2 = null;
//The pointer changed for wrapped2 but not wrapped1.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is null);
assert(wrapped1.ptr !is wrapped2.ptr);
//buffer2 is not affected by the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [11, 12, 13, 14, 15]);
--------------------
+/
auto opAssign(RefRange rhs)
{
if(_range && rhs._range)
*_range = *rhs._range;
else
_range = rhs._range;
return this;
}
/++ +/
auto opAssign(typeof(null) rhs)
{
_range = null;
}
/++
A pointer to the wrapped range.
+/
@property inout(R*) ptr() @safe inout pure nothrow
{
return _range;
}
version(StdDdoc)
{
/++ +/
@property auto front() {assert(0);}
/++ Ditto +/
@property auto front() const {assert(0);}
/++ Ditto +/
@property auto front(ElementType!R value) {assert(0);}
}
else
{
@property auto front()
{
return (*_range).front;
}
static if(is(typeof((*(cast(const R*)_range)).front))) @property ElementType!R front() const
{
return (*_range).front;
}
static if(is(typeof((*_range).front = (*_range).front))) @property auto front(ElementType!R value)
{
return (*_range).front = value;
}
}
version(StdDdoc)
{
@property bool empty(); ///
@property bool empty() const; ///Ditto
}
else static if(isInfinite!R)
enum empty = false;
else
{
@property bool empty()
{
return (*_range).empty;
}
static if(is(typeof((*cast(const R*)_range).empty))) @property bool empty() const
{
return (*_range).empty;
}
}
/++ +/
void popFront()
{
return (*_range).popFront();
}
version(StdDdoc)
{
/++ +/
@property auto save() {assert(0);}
/++ Ditto +/
@property auto save() const {assert(0);}
/++ Ditto +/
auto opSlice() {assert(0);}
/++ Ditto +/
auto opSlice() const {assert(0);}
}
else
{
private static void _testSave(R)(R* range)
{
(*range).save;
}
static if(isSafe!(_testSave!R))
{
@property auto save() @trusted
{
mixin(_genSave());
}
static if(is(typeof((*cast(const R*)_range).save))) @property auto save() @trusted const
{
mixin(_genSave());
}
}
else
{
@property auto save()
{
mixin(_genSave());
}
static if(is(typeof((*cast(const R*)_range).save))) @property auto save() const
{
mixin(_genSave());
}
}
auto opSlice()()
{
return save;
}
auto opSlice()() const
{
return save;
}
private static string _genSave() @safe pure nothrow
{
return `import std.conv;` ~
`alias typeof((*_range).save) S;` ~
`static assert(isForwardRange!S, S.stringof ~ " is not a forward range.");` ~
`auto mem = new void[S.sizeof];` ~
`emplace!S(mem, cast(S)(*_range).save);` ~
`return RefRange!S(cast(S*)mem.ptr);`;
}
static assert(isForwardRange!RefRange);
}
version(StdDdoc)
{
/++
Only defined if $(D isBidirectionalRange!R) is $(D true).
+/
@property auto back() {assert(0);}
/++ Ditto +/
@property auto back() const {assert(0);}
/++ Ditto +/
@property auto back(ElementType!R value) {assert(0);}
}
else static if(isBidirectionalRange!R)
{
@property auto back()
{
return (*_range).back;
}
static if(is(typeof((*(cast(const R*)_range)).back))) @property ElementType!R back() const
{
return (*_range).back;
}
static if(is(typeof((*_range).back = (*_range).back))) @property auto back(ElementType!R value)
{
return (*_range).back = value;
}
}
/++ Ditto +/
static if(isBidirectionalRange!R) void popBack()
{
return (*_range).popBack();
}
version(StdDdoc)
{
/++
Only defined if $(D isRandomAccesRange!R) is $(D true).
+/
auto ref opIndex(IndexType)(IndexType index) {assert(0);}
/++ Ditto +/
auto ref opIndex(IndexType)(IndexType index) const {assert(0);}
}
else static if(isRandomAccessRange!R)
{
auto ref opIndex(IndexType)(IndexType index)
if(is(typeof((*_range)[index])))
{
return (*_range)[index];
}
auto ref opIndex(IndexType)(IndexType index) const
if(is(typeof((*cast(const R*)_range)[index])))
{
return (*_range)[index];
}
}
/++
Only defined if $(D hasMobileElements!R) and $(D isForwardRange!R) are
$(D true).
+/
static if(hasMobileElements!R && isForwardRange!R) auto moveFront()
{
return (*_range).moveFront();
}
/++
Only defined if $(D hasMobileElements!R) and $(D isBidirectionalRange!R)
are $(D true).
+/
static if(hasMobileElements!R && isBidirectionalRange!R) auto moveBack()
{
return (*_range).moveBack();
}
/++
Only defined if $(D hasMobileElements!R) and $(D isRandomAccessRange!R)
are $(D true).
+/
static if(hasMobileElements!R && isRandomAccessRange!R) auto moveAt(IndexType)(IndexType index)
if(is(typeof((*_range).moveAt(index))))
{
return (*_range).moveAt(index);
}
version(StdDdoc)
{
/++
Only defined if $(D hasLength!R) is $(D true).
+/
@property auto length() {assert(0);}
/++ Ditto +/
@property auto length() const {assert(0);}
}
else static if(hasLength!R)
{
@property auto length()
{
return (*_range).length;
}
static if(is(typeof((*cast(const R*)_range).length))) @property auto length() const
{
return (*_range).length;
}
}
version(StdDdoc)
{
/++
Only defined if $(D hasSlicing!R) is $(D true).
+/
auto opSlice(IndexType1, IndexType2)
(IndexType1 begin, IndexType2 end) {assert(0);}
/++ Ditto +/
auto opSlice(IndexType1, IndexType2)
(IndexType1 begin, IndexType2 end) const {assert(0);}
}
else static if(hasSlicing!R)
{
auto opSlice(IndexType1, IndexType2)
(IndexType1 begin, IndexType2 end)
if(is(typeof((*_range)[begin .. end])))
{
mixin(_genOpSlice());
}
auto opSlice(IndexType1, IndexType2)
(IndexType1 begin, IndexType2 end) const
if(is(typeof((*cast(const R*)_range)[begin .. end])))
{
mixin(_genOpSlice());
}
private static string _genOpSlice() @safe pure nothrow
{
return `import std.conv;` ~
`alias typeof((*_range)[begin .. end]) S;` ~
`static assert(hasSlicing!S, S.stringof ~ " is not sliceable.");` ~
`auto mem = new void[S.sizeof];` ~
`emplace!S(mem, cast(S)(*_range)[begin .. end]);` ~
`return RefRange!S(cast(S*)mem.ptr);`;
}
}
private:
R* _range;
}
//Verify Example.
unittest
{
import std.algorithm;
ubyte[] buffer = [1, 9, 45, 12, 22];
auto found1 = find(buffer, 45);
assert(found1 == [45, 12, 22]);
assert(buffer == [1, 9, 45, 12, 22]);
auto wrapped1 = refRange(&buffer);
auto found2 = find(wrapped1, 45);
assert(*found2.ptr == [45, 12, 22]);
assert(buffer == [45, 12, 22]);
auto found3 = find(wrapped1.save, 22);
assert(*found3.ptr == [22]);
assert(buffer == [45, 12, 22]);
string str = "hello world";
auto wrappedStr = refRange(&str);
assert(str.front == 'h');
str.popFrontN(5);
assert(str == " world");
assert(wrappedStr.front == ' ');
assert(*wrappedStr.ptr == " world");
}
//Verify opAssign Example.
unittest
{
ubyte[] buffer1 = [1, 2, 3, 4, 5];
ubyte[] buffer2 = [6, 7, 8, 9, 10];
auto wrapped1 = refRange(&buffer1);
auto wrapped2 = refRange(&buffer2);
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
assert(buffer1 != buffer2);
wrapped1 = wrapped2;
//Everything points to the same stuff as before.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
//But buffer1 has changed due to the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [6, 7, 8, 9, 10]);
buffer2 = [11, 12, 13, 14, 15];
//Everything points to the same stuff as before.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
//But buffer2 has changed due to the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [11, 12, 13, 14, 15]);
wrapped2 = null;
//The pointer changed for wrapped2 but not wrapped1.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is null);
assert(wrapped1.ptr !is wrapped2.ptr);
//buffer2 is not affected by the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [11, 12, 13, 14, 15]);
}
unittest
{
import std.algorithm;
{
ubyte[] buffer = [1, 2, 3, 4, 5];
auto wrapper = refRange(&buffer);
auto p = wrapper.ptr;
auto f = wrapper.front;
wrapper.front = f;
auto e = wrapper.empty;
wrapper.popFront();
auto s = wrapper.save;
auto b = wrapper.back;
wrapper.back = b;
wrapper.popBack();
auto i = wrapper[0];
wrapper.moveFront();
wrapper.moveBack();
wrapper.moveAt(0);
auto l = wrapper.length;
auto sl = wrapper[0 .. 1];
}
{
ubyte[] buffer = [1, 2, 3, 4, 5];
const wrapper = refRange(&buffer);
const p = wrapper.ptr;
const f = wrapper.front;
const e = wrapper.empty;
const s = wrapper.save;
const b = wrapper.back;
const i = wrapper[0];
const l = wrapper.length;
const sl = wrapper[0 .. 1];
}
{
ubyte[] buffer = [1, 2, 3, 4, 5];
auto filtered = filter!"true"(buffer);
auto wrapper = refRange(&filtered);
auto p = wrapper.ptr;
auto f = wrapper.front;
wrapper.front = f;
auto e = wrapper.empty;
wrapper.popFront();
auto s = wrapper.save;
wrapper.moveFront();
}
{
ubyte[] buffer = [1, 2, 3, 4, 5];
auto filtered = filter!"true"(buffer);
const wrapper = refRange(&filtered);
const p = wrapper.ptr;
//Cannot currently be const. filter needs to be updated to handle const.
/+
const f = wrapper.front;
const e = wrapper.empty;
const s = wrapper.save;
+/
}
{
string str = "hello world";
auto wrapper = refRange(&str);
auto p = wrapper.ptr;
auto f = wrapper.front;
auto e = wrapper.empty;
wrapper.popFront();
auto s = wrapper.save;
auto b = wrapper.back;
wrapper.popBack();
}
}
//Test assignment.
unittest
{
ubyte[] buffer1 = [1, 2, 3, 4, 5];
ubyte[] buffer2 = [6, 7, 8, 9, 10];
RefRange!(ubyte[]) wrapper1;
RefRange!(ubyte[]) wrapper2 = refRange(&buffer2);
assert(wrapper1.ptr is null);
assert(wrapper2.ptr is &buffer2);
wrapper1 = refRange(&buffer1);
assert(wrapper1.ptr is &buffer1);
wrapper1 = wrapper2;
assert(wrapper1.ptr is &buffer1);
assert(buffer1 == buffer2);
wrapper1 = RefRange!(ubyte[]).init;
assert(wrapper1.ptr is null);
assert(wrapper2.ptr is &buffer2);
assert(buffer1 == buffer2);
assert(buffer1 == [6, 7, 8, 9, 10]);
wrapper2 = null;
assert(wrapper2.ptr is null);
assert(buffer2 == [6, 7, 8, 9, 10]);
}
unittest
{
import std.algorithm;
//Test that ranges are properly consumed.
{
int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
auto wrapper = refRange(&arr);
assert(*find(wrapper, 41).ptr == [41, 3, 40, 4, 42, 9]);
assert(arr == [41, 3, 40, 4, 42, 9]);
assert(*drop(wrapper, 2).ptr == [40, 4, 42, 9]);
assert(arr == [40, 4, 42, 9]);
assert(equal(until(wrapper, 42), [40, 4]));
assert(arr == [42, 9]);
assert(find(wrapper, 12).empty);
assert(arr.empty);
}
{
string str = "Hello, world-like object.";
auto wrapper = refRange(&str);
assert(*find(wrapper, "l").ptr == "llo, world-like object.");
assert(str == "llo, world-like object.");
assert(equal(take(wrapper, 5), "llo, "));
assert(str == "world-like object.");
}
//Test that operating on saved ranges does not consume the original.
{
int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
auto wrapper = refRange(&arr);
auto saved = wrapper.save;
saved.popFrontN(3);
assert(*saved.ptr == [41, 3, 40, 4, 42, 9]);
assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);
}
{
string str = "Hello, world-like object.";
auto wrapper = refRange(&str);
auto saved = wrapper.save;
saved.popFrontN(13);
assert(*saved.ptr == "like object.");
assert(str == "Hello, world-like object.");
}
//Test that functions which use save work properly.
{
int[] arr = [1, 42];
auto wrapper = refRange(&arr);
assert(equal(commonPrefix(wrapper, [1, 27]), [1]));
}
{
int[] arr = [4, 5, 6, 7, 1, 2, 3];
auto wrapper = refRange(&arr);
assert(bringToFront(wrapper[0 .. 4], wrapper[4 .. arr.length]) == 3);
assert(arr == [1, 2, 3, 4, 5, 6, 7]);
}
//Test bidirectional functions.
{
int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
auto wrapper = refRange(&arr);
assert(wrapper.back == 9);
assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);
wrapper.popBack();
assert(arr == [1, 42, 2, 41, 3, 40, 4, 42]);
}
{
string str = "Hello, world-like object.";
auto wrapper = refRange(&str);
assert(wrapper.back == '.');
assert(str == "Hello, world-like object.");
wrapper.popBack();
assert(str == "Hello, world-like object");
}
//Test random access functions.
{
int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
auto wrapper = refRange(&arr);
assert(wrapper[2] == 2);
assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);
assert(*wrapper[3 .. 6].ptr, [41, 3, 40]);
assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);
}
//Test move functions.
{
int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
auto wrapper = refRange(&arr);
auto t1 = wrapper.moveFront();
auto t2 = wrapper.moveBack();
wrapper.front = t2;
wrapper.back = t1;
assert(arr == [9, 42, 2, 41, 3, 40, 4, 42, 1]);
sort(wrapper.save);
assert(arr == [1, 2, 3, 4, 9, 40, 41, 42, 42]);
}
}
unittest
{
struct S
{
@property int front() @safe const pure nothrow { return 0; }
enum bool empty = false;
void popFront() @safe pure nothrow { }
@property auto save() @safe pure nothrow { return this; }
}
S s;
auto wrapper = refRange(&s);
static assert(isInfinite!(typeof(wrapper)));
}
unittest
{
class C
{
@property int front() @safe const pure nothrow { return 0; }
@property bool empty() @safe const pure nothrow { return false; }
void popFront() @safe pure nothrow { }
@property auto save() @safe pure nothrow { return this; }
}
static assert(isForwardRange!C);
auto c = new C;
auto cWrapper = refRange(&c);
static assert(is(typeof(cWrapper) == C));
assert(cWrapper is c);
struct S
{
@property int front() @safe const pure nothrow { return 0; }
@property bool empty() @safe const pure nothrow { return false; }
void popFront() @safe pure nothrow { }
int i = 27;
}
static assert(isInputRange!S);
static assert(!isForwardRange!S);
auto s = S(42);
auto sWrapper = refRange(&s);
static assert(is(typeof(sWrapper) == S));
assert(sWrapper == s);
}
/++
Helper function for constructing a $(LREF RefRange).
If the given range is not a forward range or it is a class type (and thus is
already a reference type), then the original range is returned rather than
a $(LREF RefRange).
+/
auto refRange(R)(R* range)
if(isForwardRange!R && !is(R == class))
{
return RefRange!R(range);
}
auto refRange(R)(R* range)
if((!isForwardRange!R && isInputRange!R) ||
is(R == class))
{
return *range;
}
/*****************************************************************************/
unittest // bug 9060
{
// fix for std.algorithm
auto r = map!(x => 0)([1]);
chain(r, r);
zip(r, r);
roundRobin(r, r);
struct NRAR {
typeof(r) input;
@property empty() { return input.empty; }
@property front() { return input.front; }
void popFront() { input.popFront(); }
@property save() { return NRAR(input.save); }
}
auto n1 = NRAR(r);
cycle(n1); // non random access range version
assumeSorted(r);
// fix for std.range
joiner([r], [9]);
struct NRAR2 {
NRAR input;
@property empty() { return true; }
@property front() { return input; }
void popFront() { }
@property save() { return NRAR2(input.save); }
}
auto n2 = NRAR2(n1);
joiner(n2);
group(r);
until(r, 7);
static void foo(R)(R r) { until!(x => x > 7)(r); }
foo(r);
}
|