This file is indexed.

/usr/include/d/4.9/std/range.d is in libphobos-4.9-dev 4.9.3-13ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
// Written in the D programming language.

/**
This module defines the notion of a range. Ranges generalize the concept of
arrays, lists, or anything that involves sequential access. This abstraction
enables the same set of algorithms (see $(LINK2 std_algorithm.html,
std.algorithm)) to be used with a vast variety of different concrete types. For
example, a linear search algorithm such as $(LINK2 std_algorithm.html#find,
std.algorithm.find) works not just for arrays, but for linked-lists, input
files, incoming network data, etc.

For more detailed information about the conceptual aspect of ranges and the
motivation behind them, see Andrei Alexandrescu's article
$(LINK2 http://www.informit.com/articles/printerfriendly.aspx?p=1407357&rll=1,
$(I On Iteration)).

This module defines several templates for testing whether a given object is a
_range, and what kind of _range it is:
$(BOOKTABLE ,
    $(TR $(TD $(D $(LREF isInputRange)))
        $(TD Tests if something is an $(I input _range), defined to be
        something from which one can sequentially read data using the
        primitives $(D front), $(D popFront), and $(D empty).
    ))
    $(TR $(TD $(D $(LREF isOutputRange)))
        $(TD Tests if something is an $(I output _range), defined to be
        something to which one can sequentially write data using the
        $(D $(LREF put)) primitive.
    ))
    $(TR $(TD $(D $(LREF isForwardRange)))
        $(TD Tests if something is a $(I forward _range), defined to be an
        input _range with the additional capability that one can save one's
        current position with the $(D save) primitive, thus allowing one to
        iterate over the same _range multiple times.
    ))
    $(TR $(TD $(D $(LREF isBidirectionalRange)))
        $(TD Tests if something is a $(I bidirectional _range), that is, a
        forward _range that allows reverse traversal using the primitives $(D
        back) and $(D popBack).
    ))
    $(TR $(TD $(D $(LREF isRandomAccessRange)))
        $(TD Tests if something is a $(I random access _range), which is a
        bidirectional _range that also supports the array subscripting
        operation via the primitive $(D opIndex).
    ))
)

A number of templates are provided that test for various _range capabilities:

$(BOOKTABLE ,
    $(TR $(TD $(D $(LREF hasMobileElements)))
        $(TD Tests if a given _range's elements can be moved around using the
        primitives $(D moveFront), $(D moveBack), or $(D moveAt).
    ))
    $(TR $(TD $(D $(LREF ElementType)))
        $(TD Returns the element type of a given _range.
    ))
    $(TR $(TD $(D $(LREF ElementEncodingType)))
        $(TD Returns the encoding element type of a given _range.
    ))
    $(TR $(TD $(D $(LREF hasSwappableElements)))
        $(TD Tests if a _range is a forward _range with swappable elements.
    ))
    $(TR $(TD $(D $(LREF hasAssignableElements)))
        $(TD Tests if a _range is a forward _range with mutable elements.
    ))
    $(TR $(TD $(D $(LREF hasLvalueElements)))
        $(TD Tests if a _range is a forward _range with elements that can be
        passed by reference and have their address taken.
    ))
    $(TR $(TD $(D $(LREF hasLength)))
        $(TD Tests if a given _range has the $(D length) attribute.
    ))
    $(TR $(TD $(D $(LREF isInfinite)))
        $(TD Tests if a given _range is an $(I infinite _range).
    ))
    $(TR $(TD $(D $(LREF hasSlicing)))
        $(TD Tests if a given _range supports the array slicing operation $(D
        R[x..y]).
    ))
    $(TR $(TD $(D $(LREF walkLength)))
        $(TD Computes the length of any _range in O(n) time.
    ))
)

A rich set of _range creation and composition templates are provided that let
you construct new ranges out of existing ranges:

$(BOOKTABLE ,
    $(TR $(TD $(D $(LREF retro)))
        $(TD Iterates a bidirectional _range backwards.
    ))
    $(TR $(TD $(D $(LREF stride)))
        $(TD Iterates a _range with stride $(I n).
    ))
    $(TR $(TD $(D $(LREF chain)))
        $(TD Concatenates several ranges into a single _range.
    ))
    $(TR $(TD $(D $(LREF roundRobin)))
        $(TD Given $(I n) ranges, creates a new _range that return the $(I n)
        first elements of each _range, in turn, then the second element of each
        _range, and so on, in a round-robin fashion.
    ))
    $(TR $(TD $(D $(LREF radial)))
        $(TD Given a random-access _range and a starting point, creates a
        _range that alternately returns the next left and next right element to
        the starting point.
    ))
    $(TR $(TD $(D $(LREF take)))
        $(TD Creates a sub-_range consisting of only up to the first $(I n)
        elements of the given _range.
    ))
    $(TR $(TD $(D $(LREF takeExactly)))
        $(TD Like $(D take), but assumes the given _range actually has $(I n)
        elements, and therefore also defines the $(D length) property.
    ))
    $(TR $(TD $(D $(LREF takeOne)))
        $(TD Creates a random-access _range consisting of exactly the first
        element of the given _range.
    ))
    $(TR $(TD $(D $(LREF takeNone)))
        $(TD Creates a random-access _range consisting of zero elements of the
        given _range.
    ))
    $(TR $(TD $(D $(LREF drop)))
        $(TD Creates the _range that results from discarding the first $(I n)
        elements from the given _range.
    ))
    $(TR $(TD $(D $(LREF dropExactly)))
        $(TD Creates the _range that results from discarding exactly $(I n)
        of the first elements from the given _range.
    ))
    $(TR $(TD $(D $(LREF dropOne)))
        $(TD Creates the _range that results from discarding
        the first elements from the given _range.
    ))
    $(TR $(TD $(D $(LREF repeat)))
        $(TD Creates a _range that consists of a single element repeated $(I n)
        times, or an infinite _range repeating that element indefinitely.
    ))
    $(TR $(TD $(D $(LREF cycle)))
        $(TD Creates an infinite _range that repeats the given forward _range
        indefinitely. Good for implementing circular buffers.
    ))
    $(TR $(TD $(D $(LREF zip)))
        $(TD Given $(I n) _ranges, creates a _range that successively returns a
        tuple of all the first elements, a tuple of all the second elements,
        etc.
    ))
    $(TR $(TD $(D $(LREF lockstep)))
        $(TD Iterates $(I n) _ranges in lockstep, for use in a $(D foreach)
        loop. Similar to $(D zip), except that $(D lockstep) is designed
        especially for $(D foreach) loops.
    ))
    $(TR $(TD $(D $(LREF recurrence)))
        $(TD Creates a forward _range whose values are defined by a
        mathematical recurrence relation.
    ))
    $(TR $(TD $(D $(LREF sequence)))
        $(TD Similar to $(D recurrence), except that a random-access _range is
        created.
    ))
    $(TR $(TD $(D $(LREF iota)))
        $(TD Creates a _range consisting of numbers between a starting point
        and ending point, spaced apart by a given interval.
    ))
    $(TR $(TD $(D $(LREF frontTransversal)))
        $(TD Creates a _range that iterates over the first elements of the
        given ranges.
    ))
    $(TR $(TD $(D $(LREF transversal)))
        $(TD Creates a _range that iterates over the $(I n)'th elements of the
        given random-access ranges.
    ))
    $(TR $(TD $(D $(LREF indexed)))
        $(TD Creates a _range that offers a view of a given _range as though
        its elements were reordered according to a given _range of indices.
    ))
    $(TR $(TD $(D $(LREF chunks)))
        $(TD Creates a _range that returns fixed-size chunks of the original
        _range.
    ))
    $(TR $(TD $(D $(LREF only)))
        $(TD Creates a _range that iterates over the given arguments.
    ))
)

These _range-construction tools are implemented using templates; but sometimes
an object-based interface for ranges is needed. For this purpose, this module
provides a number of object and $(D interface) definitions that can be used to
wrap around _range objects created by the above templates.

$(BOOKTABLE ,
    $(TR $(TD $(D $(LREF InputRange)))
        $(TD Wrapper for input ranges.
    ))
    $(TR $(TD $(D $(LREF InputAssignable)))
        $(TD Wrapper for input ranges with assignable elements.
    ))
    $(TR $(TD $(D $(LREF ForwardRange)))
        $(TD Wrapper for forward ranges.
    ))
    $(TR $(TD $(D $(LREF ForwardAssignable)))
        $(TD Wrapper for forward ranges with assignable elements.
    ))
    $(TR $(TD $(D $(LREF BidirectionalRange)))
        $(TD Wrapper for bidirectional ranges.
    ))
    $(TR $(TD $(D $(LREF BidirectionalAssignable)))
        $(TD Wrapper for bidirectional ranges with assignable elements.
    ))
    $(TR $(TD $(D $(LREF RandomAccessFinite)))
        $(TD Wrapper for finite random-access ranges.
    ))
    $(TR $(TD $(D $(LREF RandomAccessAssignable)))
        $(TD Wrapper for finite random-access ranges with assignable elements.
    ))
    $(TR $(TD $(D $(LREF RandomAccessInfinite)))
        $(TD Wrapper for infinite random-access ranges.
    ))
    $(TR $(TD $(D $(LREF OutputRange)))
        $(TD Wrapper for output ranges.
    ))
    $(TR $(TD $(D $(LREF OutputRangeObject)))
        $(TD Class that implements the $(D OutputRange) interface and wraps the
        $(D put) methods in virtual functions.
    ))
    $(TR $(TD $(D $(LREF InputRangeObject)))
        $(TD Class that implements the $(D InputRange) interface and wraps the
        input _range methods in virtual functions.
    ))
    $(TR $(TD $(D $(LREF RefRange)))
        $(TD Wrapper around a forward _range that gives it reference semantics.
    ))
)

Ranges whose elements are sorted afford better efficiency with certain
operations. For this, the $(D $(LREF assumeSorted)) function can be used to
construct a $(D $(LREF SortedRange)) from a pre-sorted _range. The $(LINK2
std_algorithm.html#sort, $(D std.algorithm.sort)) function also conveniently
returns a $(D SortedRange). $(D SortedRange) objects provide some additional
_range operations that take advantage of the fact that the _range is sorted.

Finally, this module also defines some convenience functions for
manipulating ranges:

$(BOOKTABLE ,
    $(TR $(TD $(D $(LREF popFrontN)))
        $(TD Advances a given _range by up to $(I n) elements.
    ))
    $(TR $(TD $(D $(LREF popBackN)))
        $(TD Advances a given bidirectional _range from the right by up to
        $(I n) elements.
    ))
    $(TR $(TD $(D $(LREF popFrontExactly)))
        $(TD Advances a given _range by up exactly $(I n) elements.
    ))
    $(TR $(TD $(D $(LREF popBackExactly)))
        $(TD Advances a given bidirectional _range from the right by exactly
        $(I n) elements.
    ))
    $(TR $(TD $(D $(LREF moveFront)))
        $(TD Removes the front element of a _range.
    ))
    $(TR $(TD $(D $(LREF moveBack)))
        $(TD Removes the back element of a bidirectional _range.
    ))
    $(TR $(TD $(D $(LREF moveAt)))
        $(TD Removes the $(I i)'th element of a random-access _range.
    ))
)

Source: $(PHOBOSSRC std/_range.d)

Macros:

WIKI = Phobos/StdRange

Copyright: Copyright by authors 2008-.

License: $(WEB boost.org/LICENSE_1_0.txt, Boost License 1.0).

Authors: $(WEB erdani.com, Andrei Alexandrescu), David Simcha,
and Jonathan M Davis. Credit for some of the ideas in building this module goes
to $(WEB fantascienza.net/leonardo/so/, Leonardo Maffi).
 */
module std.range;

public import std.array;
import std.algorithm : copy, count, equal, filter, filterBidirectional,
    findSplitBefore, group, isSorted, joiner, move, map, max, min, sort, swap,
    until;
import std.traits;
import std.typecons : Tuple, tuple;
import std.typetuple : allSatisfy, staticMap, TypeTuple;

// For testing only.  This code is included in a string literal to be included
// in whatever module it's needed in, so that each module that uses it can be
// tested individually, without needing to link to std.range.
enum dummyRanges = q{
    // Used with the dummy ranges for testing higher order ranges.
    enum RangeType
    {
        Input,
        Forward,
        Bidirectional,
        Random
    }

    enum Length
    {
        Yes,
        No
    }

    enum ReturnBy
    {
        Reference,
        Value
    }

    // Range that's useful for testing other higher order ranges,
    // can be parametrized with attributes.  It just dumbs down an array of
    // numbers 1..10.
    struct DummyRange(ReturnBy _r, Length _l, RangeType _rt)
    {
        // These enums are so that the template params are visible outside
        // this instantiation.
        enum r = _r;
        enum l = _l;
        enum rt = _rt;

        uint[] arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];

        void reinit()
        {
            // Workaround for DMD bug 4378
            arr = [1U, 2U, 3U, 4U, 5U, 6U, 7U, 8U, 9U, 10U];
        }

        void popFront()
        {
            arr = arr[1..$];
        }

        @property bool empty() const
        {
            return arr.length == 0;
        }

        static if(r == ReturnBy.Reference)
        {
            @property ref inout(uint) front() inout
            {
                return arr[0];
            }

            @property void front(uint val)
            {
                arr[0] = val;
            }
        }
        else
        {
            @property uint front() const
            {
                return arr[0];
            }
        }

        static if(rt >= RangeType.Forward)
        {
            @property typeof(this) save()
            {
                return this;
            }
        }

        static if(rt >= RangeType.Bidirectional)
        {
            void popBack()
            {
                arr = arr[0..$ - 1];
            }

            static if(r == ReturnBy.Reference)
            {
                @property ref inout(uint) back() inout
                {
                    return arr[$ - 1];
                }

                @property void back(uint val)
                {
                    arr[$ - 1] = val;
                }

            }
            else
            {
                @property uint back() const
                {
                    return arr[$ - 1];
                }
            }
        }

        static if(rt >= RangeType.Random)
        {
            static if(r == ReturnBy.Reference)
            {
                ref inout(uint) opIndex(size_t index) inout
                {
                    return arr[index];
                }

                void opIndexAssign(uint val, size_t index)
                {
                    arr[index] = val;
                }
            }
            else
            {
                uint opIndex(size_t index) const
                {
                    return arr[index];
                }
            }

            typeof(this) opSlice(size_t lower, size_t upper)
            {
                auto ret = this;
                ret.arr = arr[lower..upper];
                return ret;
            }
        }

        static if(l == Length.Yes)
        {
            @property size_t length() const
            {
                return arr.length;
            }

            alias length opDollar;
        }
    }

    enum dummyLength = 10;

    alias TypeTuple!(
        DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Forward),
        DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Bidirectional),
        DummyRange!(ReturnBy.Reference, Length.Yes, RangeType.Random),
        DummyRange!(ReturnBy.Reference, Length.No, RangeType.Forward),
        DummyRange!(ReturnBy.Reference, Length.No, RangeType.Bidirectional),
        DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Input),
        DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Forward),
        DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Bidirectional),
        DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random),
        DummyRange!(ReturnBy.Value, Length.No, RangeType.Input),
        DummyRange!(ReturnBy.Value, Length.No, RangeType.Forward),
        DummyRange!(ReturnBy.Value, Length.No, RangeType.Bidirectional)
    ) AllDummyRanges;

};

version(unittest)
{
    mixin(dummyRanges);

    // Tests whether forward, bidirectional and random access properties are
    // propagated properly from the base range(s) R to the higher order range
    // H.  Useful in combination with DummyRange for testing several higher
    // order ranges.
    template propagatesRangeType(H, R...) {
        static if(allSatisfy!(isRandomAccessRange, R)) {
           enum bool propagatesRangeType = isRandomAccessRange!H;
        } else static if(allSatisfy!(isBidirectionalRange, R)) {
            enum bool propagatesRangeType = isBidirectionalRange!H;
        } else static if(allSatisfy!(isForwardRange, R)) {
            enum bool propagatesRangeType = isForwardRange!H;
        } else {
            enum bool propagatesRangeType = isInputRange!H;
        }
    }

    template propagatesLength(H, R...) {
        static if(allSatisfy!(hasLength, R)) {
            enum bool propagatesLength = hasLength!H;
        } else {
            enum bool propagatesLength = !hasLength!H;
        }
    }
}

/**
Returns $(D true) if $(D R) is an input range. An input range must
define the primitives $(D empty), $(D popFront), and $(D front). The
following code should compile for any input range.

----
R r;              // can define a range object
if (r.empty) {}   // can test for empty
r.popFront();     // can invoke popFront()
auto h = r.front; // can get the front of the range of non-void type
----

The semantics of an input range (not checkable during compilation) are
assumed to be the following ($(D r) is an object of type $(D R)):

$(UL $(LI $(D r.empty) returns $(D false) iff there is more data
available in the range.)  $(LI $(D r.front) returns the current
element in the range. It may return by value or by reference. Calling
$(D r.front) is allowed only if calling $(D r.empty) has, or would
have, returned $(D false).) $(LI $(D r.popFront) advances to the next
element in the range. Calling $(D r.popFront) is allowed only if
calling $(D r.empty) has, or would have, returned $(D false).))
 */
template isInputRange(R)
{
    enum bool isInputRange = is(typeof(
    (inout int = 0)
    {
        R r = void;       // can define a range object
        if (r.empty) {}   // can test for empty
        r.popFront();     // can invoke popFront()
        auto h = r.front; // can get the front of the range
    }));
}

unittest
{
    struct A {}
    struct B
    {
        void popFront();
        @property bool empty();
        @property int front();
    }
    static assert(!isInputRange!(A));
    static assert( isInputRange!(B));
    static assert( isInputRange!(int[]));
    static assert( isInputRange!(char[]));
    static assert(!isInputRange!(char[4]));
    static assert( isInputRange!(inout(int)[])); // bug 7824
}

/+
puts the whole raw element $(D e) into $(D r). doPut will not attempt to
iterate, slice or transcode $(D e) in any way shape or form. It will $(B only)
call the correct primitive ($(D r.put(e)),  $(D r.front = e) or
$(D r(0)) once.

This can be important when $(D e) needs to be placed in $(D r) unchanged.
Furthermore, it can be useful when working with $(D InputRange)s, as doPut
guarantees that no more than a single element will be placed.
+/
package void doPut(R, E)(ref R r, auto ref E e)
{
    static if(is(PointerTarget!R == struct))
        enum usingPut = hasMember!(PointerTarget!R, "put");
    else
        enum usingPut = hasMember!(R, "put");

    static if (usingPut)
    {
        static assert(is(typeof(r.put(e))),
            format("Cannot nativaly put a %s into a %s.", E.stringof, R.stringof));
        r.put(e);
    }
    else static if (isInputRange!R)
    {
        static assert(is(typeof(r.front = e)),
            format("Cannot nativaly put a %s into a %s.", E.stringof, R.stringof));
        r.front = e;
        r.popFront();
    }
    else
    {
        static assert(is(typeof(r(e))),
            format("Cannot nativaly put a %s into a %s.", E.stringof, R.stringof));
        r(e);
    }
}

unittest
{
    static assert (!isNativeOutputRange!(int,     int));
    static assert ( isNativeOutputRange!(int[],   int));
    static assert (!isNativeOutputRange!(int[][], int));

    static assert (!isNativeOutputRange!(int,     int[]));
    static assert (!isNativeOutputRange!(int[],   int[]));
    static assert ( isNativeOutputRange!(int[][], int[]));

    static assert (!isNativeOutputRange!(int,     int[][]));
    static assert (!isNativeOutputRange!(int[],   int[][]));
    static assert (!isNativeOutputRange!(int[][], int[][]));

    static assert (!isNativeOutputRange!(int[4],   int));
    static assert ( isNativeOutputRange!(int[4][], int)); //Scary!
    static assert ( isNativeOutputRange!(int[4][], int[4]));

    static assert (!isNativeOutputRange!( char[],   char));
    static assert (!isNativeOutputRange!( char[],  dchar));
    static assert ( isNativeOutputRange!(dchar[],   char));
    static assert ( isNativeOutputRange!(dchar[],  dchar));

}

/++
Outputs $(D e) to $(D r). The exact effect is dependent upon the two
types. Several cases are accepted, as described below. The code snippets
are attempted in order, and the first to compile "wins" and gets
evaluated.

In this table "doPut" is a method that places $(D e) into $(D r), using the
correct primitive: $(D r.put(e)) if $(D R) defines $(D put), $(D r.front = e) if $(D r) is an input
range (followed by $(D r.popFront())), or $(D r(e)) otherwise.

$(BOOKTABLE ,
    $(TR
        $(TH Code Snippet)
        $(TH Scenario)
    )
    $(TR
        $(TD $(D r.doPut(e);))
        $(TD $(D R) specifically accepts an $(D E).)
    )
    $(TR
        $(TD $(D r.doPut([ e ]);))
        $(TD $(D R) specifically accepts an $(D E[]).)
    )
    $(TR
        $(TD $(D r.putChar(e);))
        $(TD $(D R) accepts some form of string or character. put will
            transcode the character $(D e) accordingly.)
    )
    $(TR
        $(TD $(D for (; !e.empty; e.popFront()) put(r, e.front);))
        $(TD Copying range $(D E) into $(D R).)
    )
)

Tip: $(D put) should $(I not) be used "UFCS-style", eg $(D r.put(e)).
Doing this may call $(D R.put) directly, by-passing any transformation
feature provided by $(D Range.put). $(D put(r, e)) is prefered.
 +/
void put(R, E)(ref R r, E e)
{
    @property ref E[] EArrayInit(); //@@@9186@@@: Can't use (E[]).init

    //First level: simply straight up put.
    static if (is(typeof(doPut(r, e))))
    {
        doPut(r, e);
    }
    //Optional optimization block for straight up array to array copy.
    else static if (isDynamicArray!R && !isNarrowString!R && isDynamicArray!E && is(typeof(r[] = e[])))
    {
        immutable len = e.length;
        r[0 .. len] = e[];
        r = r[len .. $];
    }
    //Accepts E[] ?
    else static if (is(typeof(doPut(r, [e]))) && !isDynamicArray!R)
    {
        if (__ctfe)
            doPut(r, [e]);
        else
            doPut(r, (&e)[0..1]);
    }
    //special case for char to string.
    else static if (isSomeChar!E && is(typeof(putChar(r, e))))
    {
        putChar(r, e);
    }
    //Extract each element from the range
    //We can use "put" here, so we can recursively test a RoR of E.
    else static if (isInputRange!E && is(typeof(put(r, e.front))))
    {
        //Special optimization: If E is a narrow string, and r accepts characters no-wider than the string's
        //Then simply feed the characters 1 by 1.
        static if (isNarrowString!E && (
            (is(E : const  char[]) && is(typeof(doPut(r,  char.max))) && !is(typeof(doPut(r, dchar.max))) && !is(typeof(doPut(r, wchar.max)))) ||
            (is(E : const wchar[]) && is(typeof(doPut(r, wchar.max))) && !is(typeof(doPut(r, dchar.max)))) ) )
        {
            foreach(c; e)
                doPut(r, c);
        }
        else
        {
            for (; !e.empty; e.popFront())
                put(r, e.front);
        }
    }
    else
        static assert (false, format("Cannot put a %s into a %s.", E.stringof, R.stringof));
}

//Helper function to handle chars as quickly and as elegantly as possible
//Assumes r.put(e)/r(e) has already been tested
private void putChar(R, E)(ref R r, E e)
if (isSomeChar!E)
{
    ////@@@9186@@@: Can't use (E[]).init
    ref const( char)[] cstringInit();
    ref const(wchar)[] wstringInit();
    ref const(dchar)[] dstringInit();

    enum csCond = !isDynamicArray!R && is(typeof(doPut(r, cstringInit())));
    enum wsCond = !isDynamicArray!R && is(typeof(doPut(r, wstringInit())));
    enum dsCond = !isDynamicArray!R && is(typeof(doPut(r, dstringInit())));

    //Use "max" to avoid static type demotion
    enum ccCond = is(typeof(doPut(r,  char.max)));
    enum wcCond = is(typeof(doPut(r, wchar.max)));
    //enum dcCond = is(typeof(doPut(r, dchar.max)));

    //Fast transform a narrow char into a wider string
    static if ((wsCond && E.sizeof < wchar.sizeof) || (dsCond && E.sizeof < dchar.sizeof))
    {
        enum w = wsCond && E.sizeof < wchar.sizeof;
        Select!(w, wchar, dchar) c = e;
        if (__ctfe)
            doPut(r, [c]);
        else
            doPut(r, (&c)[0..1]);
    }
    //Encode a wide char into a narrower string
    else static if (wsCond || csCond)
    {
        import std.utf;
        /+static+/ Select!(wsCond, wchar[2], char[4]) buf; //static prevents purity.
        doPut(r, buf.ptr[0 .. encode(buf, e)]); //the word ".ptr" added to enforce un-safety.
    }
    //Slowly encode a wide char into a series of narrower chars
    else static if (wcCond || ccCond)
    {
        import std.encoding;
        alias C = Select!(wcCond, wchar, char);
        encode!(C, R)(e, r);
    }
    else
        static assert (false, format("Cannot put a %s into a %s.", E.stringof, R.stringof));
}

pure unittest
{
    auto f = delegate (const(char)[]) {};
    putChar(f, cast(dchar)'a');
}

unittest
{
    struct A {}
    static assert(!isInputRange!(A));
    struct B
    {
        void put(int) {}
    }
    B b;
    put(b, 5);
}

unittest
{
    int[] a = [1, 2, 3], b = [10, 20];
    auto c = a;
    put(a, b);
    assert(c == [10, 20, 3]);
    assert(a == [3]);
}

unittest
{
    int[] a = new int[10];
    int b;
    static assert(isInputRange!(typeof(a)));
    put(a, b);
}

unittest
{
    void myprint(in char[] s) { }
    auto r = &myprint;
    put(r, 'a');
}

unittest
{
    int[] a = new int[10];
    static assert(!__traits(compiles, put(a, 1.0L)));
    static assert( __traits(compiles, put(a, 1)));
    /*
     * a[0] = 65;       // OK
     * a[0] = 'A';      // OK
     * a[0] = "ABC"[0]; // OK
     * put(a, "ABC");   // OK
     */
    static assert( __traits(compiles, put(a, "ABC")));
}

unittest
{
    char[] a = new char[10];
    static assert(!__traits(compiles, put(a, 1.0L)));
    static assert(!__traits(compiles, put(a, 1)));
    // char[] is NOT output range.
    static assert(!__traits(compiles, put(a, 'a')));
    static assert(!__traits(compiles, put(a, "ABC")));
}

unittest
{
    int[][] a;
    int[]   b;
    int     c;
    static assert( __traits(compiles, put(b, c)));
    static assert( __traits(compiles, put(a, b)));
    static assert(!__traits(compiles, put(a, c)));
}

unittest
{
    int[][] a = new int[][](3);
    int[]   b = [1];
    auto aa = a;
    put(aa, b);
    assert(aa == [[], []]);
    assert(a  == [[1], [], []]);
    int[][3] c = [2];
    aa = a;
    put(aa, c[]);
    assert(aa.empty);
    assert(a == [[2], [2], [2]]);
}

unittest
{
    // Test fix for bug 7476.
    struct LockingTextWriter
    {
        void put(dchar c){}
    }
    struct RetroResult
    {
        bool end = false;
        @property bool empty() const { return end; }
        @property dchar front(){ return 'a'; }
        void popFront(){ end = true; }
    }
    LockingTextWriter w;
    RetroResult r;
    put(w, r);
}

unittest
{
    import std.conv : to;

    static struct PutC(C)
    {
        string result;
        void put(const(C) c) { result ~= to!string((&c)[0..1]); }
    }
    static struct PutS(C)
    {
        string result;
        void put(const(C)[] s) { result ~= to!string(s); }
    }
    static struct PutSS(C)
    {
        string result;
        void put(const(C)[][] ss)
        {
            foreach(s; ss)
                result ~= to!string(s);
        }
    }

    PutS!char p;
    putChar(p, cast(dchar)'a');

    //Source Char
    foreach (SC; TypeTuple!(char, wchar, dchar))
    {
        SC ch = 'I';
        dchar dh = '♥';
        immutable(SC)[] s = "日本語!";
        immutable(SC)[][] ss = ["日本語", "が", "好き", "ですか", "?"];

        //Target Char
        foreach (TC; TypeTuple!(char, wchar, dchar))
        {
            //Testing PutC and PutS
            foreach (Type; TypeTuple!(PutC!TC, PutS!TC))
            {
                Type type;
                auto sink = new Type();

                //Testing put and sink
                foreach (value ; tuple(type, sink))
                {
                    put(value, ch);
                    assert(value.result == "I");
                    put(value, dh);
                    assert(value.result == "I♥");
                    put(value, s);
                    assert(value.result == "I♥日本語!");
                    put(value, ss);
                    assert(value.result == "I♥日本語!日本語が好きですか?");
                }
            }
        }
    }
}

unittest
{
    static struct CharRange
    {
        char c;
        enum empty = false;
        void popFront(){};
        ref char front() @property
        {
            return c;
        }
    }
    CharRange c;
    put(c, cast(dchar)'H');
    put(c, "hello"d);
}

unittest
{
    // issue 9823
    const(char)[] r;
    void delegate(const(char)[]) dg = (s) { r = s; };
    put(dg, ["ABC"]);
    assert(r == "ABC");
}

unittest
{
    // issue 10571
    import std.format;
    string buf;
    formattedWrite((in char[] s) { buf ~= s; }, "%s", "hello");
    assert(buf == "hello");
}

unittest
{
    import std.format;
    struct PutC(C)
    {
        void put(C){}
    }
    struct PutS(C)
    {
        void put(const(C)[]){}
    }
    struct CallC(C)
    {
        void opCall(C){}
    }
    struct CallS(C)
    {
        void opCall(const(C)[]){}
    }
    struct FrontC(C)
    {
        enum empty = false;
        auto front()@property{return C.init;}
        void front(C)@property{}
        void popFront(){}
    }
    struct FrontS(C)
    {
        enum empty = false;
        auto front()@property{return C[].init;}
        void front(const(C)[])@property{}
        void popFront(){}
    }
    void foo()
    {
        foreach(C; TypeTuple!(char, wchar, dchar))
        {
            formattedWrite((C c){},        "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            formattedWrite((const(C)[]){}, "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            formattedWrite(PutC!C(),       "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            formattedWrite(PutS!C(),       "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            CallC!C callC;
            CallS!C callS;
            formattedWrite(callC,          "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            formattedWrite(callS,          "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            formattedWrite(FrontC!C(),     "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
            formattedWrite(FrontS!C(),     "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
        }
        formattedWrite((dchar[]).init,     "", 1, 'a', cast(wchar)'a', cast(dchar)'a', "a"c, "a"w, "a"d);
    }
}

/+
Returns $(D true) if $(D R) is a native output range for elements of type
$(D E). An output range is defined functionally as a range that
supports the operation $(D doPut(r, e)) as defined above. if $(D doPut(r, e))
is valid, then $(D put(r,e)) will have the same behavior.

The two guarantees isNativeOutputRange gives over the larger $(D isOutputRange)
are:
1: $(D e) is $(B exactly) what will be placed (not $(D [e]), for example).
2: if $(D E) is a non $(empty) $(D InputRange), then placing $(D e) is
guaranteed to not overflow the range.
 +/
package template isNativeOutputRange(R, E)
{
    enum bool isNativeOutputRange = is(typeof(
    (inout int = 0)
    {
        R r = void;
        E e;
        doPut(r, e);
    }));
}
//
unittest
{
    int[] r = new int[](4);
    static assert(isInputRange!(int[]));
    static assert( isNativeOutputRange!(int[], int));
    static assert(!isNativeOutputRange!(int[], int[]));
    static assert( isOutputRange!(int[], int[]));

    if (!r.empty)
        put(r, 1); //guaranteed to succeed
    if (!r.empty)
        put(r, [1, 2]); //May actually error out.
}
/++
Returns $(D true) if $(D R) is an output range for elements of type
$(D E). An output range is defined functionally as a range that
supports the operation $(D put(r, e)) as defined above.
 +/
template isOutputRange(R, E)
{
    enum bool isOutputRange = is(typeof(
    (inout int = 0)
    {
        R r = void;
        E e = void;
        put(r, e);
    }));
}

unittest
{
    import std.stdio : writeln;

    void myprint(in char[] s) { writeln('[', s, ']'); }
    static assert(isOutputRange!(typeof(&myprint), char));

    auto app = appender!string();
    string s;
    static assert( isOutputRange!(Appender!string, string));
    static assert( isOutputRange!(Appender!string*, string));
    static assert(!isOutputRange!(Appender!string, int));
    static assert(!isOutputRange!(char[], char));
    static assert(!isOutputRange!(wchar[], wchar));
    static assert( isOutputRange!(dchar[], char));
    static assert( isOutputRange!(dchar[], wchar));
    static assert( isOutputRange!(dchar[], dchar));
    static assert( isOutputRange!(dchar[], string));
    static assert( isOutputRange!(dchar[], wstring));
    static assert( isOutputRange!(dchar[], dstring));

    static assert(!isOutputRange!(const(int)[], int));
    static assert(!isOutputRange!(inout(int)[], int));
}

unittest
{
    // 6973
    static assert(isOutputRange!(OutputRange!int, int));
}

/**
Returns $(D true) if $(D R) is a forward range. A forward range is an
input range $(D r) that can save "checkpoints" by saving $(D r.save)
to another value of type $(D R). Notable examples of input ranges that
are $(I not) forward ranges are file/socket ranges; copying such a
range will not save the position in the stream, and they most likely
reuse an internal buffer as the entire stream does not sit in
memory. Subsequently, advancing either the original or the copy will
advance the stream, so the copies are not independent.

The following code should compile for any forward range.

----
static assert(isInputRange!R);
R r1;
static assert (is(typeof(r1.save) == R));
----

Saving a range is not duplicating it; in the example above, $(D r1)
and $(D r2) still refer to the same underlying data. They just
navigate that data independently.

The semantics of a forward range (not checkable during compilation)
are the same as for an input range, with the additional requirement
that backtracking must be possible by saving a copy of the range
object with $(D save) and using it later.
 */
template isForwardRange(R)
{
    enum bool isForwardRange = isInputRange!R && is(typeof(
    (inout int = 0)
    {
        R r1 = void;
        static assert (is(typeof(r1.save) == R));
    }));
}

unittest
{
    static assert(!isForwardRange!(int));
    static assert( isForwardRange!(int[]));
    static assert( isForwardRange!(inout(int)[]));
}

/**
Returns $(D true) if $(D R) is a bidirectional range. A bidirectional
range is a forward range that also offers the primitives $(D back) and
$(D popBack). The following code should compile for any bidirectional
range.

----
R r;
static assert(isForwardRange!R);           // is forward range
r.popBack();                               // can invoke popBack
auto t = r.back;                           // can get the back of the range
auto w = r.front;
static assert(is(typeof(t) == typeof(w))); // same type for front and back
----

The semantics of a bidirectional range (not checkable during
compilation) are assumed to be the following ($(D r) is an object of
type $(D R)):

$(UL $(LI $(D r.back) returns (possibly a reference to) the last
element in the range. Calling $(D r.back) is allowed only if calling
$(D r.empty) has, or would have, returned $(D false).))
 */
template isBidirectionalRange(R)
{
    enum bool isBidirectionalRange = isForwardRange!R && is(typeof(
    (inout int = 0)
    {
        R r = void;
        r.popBack();
        auto t = r.back;
        auto w = r.front;
        static assert(is(typeof(t) == typeof(w)));
    }));
}

unittest
{
    struct A {}
    struct B
    {
        void popFront();
        @property bool empty();
        @property int front();
    }
    struct C
    {
        @property bool empty();
        @property C save();
        void popFront();
        @property int front();
        void popBack();
        @property int back();
    }
    static assert(!isBidirectionalRange!(A));
    static assert(!isBidirectionalRange!(B));
    static assert( isBidirectionalRange!(C));
    static assert( isBidirectionalRange!(int[]));
    static assert( isBidirectionalRange!(char[]));
    static assert( isBidirectionalRange!(inout(int)[]));
}

/**
Returns $(D true) if $(D R) is a random-access range. A random-access
range is a bidirectional range that also offers the primitive $(D
opIndex), OR an infinite forward range that offers $(D opIndex). In
either case, the range must either offer $(D length) or be
infinite. The following code should compile for any random-access
range.

----
// range is finite and bidirectional or infinite and forward.
static assert(isBidirectionalRange!R ||
              isForwardRange!R && isInfinite!R);

R r = void;
auto e = r[1]; // can index
static assert(is(typeof(e) == typeof(r.front))); // same type for indexed and front
static assert(!isNarrowString!R); // narrow strings cannot be indexed as ranges
static assert(hasLength!R || isInfinite!R); // must have length or be infinite

// $ must work as it does with arrays if opIndex works with $
static if(is(typeof(r[$])))
{
    static assert(is(typeof(r.front) == typeof(r[$])));

    // $ - 1 doesn't make sense with infinite ranges but needs to work
    // with finite ones.
    static if(!isInfinite!R)
        static assert(is(typeof(r.front) == typeof(r[$ - 1])));
}
----

The semantics of a random-access range (not checkable during
compilation) are assumed to be the following ($(D r) is an object of
type $(D R)): $(UL $(LI $(D r.opIndex(n)) returns a reference to the
$(D n)th element in the range.))

Although $(D char[]) and $(D wchar[]) (as well as their qualified
versions including $(D string) and $(D wstring)) are arrays, $(D
isRandomAccessRange) yields $(D false) for them because they use
variable-length encodings (UTF-8 and UTF-16 respectively). These types
are bidirectional ranges only.
 */
template isRandomAccessRange(R)
{
    enum bool isRandomAccessRange = is(typeof(
    (inout int = 0)
    {
        static assert(isBidirectionalRange!R ||
                      isForwardRange!R && isInfinite!R);
        R r = void;
        auto e = r[1];
        static assert(is(typeof(e) == typeof(r.front)));
        static assert(!isNarrowString!R);
        static assert(hasLength!R || isInfinite!R);

        static if(is(typeof(r[$])))
        {
            static assert(is(typeof(r.front) == typeof(r[$])));

            static if(!isInfinite!R)
                static assert(is(typeof(r.front) == typeof(r[$ - 1])));
        }
    }));
}

unittest
{
    struct A {}
    struct B
    {
        void popFront();
        @property bool empty();
        @property int front();
    }
    struct C
    {
        void popFront();
        @property bool empty();
        @property int front();
        void popBack();
        @property int back();
    }
    struct D
    {
        @property bool empty();
        @property D save();
        @property int front();
        void popFront();
        @property int back();
        void popBack();
        ref int opIndex(uint);
        @property size_t length();
        alias length opDollar;
        //int opSlice(uint, uint);
    }
    static assert(!isRandomAccessRange!(A));
    static assert(!isRandomAccessRange!(B));
    static assert(!isRandomAccessRange!(C));
    static assert( isRandomAccessRange!(D));
    static assert( isRandomAccessRange!(int[]));
    static assert( isRandomAccessRange!(inout(int)[]));
}

unittest
{
    // Test fix for bug 6935.
    struct R
    {
        @disable this();

        @disable static @property R init();

        @property bool empty() const { return false; }
        @property int front() const { return 0; }
        void popFront() {}

        @property R save() { return this; }

        @property int back() const { return 0; }
        void popBack(){}

        int opIndex(size_t n) const { return 0; }
        @property size_t length() const { return 0; }
        alias length opDollar;

        void put(int e){  }
    }
    static assert(isInputRange!R);
    static assert(isForwardRange!R);
    static assert(isBidirectionalRange!R);
    static assert(isRandomAccessRange!R);
    static assert(isOutputRange!(R, int));
}

/**
Returns $(D true) iff $(D R) supports the $(D moveFront) primitive,
as well as $(D moveBack) and $(D moveAt) if it's a bidirectional or
random access range.  These may be explicitly implemented, or may work
via the default behavior of the module level functions $(D moveFront)
and friends.
 */
template hasMobileElements(R)
{
    enum bool hasMobileElements = is(typeof(
    (inout int = 0)
    {
        R r = void;
        return moveFront(r);
    }))
    && (!isBidirectionalRange!R || is(typeof(
    (inout int = 0)
    {
        R r = void;
        return moveBack(r);
    })))
    && (!isRandomAccessRange!R || is(typeof(
    (inout int = 0)
    {
        R r = void;
        return moveAt(r, 0);
    })));
}

unittest
{
    static struct HasPostblit
    {
        this(this) {}
    }

    auto nonMobile = map!"a"(repeat(HasPostblit.init));
    static assert(!hasMobileElements!(typeof(nonMobile)));
    static assert( hasMobileElements!(int[]));
    static assert( hasMobileElements!(inout(int)[]));
    static assert( hasMobileElements!(typeof(iota(1000))));
}

/**
The element type of $(D R). $(D R) does not have to be a range. The
element type is determined as the type yielded by $(D r.front) for an
object $(D r) of type $(D R). For example, $(D ElementType!(T[])) is
$(D T) if $(D T[]) isn't a narrow string; if it is, the element type is
$(D dchar). If $(D R) doesn't have $(D front), $(D ElementType!R) is
$(D void).
 */
template ElementType(R)
{
    static if (is(typeof(R.init.front.init) T))
        alias T ElementType;
    else
        alias void ElementType;
}

///
unittest
{
    // Standard arrays: returns the type of the elements of the array
    static assert(is(ElementType!(byte[]) == byte));
    static assert(is(ElementType!(int[]) == int));

    // Accessing .front retrieves the decoded dchar
    static assert(is(ElementType!(char[])  == dchar)); // rvalue
    static assert(is(ElementType!(wchar[]) == dchar)); // rvalue
    static assert(is(ElementType!(dchar[]) == dchar)); // lvalue

    // Ditto
    static assert(is(ElementType!(string) == dchar));
    static assert(is(ElementType!(wstring) == dchar));
    static assert(is(ElementType!(dstring) == immutable(dchar)));

    // For ranges it gets the type of .front.
    auto range = iota(0, 10);
    static assert(is(ElementType!(typeof(range)) == int));
}

unittest
{
    enum XYZ : string { a = "foo" }
    auto x = XYZ.a.front;
    immutable char[3] a = "abc";
    int[] i;
    void[] buf;
    static assert(is(ElementType!(XYZ) == dchar));
    static assert(is(ElementType!(typeof(a)) == dchar));
    static assert(is(ElementType!(typeof(i)) == int));
    static assert(is(ElementType!(typeof(buf)) == void));
    static assert(is(ElementType!(inout(int)[]) == inout(int)));
    static assert(is(ElementType!(inout(int[])) == inout(int)));
}

unittest
{
    static assert(is(ElementType!(int[5]) == int));
    static assert(is(ElementType!(int[0]) == int));
    static assert(is(ElementType!(char[5]) == dchar));
    static assert(is(ElementType!(char[0]) == dchar));
}

unittest //11336
{
    static struct S
    {
        this(this) @disable;
    }
    static assert(is(ElementType!(S[]) == S));
}

unittest // 11401
{
    // ElementType should also work for non-@propety 'front'
    struct E { ushort id; }
    struct R
    {
        E front() { return E.init; }
    }
    static assert(is(ElementType!R == E));
}

/**
The encoding element type of $(D R). For narrow strings ($(D char[]),
$(D wchar[]) and their qualified variants including $(D string) and
$(D wstring)), $(D ElementEncodingType) is the character type of the
string. For all other types, $(D ElementEncodingType) is the same as
$(D ElementType).
 */
template ElementEncodingType(R)
{
    static if (isNarrowString!R)
        alias typeof(*lvalueOf!R.ptr) ElementEncodingType;
    else
        alias ElementType!R ElementEncodingType;
}

///
unittest
{
    // internally the range stores the encoded type
    static assert(is(ElementEncodingType!(char[])  == char));
    static assert(is(ElementEncodingType!(wchar[]) == wchar));
    static assert(is(ElementEncodingType!(dchar[]) == dchar));

    // ditto
    static assert(is(ElementEncodingType!(string)  == immutable(char)));
    static assert(is(ElementEncodingType!(wstring) == immutable(wchar)));
    static assert(is(ElementEncodingType!(dstring) == immutable(dchar)));

    static assert(is(ElementEncodingType!(byte[]) == byte));
    static assert(is(ElementEncodingType!(int[])  == int));

    auto range = iota(0, 10);
    static assert(is(ElementEncodingType!(typeof(range)) == int));
}

unittest
{
    enum XYZ : string { a = "foo" }
    auto x = XYZ.a.front;
    immutable char[3] a = "abc";
    int[] i;
    void[] buf;
    static assert(is(ElementType!(XYZ) : dchar));
    static assert(is(ElementEncodingType!(char[]) == char));
    static assert(is(ElementEncodingType!(string) == immutable char));
    static assert(is(ElementType!(typeof(a)) : dchar));
    static assert(is(ElementType!(typeof(i)) == int));
    static assert(is(ElementEncodingType!(typeof(i)) == int));
    static assert(is(ElementType!(typeof(buf)) : void));

    static assert(is(ElementEncodingType!(inout char[]) : inout(char)));
}

unittest
{
    static assert(is(ElementEncodingType!(int[5]) == int));
    static assert(is(ElementEncodingType!(int[0]) == int));
    static assert(is(ElementEncodingType!(char[5]) == char));
    static assert(is(ElementEncodingType!(char[0]) == char));
}

/**
Returns $(D true) if $(D R) is a forward range and has swappable
elements. The following code should compile for any range
with swappable elements.

----
R r;
static assert(isForwardRange!(R));   // range is forward
swap(r.front, r.front);              // can swap elements of the range
----
 */
template hasSwappableElements(R)
{
    enum bool hasSwappableElements = isForwardRange!R && is(typeof(
    (inout int = 0)
    {
        R r = void;
        swap(r.front, r.front);             // can swap elements of the range
    }));
}

unittest
{
    static assert(!hasSwappableElements!(const int[]));
    static assert(!hasSwappableElements!(const(int)[]));
    static assert(!hasSwappableElements!(inout(int)[]));
    static assert( hasSwappableElements!(int[]));
  //static assert( hasSwappableElements!(char[]));
}

/**
Returns $(D true) if $(D R) is a forward range and has mutable
elements. The following code should compile for any range
with assignable elements.

----
R r;
static assert(isForwardRange!R);  // range is forward
auto e = r.front;
r.front = e;                      // can assign elements of the range
----
 */
template hasAssignableElements(R)
{
    enum bool hasAssignableElements = isForwardRange!R && is(typeof(
    (inout int = 0)
    {
        R r = void;
        static assert(isForwardRange!(R)); // range is forward
        auto e = r.front;
        r.front = e;                       // can assign elements of the range
    }));
}

unittest
{
    static assert(!hasAssignableElements!(const int[]));
    static assert(!hasAssignableElements!(const(int)[]));
    static assert( hasAssignableElements!(int[]));
    static assert(!hasAssignableElements!(inout(int)[]));
}

/**
Tests whether $(D R) has lvalue elements.  These are defined as elements that
can be passed by reference and have their address taken.
*/
template hasLvalueElements(R)
{
    enum bool hasLvalueElements = is(typeof(
    (inout int = 0)
    {
        void checkRef(ref ElementType!R stuff) {}
        R r = void;
        static assert(is(typeof(checkRef(r.front))));
    }));
}

unittest
{
    static assert( hasLvalueElements!(int[]));
    static assert( hasLvalueElements!(const(int)[]));
    static assert( hasLvalueElements!(inout(int)[]));
    static assert( hasLvalueElements!(immutable(int)[]));
    static assert(!hasLvalueElements!(typeof(iota(3))));

    auto c = chain([1, 2, 3], [4, 5, 6]);
    static assert( hasLvalueElements!(typeof(c)));

    // bugfix 6336
    struct S { immutable int value; }
    static assert( isInputRange!(S[]));
    static assert( hasLvalueElements!(S[]));
}

/**
Returns $(D true) if $(D R) has a $(D length) member that returns an
integral type. $(D R) does not have to be a range. Note that $(D
length) is an optional primitive as no range must implement it. Some
ranges do not store their length explicitly, some cannot compute it
without actually exhausting the range (e.g. socket streams), and some
other ranges may be infinite.

Although narrow string types ($(D char[]), $(D wchar[]), and their
qualified derivatives) do define a $(D length) property, $(D
hasLength) yields $(D false) for them. This is because a narrow
string's length does not reflect the number of characters, but instead
the number of encoding units, and as such is not useful with
range-oriented algorithms.
 */
template hasLength(R)
{
    enum bool hasLength = !isNarrowString!R && is(typeof(
    (inout int = 0)
    {
        R r = void;
        static assert(is(typeof(r.length) : ulong));
    }));
}

unittest
{
    static assert(!hasLength!(char[]));
    static assert( hasLength!(int[]));
    static assert( hasLength!(inout(int)[]));

    struct A { ulong length; }
    struct B { size_t length() { return 0; } }
    struct C { @property size_t length() { return 0; } }
    static assert( hasLength!(A));
    static assert(!hasLength!(B));
    static assert( hasLength!(C));
}

/**
Returns $(D true) if $(D R) is an infinite input range. An
infinite input range is an input range that has a statically-defined
enumerated member called $(D empty) that is always $(D false),
for example:

----
struct MyInfiniteRange
{
    enum bool empty = false;
    ...
}
----
 */

template isInfinite(R)
{
    static if (isInputRange!R && __traits(compiles, { enum e = R.empty; }))
        enum bool isInfinite = !R.empty;
    else
        enum bool isInfinite = false;
}

unittest
{
    static assert(!isInfinite!(int[]));
    static assert( isInfinite!(Repeat!(int)));
}

/**
Returns $(D true) if $(D R) offers a slicing operator with integral boundaries
that returns a forward range type.

For finite ranges, the result of $(D opSlice) must be of the same type as the
original range type. If the range defines $(D opDollar), then it must support
subtraction.

For infinite ranges, when $(I not) using $(D opDollar), the result of
$(D opSlice) must be the result of $(LREF take) or $(LREF takeExactly) on the
original range (they both return the same type for infinite ranges). However,
when using $(D opDollar), the result of $(D opSlice) must be that of the
original range type.

The following code must compile for $(D hasSlicing) to be $(D true):

----
R r = void;

static if(isInfinite!R)
    typeof(take(r, 1)) s = r[1 .. 2];
else
{
    static assert(is(typeof(r[1 .. 2]) == R));
    R s = r[1 .. 2];
}

s = r[1 .. 2];

static if(is(typeof(r[0 .. $])))
{
    static assert(is(typeof(r[0 .. $]) == R));
    R t = r[0 .. $];
    t = r[0 .. $];

    static if(!isInfinite!R)
    {
        static assert(is(typeof(r[0 .. $ - 1]) == R));
        R u = r[0 .. $ - 1];
        u = r[0 .. $ - 1];
    }
}

static assert(isForwardRange!(typeof(r[1 .. 2])));
static assert(hasLength!(typeof(r[1 .. 2])));
----
 */
template hasSlicing(R)
{
    enum bool hasSlicing = isForwardRange!R && !isNarrowString!R && is(typeof(
    (inout int = 0)
    {
        R r = void;

        static if(isInfinite!R)
            typeof(take(r, 1)) s = r[1 .. 2];
        else
        {
            static assert(is(typeof(r[1 .. 2]) == R));
            R s = r[1 .. 2];
        }

        s = r[1 .. 2];

        static if(is(typeof(r[0 .. $])))
        {
            static assert(is(typeof(r[0 .. $]) == R));
            R t = r[0 .. $];
            t = r[0 .. $];

            static if(!isInfinite!R)
            {
                static assert(is(typeof(r[0 .. $ - 1]) == R));
                R u = r[0 .. $ - 1];
                u = r[0 .. $ - 1];
            }
        }

        static assert(isForwardRange!(typeof(r[1 .. 2])));
        static assert(hasLength!(typeof(r[1 .. 2])));
    }));
}

unittest
{
    static assert( hasSlicing!(int[]));
    static assert( hasSlicing!(const(int)[]));
    static assert(!hasSlicing!(const int[]));
    static assert( hasSlicing!(inout(int)[]));
    static assert(!hasSlicing!(inout int []));
    static assert( hasSlicing!(immutable(int)[]));
    static assert(!hasSlicing!(immutable int[]));
    static assert(!hasSlicing!string);
    static assert( hasSlicing!dstring);

    enum rangeFuncs = "@property int front();" ~
                      "void popFront();" ~
                      "@property bool empty();" ~
                      "@property auto save() { return this; }" ~
                      "@property size_t length();";

    struct A { mixin(rangeFuncs); int opSlice(size_t, size_t); }
    struct B { mixin(rangeFuncs); B opSlice(size_t, size_t); }
    struct C { mixin(rangeFuncs); @disable this(); C opSlice(size_t, size_t); }
    struct D { mixin(rangeFuncs); int[] opSlice(size_t, size_t); }
    static assert(!hasSlicing!(A));
    static assert( hasSlicing!(B));
    static assert( hasSlicing!(C));
    static assert(!hasSlicing!(D));

    struct InfOnes
    {
        enum empty = false;
        void popFront() {}
        @property int front() { return 1; }
        @property InfOnes save() { return this; }
        auto opSlice(size_t i, size_t j) { return takeExactly(this, j - i); }
        auto opSlice(size_t i, Dollar d) { return this; }

        struct Dollar {}
        Dollar opDollar() const { return Dollar.init; }
    }

    static assert(hasSlicing!InfOnes);
}

/**
This is a best-effort implementation of $(D length) for any kind of
range.

If $(D hasLength!Range), simply returns $(D range.length) without
checking $(D upTo) (when specified).

Otherwise, walks the range through its length and returns the number
of elements seen. Performes $(BIGOH n) evaluations of $(D range.empty)
and $(D range.popFront()), where $(D n) is the effective length of $(D
range).

The $(D upTo) parameter is useful to "cut the losses" in case
the interest is in seeing whether the range has at least some number
of elements. If the parameter $(D upTo) is specified, stops if $(D
upTo) steps have been taken and returns $(D upTo).

Infinite ranges are compatible, provided the parameter $(D upTo) is
specified, in which case the implementation simply returns upTo.
 */
auto walkLength(Range)(Range range)
    if (isInputRange!Range && !isInfinite!Range)
{
    static if (hasLength!Range)
        return range.length;
    else
    {
        size_t result;
        for ( ; !range.empty ; range.popFront() )
            ++result;
        return result;
    }
}
/// ditto
auto walkLength(Range)(Range range, const size_t upTo)
    if (isInputRange!Range)
{
    static if (hasLength!Range)
        return range.length;
    else static if (isInfinite!Range)
        return upTo;
    else
    {
        size_t result;
        for ( ; result < upTo && !range.empty ; range.popFront() )
            ++result;
        return result;
    }
}

unittest
{
    //hasLength Range
    int[] a = [ 1, 2, 3 ];
    assert(walkLength(a) == 3);
    assert(walkLength(a, 0) == 3);
    assert(walkLength(a, 2) == 3);
    assert(walkLength(a, 4) == 3);

    //Forward Range
    auto b = filter!"true"([1, 2, 3, 4]);
    assert(b.walkLength() == 4);
    assert(b.walkLength(0) == 0);
    assert(b.walkLength(2) == 2);
    assert(b.walkLength(4) == 4);
    assert(b.walkLength(6) == 4);

    //Infinite Range
    auto fibs = recurrence!"a[n-1] + a[n-2]"(1, 1);
    assert(!__traits(compiles, fibs.walkLength()));
    assert(fibs.take(10).walkLength() == 10);
    assert(fibs.walkLength(55) == 55);
}

/**
Iterates a bidirectional range backwards. The original range can be
accessed by using the $(D source) property. Applying retro twice to
the same range yields the original range.

Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(retro(a), [ 5, 4, 3, 2, 1 ][]));
assert(retro(a).source is a);
assert(retro(retro(a)) is a);
----
 */
auto retro(Range)(Range r)
if (isBidirectionalRange!(Unqual!Range))
{
    // Check for retro(retro(r)) and just return r in that case
    static if (is(typeof(retro(r.source)) == Range))
    {
        return r.source;
    }
    else
    {
        static struct Result()
        {
            private alias Unqual!Range R;

            // User code can get and set source, too
            R source;

            static if (hasLength!R)
            {
                private alias CommonType!(size_t, typeof(source.length)) IndexType;

                IndexType retroIndex(IndexType n)
                {
                    return source.length - n - 1;
                }
            }

        public:
            alias R Source;

            @property bool empty() { return source.empty; }
            @property auto save()
            {
                return Result(source.save);
            }
            @property auto ref front() { return source.back; }
            void popFront() { source.popBack(); }
            @property auto ref back() { return source.front; }
            void popBack() { source.popFront(); }

            static if(is(typeof(.moveBack(source))))
            {
                ElementType!R moveFront()
                {
                    return .moveBack(source);
                }
            }

            static if(is(typeof(.moveFront(source))))
            {
                ElementType!R moveBack()
                {
                    return .moveFront(source);
                }
            }

            static if (hasAssignableElements!R)
            {
                @property auto front(ElementType!R val)
                {
                    source.back = val;
                }

                @property auto back(ElementType!R val)
                {
                    source.front = val;
                }
            }

            static if (isRandomAccessRange!(R) && hasLength!(R))
            {
                auto ref opIndex(IndexType n) { return source[retroIndex(n)]; }

                static if (hasAssignableElements!R)
                {
                    void opIndexAssign(ElementType!R val, IndexType n)
                    {
                        source[retroIndex(n)] = val;
                    }
                }

                static if (is(typeof(.moveAt(source, 0))))
                {
                    ElementType!R moveAt(IndexType index)
                    {
                        return .moveAt(source, retroIndex(index));
                    }
                }

                static if (hasSlicing!R)
                    typeof(this) opSlice(IndexType a, IndexType b)
                    {
                        return typeof(this)(source[source.length - b .. source.length - a]);
                    }
            }

            static if (hasLength!R)
            {
                @property auto length()
                {
                    return source.length;
                }

                alias length opDollar;
            }
        }

        return Result!()(r);
    }
}

unittest
{
    static assert(isBidirectionalRange!(typeof(retro("hello"))));
    int[] a;
    static assert(is(typeof(a) == typeof(retro(retro(a)))));
    assert(retro(retro(a)) is a);
    static assert(isRandomAccessRange!(typeof(retro([1, 2, 3]))));
    void test(int[] input, int[] witness)
    {
        auto r = retro(input);
        assert(r.front == witness.front);
        assert(r.back == witness.back);
        assert(equal(r, witness));
    }
    test([ 1 ], [ 1 ]);
    test([ 1, 2 ], [ 2, 1 ]);
    test([ 1, 2, 3 ], [ 3, 2, 1 ]);
    test([ 1, 2, 3, 4 ], [ 4, 3, 2, 1 ]);
    test([ 1, 2, 3, 4, 5 ], [ 5, 4, 3, 2, 1 ]);
    test([ 1, 2, 3, 4, 5, 6 ], [ 6, 5, 4, 3, 2, 1 ]);

   // static assert(is(Retro!(immutable int[])));
   immutable foo = [1,2,3].idup;
   retro(foo);

    foreach(DummyType; AllDummyRanges) {
        static if (!isBidirectionalRange!DummyType) {
            static assert(!__traits(compiles, Retro!DummyType));
        } else {
            DummyType dummyRange;
            dummyRange.reinit();

            auto myRetro = retro(dummyRange);
            static assert(propagatesRangeType!(typeof(myRetro), DummyType));
            assert(myRetro.front == 10);
            assert(myRetro.back == 1);
            assert(myRetro.moveFront() == 10);
            assert(myRetro.moveBack() == 1);

            static if (isRandomAccessRange!DummyType && hasLength!DummyType) {
                assert(myRetro[0] == myRetro.front);
                assert(myRetro.moveAt(2) == 8);

                static if (DummyType.r == ReturnBy.Reference) {
                    {
                        myRetro[9]++;
                        scope(exit) myRetro[9]--;
                        assert(dummyRange[0] == 2);
                        myRetro.front++;
                        scope(exit) myRetro.front--;
                        assert(myRetro.front == 11);
                        myRetro.back++;
                        scope(exit) myRetro.back--;
                        assert(myRetro.back == 3);
                    }

                    {
                        myRetro.front = 0xFF;
                        scope(exit) myRetro.front = 10;
                        assert(dummyRange.back == 0xFF);

                        myRetro.back = 0xBB;
                        scope(exit) myRetro.back = 1;
                        assert(dummyRange.front == 0xBB);

                        myRetro[1] = 11;
                        scope(exit) myRetro[1] = 8;
                        assert(dummyRange[8] == 11);
                    }
                }
            }
        }
    }
}
unittest
{
    auto LL = iota(1L, 4L);
    auto r = retro(LL);
    assert(equal(r, [3L, 2L, 1L]));
}


/**
Iterates range $(D r) with stride $(D n). If the range is a
random-access range, moves by indexing into the range; otherwise,
moves by successive calls to $(D popFront). Applying stride twice to
the same range results in a stride with a step that is the
product of the two applications.

Throws: $(D Exception) if $(D n == 0).

Example:
----
int[] a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ];
assert(equal(stride(a, 3), [ 1, 4, 7, 10 ][]));
assert(stride(stride(a, 2), 3) == stride(a, 6));
----
 */
auto stride(Range)(Range r, size_t n)
if (isInputRange!(Unqual!Range))
{
    import std.exception : enforce;

    enforce(n > 0, "Stride cannot have step zero.");

    static if (is(typeof(stride(r.source, n)) == Range))
    {
        // stride(stride(r, n1), n2) is stride(r, n1 * n2)
        return stride(r.source, r._n * n);
    }
    else
    {
        static struct Result
        {
            private alias Unqual!Range R;
            public R source;
            private size_t _n;

            // Chop off the slack elements at the end
            static if (hasLength!R &&
                    (isRandomAccessRange!R && hasSlicing!R
                            || isBidirectionalRange!R))
                private void eliminateSlackElements()
                {
                    auto slack = source.length % _n;

                    if (slack)
                    {
                        slack--;
                    }
                    else if (!source.empty)
                    {
                        slack = min(_n, source.length) - 1;
                    }
                    else
                    {
                        slack = 0;
                    }
                    if (!slack) return;
                    static if (isRandomAccessRange!R && hasSlicing!R)
                    {
                        source = source[0 .. source.length - slack];
                    }
                    else static if (isBidirectionalRange!R)
                    {
                        foreach (i; 0 .. slack)
                        {
                            source.popBack();
                        }
                    }
                }

            static if (isForwardRange!R)
            {
                @property auto save()
                {
                    return Result(source.save, _n);
                }
            }

            static if (isInfinite!R)
            {
                enum bool empty = false;
            }
            else
            {
                @property bool empty()
                {
                    return source.empty;
                }
            }

            @property auto ref front()
            {
                return source.front;
            }

            static if (is(typeof(.moveFront(source))))
            {
                ElementType!R moveFront()
                {
                    return .moveFront(source);
                }
            }

            static if (hasAssignableElements!R)
            {
                @property auto front(ElementType!R val)
                {
                    source.front = val;
                }
            }

            void popFront()
            {
                static if (isRandomAccessRange!R && hasLength!R && hasSlicing!R)
                {
                    source = source[min(_n, source.length) .. source.length];
                }
                else
                {
                    static if (hasLength!R)
                    {
                        foreach (i; 0 .. min(source.length, _n))
                        {
                            source.popFront();
                        }
                    }
                    else
                    {
                        foreach (i; 0 .. _n)
                        {
                            source.popFront();
                            if (source.empty) break;
                        }
                    }
                }
            }

            static if (isBidirectionalRange!R && hasLength!R)
            {
                void popBack()
                {
                    popBackN(source, _n);
                }

                @property auto ref back()
                {
                    eliminateSlackElements();
                    return source.back;
                }

                static if (is(typeof(.moveBack(source))))
                {
                    ElementType!R moveBack()
                    {
                        eliminateSlackElements();
                        return .moveBack(source);
                    }
                }

                static if (hasAssignableElements!R)
                {
                    @property auto back(ElementType!R val)
                    {
                        eliminateSlackElements();
                        source.back = val;
                    }
                }
            }

            static if (isRandomAccessRange!R && hasLength!R)
            {
                auto ref opIndex(size_t n)
                {
                    return source[_n * n];
                }

                /**
                   Forwards to $(D moveAt(source, n)).
                */
                static if (is(typeof(.moveAt(source, 0))))
                {
                    ElementType!R moveAt(size_t n)
                    {
                        return .moveAt(source, _n * n);
                    }
                }

                static if (hasAssignableElements!R)
                {
                    void opIndexAssign(ElementType!R val, size_t n)
                    {
                        source[_n * n] = val;
                    }
                }
            }

            static if (hasSlicing!R && hasLength!R)
                typeof(this) opSlice(size_t lower, size_t upper)
                {
                    assert(upper >= lower && upper <= length);
                    immutable translatedUpper = (upper == 0) ? 0 :
                        (upper * _n - (_n - 1));
                    immutable translatedLower = min(lower * _n, translatedUpper);

                    assert(translatedLower <= translatedUpper);

                    return typeof(this)(source[translatedLower..translatedUpper], _n);
                }

            static if (hasLength!R)
            {
                @property auto length()
                {
                    return (source.length + _n - 1) / _n;
                }

                alias length opDollar;
            }
        }
        return Result(r, n);
    }
}

unittest
{
    static assert(isRandomAccessRange!(typeof(stride([1, 2, 3], 2))));
    void test(size_t n, int[] input, int[] witness)
    {
        assert(equal(stride(input, n), witness));
    }
    test(1, [], []);
    int[] arr = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    assert(stride(stride(arr, 2), 3) is stride(arr, 6));
    test(1, arr, arr);
    test(2, arr, [1, 3, 5, 7, 9]);
    test(3, arr, [1, 4, 7, 10]);
    test(4, arr, [1, 5, 9]);

    // Test slicing.
    auto s1 = stride(arr, 1);
    assert(equal(s1[1..4], [2, 3, 4]));
    assert(s1[1..4].length == 3);
    assert(equal(s1[1..5], [2, 3, 4, 5]));
    assert(s1[1..5].length == 4);
    assert(s1[0..0].empty);
    assert(s1[3..3].empty);
    // assert(s1[$ .. $].empty);
    assert(s1[s1.opDollar .. s1.opDollar].empty);

    auto s2 = stride(arr, 2);
    assert(equal(s2[0..2], [1,3]));
    assert(s2[0..2].length == 2);
    assert(equal(s2[1..5], [3, 5, 7, 9]));
    assert(s2[1..5].length == 4);
    assert(s2[0..0].empty);
    assert(s2[3..3].empty);
    // assert(s2[$ .. $].empty);
    assert(s2[s2.opDollar .. s2.opDollar].empty);

    // Test fix for Bug 5035
    auto m = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]; // 3 rows, 4 columns
    auto col = stride(m, 4);
    assert(equal(col, [1, 1, 1]));
    assert(equal(retro(col), [1, 1, 1]));

    immutable int[] immi = [ 1, 2, 3 ];
    static assert(isRandomAccessRange!(typeof(stride(immi, 1))));

    // Check for infiniteness propagation.
    static assert(isInfinite!(typeof(stride(repeat(1), 3))));

    foreach(DummyType; AllDummyRanges) {
        DummyType dummyRange;
        dummyRange.reinit();

        auto myStride = stride(dummyRange, 4);

        // Should fail if no length and bidirectional b/c there's no way
        // to know how much slack we have.
        static if (hasLength!DummyType || !isBidirectionalRange!DummyType) {
            static assert(propagatesRangeType!(typeof(myStride), DummyType));
        }
        assert(myStride.front == 1);
        assert(myStride.moveFront() == 1);
        assert(equal(myStride, [1, 5, 9]));

        static if (hasLength!DummyType) {
            assert(myStride.length == 3);
        }

        static if (isBidirectionalRange!DummyType && hasLength!DummyType) {
            assert(myStride.back == 9);
            assert(myStride.moveBack() == 9);
        }

        static if (isRandomAccessRange!DummyType && hasLength!DummyType) {
            assert(myStride[0] == 1);
            assert(myStride[1] == 5);
            assert(myStride.moveAt(1) == 5);
            assert(myStride[2] == 9);

            static assert(hasSlicing!(typeof(myStride)));
        }

        static if (DummyType.r == ReturnBy.Reference) {
            // Make sure reference is propagated.

            {
                myStride.front++;
                scope(exit) myStride.front--;
                assert(dummyRange.front == 2);
            }
            {
                myStride.front = 4;
                scope(exit) myStride.front = 1;
                assert(dummyRange.front == 4);
            }

            static if (isBidirectionalRange!DummyType && hasLength!DummyType) {
                {
                    myStride.back++;
                    scope(exit) myStride.back--;
                    assert(myStride.back == 10);
                }
                {
                    myStride.back = 111;
                    scope(exit) myStride.back = 9;
                    assert(myStride.back == 111);
                }

                static if (isRandomAccessRange!DummyType) {
                    {
                        myStride[1]++;
                        scope(exit) myStride[1]--;
                        assert(dummyRange[4] == 6);
                    }
                    {
                        myStride[1] = 55;
                        scope(exit) myStride[1] = 5;
                        assert(dummyRange[4] == 55);
                    }
                }
            }
        }
    }
}
unittest
{
    auto LL = iota(1L, 10L);
    auto s = stride(LL, 3);
    assert(equal(s, [1L, 4L, 7L]));
}

/**
Spans multiple ranges in sequence. The function $(D chain) takes any
number of ranges and returns a $(D Chain!(R1, R2,...)) object. The
ranges may be different, but they must have the same element type. The
result is a range that offers the $(D front), $(D popFront), and $(D
empty) primitives. If all input ranges offer random access and $(D
length), $(D Chain) offers them as well.

If only one range is offered to $(D Chain) or $(D chain), the $(D
Chain) type exits the picture by aliasing itself directly to that
range's type.

Example:
----
int[] arr1 = [ 1, 2, 3, 4 ];
int[] arr2 = [ 5, 6 ];
int[] arr3 = [ 7 ];
auto s = chain(arr1, arr2, arr3);
assert(s.length == 7);
assert(s[5] == 6);
assert(equal(s, [1, 2, 3, 4, 5, 6, 7][]));
----
 */
auto chain(Ranges...)(Ranges rs)
if (Ranges.length > 0 &&
    allSatisfy!(isInputRange, staticMap!(Unqual, Ranges)) &&
    !is(CommonType!(staticMap!(ElementType, staticMap!(Unqual, Ranges))) == void))
{
    static if (Ranges.length == 1)
    {
        return rs[0];
    }
    else
    {
        static struct Result
        {
        private:
            alias staticMap!(Unqual, Ranges) R;
            alias CommonType!(staticMap!(.ElementType, R)) RvalueElementType;
            private template sameET(A)
            {
                enum sameET = is(.ElementType!A == RvalueElementType);
            }

            enum bool allSameType = allSatisfy!(sameET, R);

// This doesn't work yet
            static if (allSameType)
            {
                alias ref RvalueElementType ElementType;
            }
            else
            {
                alias RvalueElementType ElementType;
            }
            static if (allSameType && allSatisfy!(hasLvalueElements, R))
            {
                static ref RvalueElementType fixRef(ref RvalueElementType val)
                {
                    return val;
                }
            }
            else
            {
                static RvalueElementType fixRef(RvalueElementType val)
                {
                    return val;
                }
            }

// This is the entire state
            R source;
// TODO: use a vtable (or more) instead of linear iteration

        public:
            this(R input)
            {
                foreach (i, v; input)
                {
                    source[i] = v;
                }
            }

            import std.typetuple : anySatisfy;

            static if (anySatisfy!(isInfinite, R))
            {
// Propagate infiniteness.
                enum bool empty = false;
            }
            else
            {
                @property bool empty()
                {
                    foreach (i, Unused; R)
                    {
                        if (!source[i].empty) return false;
                    }
                    return true;
                }
            }

            static if (allSatisfy!(isForwardRange, R))
                @property auto save()
                {
                    typeof(this) result = this;
                    foreach (i, Unused; R)
                    {
                        result.source[i] = result.source[i].save;
                    }
                    return result;
                }

            void popFront()
            {
                foreach (i, Unused; R)
                {
                    if (source[i].empty) continue;
                    source[i].popFront();
                    return;
                }
            }

            @property auto ref front()
            {
                foreach (i, Unused; R)
                {
                    if (source[i].empty) continue;
                    return fixRef(source[i].front);
                }
                assert(false);
            }

            static if (allSameType && allSatisfy!(hasAssignableElements, R))
            {
                // @@@BUG@@@
                //@property void front(T)(T v) if (is(T : RvalueElementType))

                // Return type must be auto due to Bug 4706.
                @property auto front(RvalueElementType v)
                {
                    foreach (i, Unused; R)
                    {
                        if (source[i].empty) continue;
                        source[i].front = v;
                        return;
                    }
                    assert(false);
                }
            }

            static if (allSatisfy!(hasMobileElements, R))
            {
                RvalueElementType moveFront()
                {
                    foreach (i, Unused; R)
                    {
                        if (source[i].empty) continue;
                        return .moveFront(source[i]);
                    }
                    assert(false);
                }
            }

            static if (allSatisfy!(isBidirectionalRange, R))
            {
                @property auto ref back()
                {
                    foreach_reverse (i, Unused; R)
                    {
                        if (source[i].empty) continue;
                        return fixRef(source[i].back);
                    }
                    assert(false);
                }

                void popBack()
                {
                    foreach_reverse (i, Unused; R)
                    {
                        if (source[i].empty) continue;
                        source[i].popBack();
                        return;
                    }
                }

                static if (allSatisfy!(hasMobileElements, R))
                {
                    RvalueElementType moveBack()
                    {
                        foreach_reverse (i, Unused; R)
                        {
                            if (source[i].empty) continue;
                            return .moveBack(source[i]);
                        }
                        assert(false);
                    }
                }

                static if (allSameType && allSatisfy!(hasAssignableElements, R))
                {
                    // Return type must be auto due to extremely strange bug in DMD's
                    // function overloading.
                    @property auto back(RvalueElementType v)
                    {
                        foreach_reverse (i, Unused; R)
                        {
                            if (source[i].empty) continue;
                            source[i].back = v;
                            return;
                        }
                        assert(false);
                    }
                }
            }

            static if (allSatisfy!(hasLength, R))
            {
                @property size_t length()
                {
                    size_t result;
                    foreach (i, Unused; R)
                    {
                        result += source[i].length;
                    }
                    return result;
                }

                alias length opDollar;
            }

            static if (allSatisfy!(isRandomAccessRange, R))
            {
                auto ref opIndex(size_t index)
                {
                    foreach (i, Range; R)
                    {
                        static if (isInfinite!(Range))
                        {
                            return source[i][index];
                        }
                        else
                        {
                            immutable length = source[i].length;
                            if (index < length) return fixRef(source[i][index]);
                            index -= length;
                        }
                    }
                    assert(false);
                }

                static if (allSatisfy!(hasMobileElements, R))
                {
                    RvalueElementType moveAt(size_t index)
                    {
                        foreach (i, Range; R)
                        {
                            static if (isInfinite!(Range))
                            {
                                return .moveAt(source[i], index);
                            }
                            else
                            {
                                immutable length = source[i].length;
                                if (index < length) return .moveAt(source[i], index);
                                index -= length;
                            }
                        }
                        assert(false);
                    }
                }

                static if (allSameType && allSatisfy!(hasAssignableElements, R))
                    void opIndexAssign(ElementType v, size_t index)
                    {
                        foreach (i, Range; R)
                        {
                            static if (isInfinite!(Range))
                            {
                                source[i][index] = v;
                            }
                            else
                            {
                                immutable length = source[i].length;
                                if (index < length)
                                {
                                    source[i][index] = v;
                                    return;
                                }
                                index -= length;
                            }
                        }
                        assert(false);
                    }
            }

            static if (allSatisfy!(hasLength, R) && allSatisfy!(hasSlicing, R))
                auto opSlice(size_t begin, size_t end)
                {
                    auto result = this;
                    foreach (i, Unused; R)
                    {
                        immutable len = result.source[i].length;
                        if (len < begin)
                        {
                            result.source[i] = result.source[i]
                                [len .. len];
                            begin -= len;
                        }
                        else
                        {
                            result.source[i] = result.source[i]
                                [begin .. len];
                            break;
                        }
                    }
                    auto cut = length;
                    cut = cut <= end ? 0 : cut - end;
                    foreach_reverse (i, Unused; R)
                    {
                        immutable len = result.source[i].length;
                        if (cut > len)
                        {
                            result.source[i] = result.source[i]
                                [0 .. 0];
                            cut -= len;
                        }
                        else
                        {
                            result.source[i] = result.source[i]
                                [0 .. len - cut];
                            break;
                        }
                    }
                    return result;
                }
        }
        return Result(rs);
    }
}

unittest
{
    {
        int[] arr1 = [ 1, 2, 3, 4 ];
        int[] arr2 = [ 5, 6 ];
        int[] arr3 = [ 7 ];
        int[] witness = [ 1, 2, 3, 4, 5, 6, 7 ];
        auto s1 = chain(arr1);
        static assert(isRandomAccessRange!(typeof(s1)));
        auto s2 = chain(arr1, arr2);
        static assert(isBidirectionalRange!(typeof(s2)));
        static assert(isRandomAccessRange!(typeof(s2)));
        s2.front = 1;
        auto s = chain(arr1, arr2, arr3);
        assert(s[5] == 6);
        assert(equal(s, witness));
        assert(s[5] == 6);
    }
    {
        int[] arr1 = [ 1, 2, 3, 4 ];
        int[] witness = [ 1, 2, 3, 4 ];
        assert(equal(chain(arr1), witness));
    }
    {
        uint[] foo = [1,2,3,4,5];
        uint[] bar = [1,2,3,4,5];
        auto c = chain(foo, bar);
        c[3] = 42;
        assert(c[3] == 42);
        assert(c.moveFront() == 1);
        assert(c.moveBack() == 5);
        assert(c.moveAt(4) == 5);
        assert(c.moveAt(5) == 1);
    }

    // Make sure bug 3311 is fixed.  ChainImpl should compile even if not all
    // elements are mutable.
    auto c = chain( iota(0, 10), iota(0, 10) );

    // Test the case where infinite ranges are present.
    auto inf = chain([0,1,2][], cycle([4,5,6][]), [7,8,9][]); // infinite range
    assert(inf[0] == 0);
    assert(inf[3] == 4);
    assert(inf[6] == 4);
    assert(inf[7] == 5);
    static assert(isInfinite!(typeof(inf)));

    immutable int[] immi = [ 1, 2, 3 ];
    immutable float[] immf = [ 1, 2, 3 ];
    static assert(is(typeof(chain(immi, immf))));

    // Check that chain at least instantiates and compiles with every possible
    // pair of DummyRange types, in either order.

    foreach(DummyType1; AllDummyRanges) {
        DummyType1 dummy1;
        foreach(DummyType2; AllDummyRanges) {
            DummyType2 dummy2;
            auto myChain = chain(dummy1, dummy2);

            static assert(
                propagatesRangeType!(typeof(myChain), DummyType1, DummyType2)
            );

            assert(myChain.front == 1);
            foreach(i; 0..dummyLength) {
                myChain.popFront();
            }
            assert(myChain.front == 1);

            static if (isBidirectionalRange!DummyType1 &&
                      isBidirectionalRange!DummyType2) {
                assert(myChain.back == 10);
            }

            static if (isRandomAccessRange!DummyType1 &&
                      isRandomAccessRange!DummyType2) {
                assert(myChain[0] == 1);
            }

            static if (hasLvalueElements!DummyType1 && hasLvalueElements!DummyType2)
            {
                static assert(hasLvalueElements!(typeof(myChain)));
            }
            else
            {
                static assert(!hasLvalueElements!(typeof(myChain)));
            }
        }
    }
}

unittest
{
    class Foo{}
    immutable(Foo)[] a;
    immutable(Foo)[] b;
    auto c = chain(a, b);
}

/**
$(D roundRobin(r1, r2, r3)) yields $(D r1.front), then $(D r2.front),
then $(D r3.front), after which it pops off one element from each and
continues again from $(D r1). For example, if two ranges are involved,
it alternately yields elements off the two ranges. $(D roundRobin)
stops after it has consumed all ranges (skipping over the ones that
finish early).

Example:
----
int[] a = [ 1, 2, 3, 4];
int[] b = [ 10, 20 ];
assert(equal(roundRobin(a, b), [1, 10, 2, 20, 3, 4]));
----
 */
auto roundRobin(Rs...)(Rs rs)
if (Rs.length > 1 && allSatisfy!(isInputRange, staticMap!(Unqual, Rs)))
{
    struct Result
    {
        import std.conv : to;

        public Rs source;
        private size_t _current = size_t.max;

        @property bool empty()
        {
            foreach (i, Unused; Rs)
            {
                if (!source[i].empty) return false;
            }
            return true;
        }

        @property auto ref front()
        {
            static string makeSwitch()
            {
                string result = "switch (_current) {\n";
                foreach (i, R; Rs)
                {
                    auto si = to!string(i);
                    result ~= "case "~si~": "~
                        "assert(!source["~si~"].empty); return source["~si~"].front;\n";
                }
                return result ~ "default: assert(0); }";
            }

            mixin(makeSwitch());
        }

        void popFront()
        {
            static string makeSwitchPopFront()
            {
                string result = "switch (_current) {\n";
                foreach (i, R; Rs)
                {
                    auto si = to!string(i);
                    result ~= "case "~si~": source["~si~"].popFront(); break;\n";
                }
                return result ~ "default: assert(0); }";
            }

            static string makeSwitchIncrementCounter()
            {
                string result =
                    "auto next = _current == Rs.length - 1 ? 0 : _current + 1;\n"
                    "switch (next) {\n";
                foreach (i, R; Rs)
                {
                    auto si = to!string(i);
                    auto si_1 = to!string(i ? i - 1 : Rs.length - 1);
                    result ~= "case "~si~": "
                        "if (!source["~si~"].empty) { _current = "~si~"; return; }\n"
                        "if ("~si~" == _current) { _current = _current.max; return; }\n"
                        "goto case "~to!string((i + 1) % Rs.length)~";\n";
                }
                return result ~ "default: assert(0); }";
            }

            mixin(makeSwitchPopFront());
            mixin(makeSwitchIncrementCounter());
        }

        static if (allSatisfy!(isForwardRange, staticMap!(Unqual, Rs)))
            @property auto save()
            {
                Result result = this;
                foreach (i, Unused; Rs)
                {
                    result.source[i] = result.source[i].save;
                }
                return result;
            }

        static if (allSatisfy!(hasLength, Rs))
        {
            @property size_t length()
            {
                size_t result;
                foreach (i, R; Rs)
                {
                    result += source[i].length;
                }
                return result;
            }

            alias length opDollar;
        }
    }

    return Result(rs, 0);
}

unittest
{
    int[] a = [ 1, 2, 3 ];
    int[] b = [ 10, 20, 30, 40 ];
    auto r = roundRobin(a, b);
    assert(equal(r, [ 1, 10, 2, 20, 3, 30, 40 ]));
}

/**
Iterates a random-access range starting from a given point and
progressively extending left and right from that point. If no initial
point is given, iteration starts from the middle of the
range. Iteration spans the entire range.

Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
assert(equal(radial(a), [ 3, 4, 2, 5, 1 ]));
a = [ 1, 2, 3, 4 ];
assert(equal(radial(a), [ 2, 3, 1, 4 ]));
----
 */
auto radial(Range, I)(Range r, I startingIndex)
if (isRandomAccessRange!(Unqual!Range) && hasLength!(Unqual!Range) && isIntegral!I)
{
    if (!r.empty) ++startingIndex;
    return roundRobin(retro(r[0 .. startingIndex]), r[startingIndex .. r.length]);
}

/// Ditto
auto radial(R)(R r)
if (isRandomAccessRange!(Unqual!R) && hasLength!(Unqual!R))
{
    return .radial(r, (r.length - !r.empty) / 2);
}

unittest
{
    import std.conv : text;
    import std.exception : enforce;

    void test(int[] input, int[] witness)
    {
        enforce(equal(radial(input), witness),
                text(radial(input), " vs. ", witness));
    }
    test([], []);
    test([ 1 ], [ 1 ]);
    test([ 1, 2 ], [ 1, 2 ]);
    test([ 1, 2, 3 ], [ 2, 3, 1 ]);
    test([ 1, 2, 3, 4 ], [ 2, 3, 1, 4 ]);
    test([ 1, 2, 3, 4, 5 ], [ 3, 4, 2, 5, 1 ]);
    test([ 1, 2, 3, 4, 5, 6 ], [ 3, 4, 2, 5, 1, 6 ]);

    int[] a = [ 1, 2, 3, 4, 5 ];
    assert(equal(radial(a, 1), [ 2, 3, 1, 4, 5 ][]));
    static assert(isForwardRange!(typeof(radial(a, 1))));

    auto r = radial([1,2,3,4,5]);
    for(auto rr = r.save; !rr.empty; rr.popFront())
    {
        assert(rr.front == moveFront(rr));
    }
    r.front = 5;
    assert(r.front == 5);

    // Test instantiation without lvalue elements.
    DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random) dummy;
    assert(equal(radial(dummy, 4), [5, 6, 4, 7, 3, 8, 2, 9, 1, 10]));

    // immutable int[] immi = [ 1, 2 ];
    // static assert(is(typeof(radial(immi))));
}
unittest
{
    auto LL = iota(1L, 6L);
    auto r = radial(LL);
    assert(equal(r, [3L, 4L, 2L, 5L, 1L]));
}

/**
Lazily takes only up to $(D n) elements of a range. This is
particularly useful when using with infinite ranges. If the range
offers random access and $(D length), $(D Take) offers them as well.

Example:
----
int[] arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
auto s = take(arr1, 5);
assert(s.length == 5);
assert(s[4] == 5);
assert(equal(s, [ 1, 2, 3, 4, 5 ][]));
----
 */
struct Take(Range)
if (isInputRange!(Unqual!Range) &&
    //take _cannot_ test hasSlicing on infinite ranges, because hasSlicing uses
    //take for slicing infinite ranges.
    !((!isInfinite!(Unqual!Range) && hasSlicing!(Unqual!Range)) || is(Range T == Take!T)))
{
    private alias Unqual!Range R;

    // User accessible in read and write
    public R source;

    private size_t _maxAvailable;

    alias R Source;

    @property bool empty()
    {
        return _maxAvailable == 0 || source.empty;
    }

    @property auto ref front()
    {
        assert(!empty,
            "Attempting to fetch the front of an empty "
            ~ Take.stringof);
        return source.front;
    }

    void popFront()
    {
        assert(!empty,
            "Attempting to popFront() past the end of a "
            ~ Take.stringof);
        source.popFront();
        --_maxAvailable;
    }

    static if (isForwardRange!R)
        @property Take save()
        {
            return Take(source.save, _maxAvailable);
        }

    static if (hasAssignableElements!R)
        @property auto front(ElementType!R v)
        {
            assert(!empty,
                "Attempting to assign to the front of an empty "
                ~ Take.stringof);
            // This has to return auto instead of void because of Bug 4706.
            source.front = v;
        }

    static if (hasMobileElements!R)
    {
        auto moveFront()
        {
            assert(!empty,
                "Attempting to move the front of an empty "
                ~ Take.stringof);
            return .moveFront(source);
        }
    }

    static if (isInfinite!R)
    {
        @property size_t length() const
        {
            return _maxAvailable;
        }

        alias length opDollar;
    }
    else static if (hasLength!R)
    {
        @property size_t length()
        {
            return min(_maxAvailable, source.length);
        }

        alias length opDollar;
    }

    static if (isRandomAccessRange!R)
    {
        void popBack()
        {
            assert(!empty,
                "Attempting to popBack() past the beginning of a "
                ~ Take.stringof);
            --_maxAvailable;
        }

        @property auto ref back()
        {
            assert(!empty,
                "Attempting to fetch the back of an empty "
                ~ Take.stringof);
            return source[this.length - 1];
        }

        auto ref opIndex(size_t index)
        {
            assert(index < length,
                "Attempting to index out of the bounds of a "
                ~ Take.stringof);
            return source[index];
        }

        static if (hasAssignableElements!R)
        {
            @property auto back(ElementType!R v)
            {
                // This has to return auto instead of void because of Bug 4706.
                assert(!empty,
                    "Attempting to assign to the back of an empty "
                    ~ Take.stringof);
                source[this.length - 1] = v;
            }

            void opIndexAssign(ElementType!R v, size_t index)
            {
                assert(index < length,
                    "Attempting to index out of the bounds of a "
                    ~ Take.stringof);
                source[index] = v;
            }
        }

        static if (hasMobileElements!R)
        {
            auto moveBack()
            {
                assert(!empty,
                    "Attempting to move the back of an empty "
                    ~ Take.stringof);
                return .moveAt(source, this.length - 1);
            }

            auto moveAt(size_t index)
            {
                assert(index < length,
                    "Attempting to index out of the bounds of a "
                    ~ Take.stringof);
                return .moveAt(source, index);
            }
        }
    }

    // Nonstandard
    @property size_t maxLength() const
    {
        return _maxAvailable;
    }
}

// This template simply aliases itself to R and is useful for consistency in
// generic code.
template Take(R)
if (isInputRange!(Unqual!R) &&
    ((!isInfinite!(Unqual!R) && hasSlicing!(Unqual!R)) || is(R T == Take!T)))
{
    alias R Take;
}

// take for finite ranges with slicing
/// ditto
Take!R take(R)(R input, size_t n)
if (isInputRange!(Unqual!R) && !isInfinite!(Unqual!R) && hasSlicing!(Unqual!R))
{
    // @@@BUG@@@
    //return input[0 .. min(n, $)];
    return input[0 .. min(n, input.length)];
}

// take(take(r, n1), n2)
Take!R take(R)(R input, size_t n)
if (is(R T == Take!T))
{
    return R(input.source, min(n, input._maxAvailable));
}

// Regular take for input ranges
Take!(R) take(R)(R input, size_t n)
if (isInputRange!(Unqual!R) && (isInfinite!(Unqual!R) || !hasSlicing!(Unqual!R) && !is(R T == Take!T)))
{
    return Take!R(input, n);
}

unittest
{
    int[] arr1 = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ];
    auto s = take(arr1, 5);
    assert(s.length == 5);
    assert(s[4] == 5);
    assert(equal(s, [ 1, 2, 3, 4, 5 ][]));
    assert(equal(retro(s), [ 5, 4, 3, 2, 1 ][]));

    // Test fix for bug 4464.
    static assert(is(typeof(s) == Take!(int[])));
    static assert(is(typeof(s) == int[]));

    // Test using narrow strings.
    auto myStr = "This is a string.";
    auto takeMyStr = take(myStr, 7);
    assert(equal(takeMyStr, "This is"));

    // Test fix for bug 5052.
    auto takeMyStrAgain = take(takeMyStr, 4);
    assert(equal(takeMyStrAgain, "This"));
    static assert (is (typeof(takeMyStrAgain) == typeof(takeMyStr)));
    takeMyStrAgain = take(takeMyStr, 10);
    assert(equal(takeMyStrAgain, "This is"));

    foreach(DummyType; AllDummyRanges) {
        DummyType dummy;
        auto t = take(dummy, 5);
        alias typeof(t) T;

        static if (isRandomAccessRange!DummyType) {
            static assert(isRandomAccessRange!T);
            assert(t[4] == 5);

            assert(moveAt(t, 1) == t[1]);
            assert(t.back == moveBack(t));
        } else static if (isForwardRange!DummyType) {
            static assert(isForwardRange!T);
        }

        for(auto tt = t; !tt.empty; tt.popFront())
        {
            assert(tt.front == moveFront(tt));
        }

        // Bidirectional ranges can't be propagated properly if they don't
        // also have random access.

        assert(equal(t, [1,2,3,4,5]));

        //Test that take doesn't wrap the result of take.
        assert(take(t, 4) == take(dummy, 4));
    }

    immutable myRepeat = repeat(1);
    static assert(is(Take!(typeof(myRepeat))));
}

unittest
{
    // Check that one can declare variables of all Take types,
    // and that they match the return type of the corresponding
    // take().  (See issue 4464.)
    int[] r1;
    Take!(int[]) t1;
    t1 = take(r1, 1);

    string r2;
    Take!string t2;
    t2 = take(r2, 1);

    Take!(Take!string) t3;
    t3 = take(t2, 1);
}

unittest
{
    alias R1 = typeof(repeat(1));
    alias R2 = typeof(cycle([1]));
    alias TR1 = Take!R1;
    alias TR2 = Take!R2;
    static assert(isBidirectionalRange!TR1);
    static assert(isBidirectionalRange!TR2);
}

/**
Similar to $(LREF take), but assumes that $(D range) has at least $(D
n) elements. Consequently, the result of $(D takeExactly(range, n))
always defines the $(D length) property (and initializes it to $(D n))
even when $(D range) itself does not define $(D length).

The result of $(D takeExactly) is identical to that of $(LREF take) in
cases where the original range defines $(D length) or is infinite.
 */
auto takeExactly(R)(R range, size_t n)
if (isInputRange!R)
{
    static if (is(typeof(takeExactly(range._input, n)) == R))
    {
        assert(n <= range._n,
               "Attempted to take more than the length of the range with takeExactly.");
        // takeExactly(takeExactly(r, n1), n2) has the same type as
        // takeExactly(r, n1) and simply returns takeExactly(r, n2)
        range._n = n;
        return range;
    }
    //Also covers hasSlicing!R for finite ranges.
    else static if (hasLength!R)
    {
        assert(n <= range.length,
               "Attempted to take more than the length of the range with takeExactly.");
        return take(range, n);
    }
    else static if (isInfinite!R)
        return Take!R(range, n);
    else
    {
        static struct Result
        {
            R _input;
            private size_t _n;

            @property bool empty() const { return !_n; }
            @property auto ref front()
            {
                assert(_n > 0, "front() on an empty " ~ Result.stringof);
                return _input.front;
            }
            void popFront() { _input.popFront(); --_n; }
            @property size_t length() const { return _n; }
            alias length opDollar;

            static if (isForwardRange!R)
                @property auto save()
                {
                    return Result(_input.save, _n);
                }

            static if (hasMobileElements!R)
            {
                auto moveFront()
                {
                    assert(!empty,
                        "Attempting to move the front of an empty "
                        ~ typeof(this).stringof);
                    return .moveFront(_input);
                }
            }

            static if (hasAssignableElements!R)
            {
                @property auto ref front(ElementType!R v)
                {
                    assert(!empty,
                        "Attempting to assign to the front of an empty "
                        ~ typeof(this).stringof);
                    return _input.front = v;
                }
            }
        }

        return Result(range, n);
    }
}

unittest
{
    auto a = [ 1, 2, 3, 4, 5 ];

    auto b = takeExactly(a, 3);
    assert(equal(b, [1, 2, 3]));
    static assert(is(typeof(b.length) == size_t));
    assert(b.length == 3);
    assert(b.front == 1);
    assert(b.back == 3);

    auto c = takeExactly(b, 2);

    auto d = filter!"a > 0"(a);
    auto e = takeExactly(d, 3);
    assert(equal(e, [1, 2, 3]));
    static assert(is(typeof(e.length) == size_t));
    assert(e.length == 3);
    assert(e.front == 1);

    assert(equal(takeExactly(e, 3), [1, 2, 3]));

    //Test that take and takeExactly are the same for ranges which define length
    //but aren't sliceable.
    struct L
    {
        @property auto front() { return _arr[0]; }
        @property bool empty() { return _arr.empty; }
        void popFront() { _arr.popFront(); }
        @property size_t length() { return _arr.length; }
        int[] _arr;
    }
    static assert(is(typeof(take(L(a), 3)) == typeof(takeExactly(L(a), 3))));
    assert(take(L(a), 3) == takeExactly(L(a), 3));

    //Test that take and takeExactly are the same for ranges which are sliceable.
    static assert(is(typeof(take(a, 3)) == typeof(takeExactly(a, 3))));
    assert(take(a, 3) == takeExactly(a, 3));

    //Test that take and takeExactly are the same for infinite ranges.
    auto inf = repeat(1);
    static assert(is(typeof(take(inf, 5)) == Take!(typeof(inf))));
    assert(take(inf, 5) == takeExactly(inf, 5));

    //Test that take and takeExactly are _not_ the same for ranges which don't
    //define length.
    static assert(!is(typeof(take(filter!"true"(a), 3)) == typeof(takeExactly(filter!"true"(a), 3))));

    foreach(DummyType; AllDummyRanges)
    {
        {
            DummyType dummy;
            auto t = takeExactly(dummy, 5);

            //Test that takeExactly doesn't wrap the result of takeExactly.
            assert(takeExactly(t, 4) == takeExactly(dummy, 4));
        }

        static if(hasMobileElements!DummyType)
        {
            {
                auto t = takeExactly(DummyType.init, 4);
                assert(t.moveFront() == 1);
                assert(equal(t, [1, 2, 3, 4]));
            }
        }

        static if(hasAssignableElements!DummyType)
        {
            {
                auto t = takeExactly(DummyType.init, 4);
                t.front = 9;
                assert(equal(t, [9, 2, 3, 4]));
            }
        }
    }
}

/**
Returns a range with at most one element; for example, $(D
takeOne([42, 43, 44])) returns a range consisting of the integer $(D
42). Calling $(D popFront()) off that range renders it empty.

----
auto s = takeOne([42, 43, 44]);
static assert(isRandomAccessRange!(typeof(s)));
assert(s.length == 1);
assert(!s.empty);
assert(s.front == 42);
s.front() = 43;
assert(s.front == 43);
assert(s.back == 43);
assert(s[0] == 43);
s.popFront();
assert(s.length == 0);
assert(s.empty);
----

In effect $(D takeOne(r)) is somewhat equivalent to $(D take(r, 1)) but in
certain interfaces it is important to know statically that the range may only
have at most one element.

The type returned by $(D takeOne) is a random-access range with length
regardless of $(D R)'s capabilities (another feature that distinguishes
$(D takeOne) from $(D take)).
 */
auto takeOne(R)(R source) if (isInputRange!R)
{
    static if (hasSlicing!R)
    {
        return source[0 .. !source.empty];
    }
    else
    {
        static struct Result
        {
            private R _source;
            private bool _empty = true;
            @property bool empty() const { return _empty; }
            @property auto ref front() { assert(!empty); return _source.front; }
            void popFront() { assert(!empty); _empty = true; }
            void popBack() { assert(!empty); _empty = true; }
            @property auto save() { return Result(_source.save, empty); }
            @property auto ref back() { assert(!empty); return _source.front; }
            @property size_t length() const { return !empty; }
            alias length opDollar;
            auto ref opIndex(size_t n) { assert(n < length); return _source.front; }
            auto opSlice(size_t m, size_t n)
            {
                assert(m <= n && n < length);
                return n > m ? this : Result(_source, false);
            }
            // Non-standard property
            @property R source() { return _source; }
        }

        return Result(source, source.empty);
    }
}

unittest
{
    auto s = takeOne([42, 43, 44]);
    static assert(isRandomAccessRange!(typeof(s)));
    assert(s.length == 1);
    assert(!s.empty);
    assert(s.front == 42);
    s.front = 43;
    assert(s.front == 43);
    assert(s.back == 43);
    assert(s[0] == 43);
    s.popFront();
    assert(s.length == 0);
    assert(s.empty);
}

/++
    Returns an empty range which is statically known to be empty and is
    guaranteed to have $(D length) and be random access regardless of $(D R)'s
    capabilities.

    Examples:
--------------------
auto range = takeNone!(int[])();
assert(range.length == 0);
assert(range.empty);
--------------------
  +/
auto takeNone(R)()
    if(isInputRange!R)
{
    return typeof(takeOne(R.init)).init;
}

unittest
{
    auto range = takeNone!(int[])();
    assert(range.length == 0);
    assert(range.empty);

    enum ctfe = takeNone!(int[])();
    static assert(ctfe.length == 0);
    static assert(ctfe.empty);
}


/++
    Creates an empty range from the given range in $(BIGOH 1). If it can, it
    will return the same range type. If not, it will return
    $(D takeExactly(range, 0)).

    Examples:
--------------------
assert(takeNone([42, 27, 19]).empty);
assert(takeNone("dlang.org").empty);
assert(takeNone(filter!"true"([42, 27, 19])).empty);
--------------------
  +/
auto takeNone(R)(R range)
    if(isInputRange!R)
{
    //Makes it so that calls to takeNone which don't use UFCS still work with a
    //member version if it's defined.
    static if(is(typeof(R.takeNone)))
        auto retval = range.takeNone();
    //@@@BUG@@@ 8339
    else static if(isDynamicArray!R)/+ ||
                   (is(R == struct) && __traits(compiles, {auto r = R.init;}) && R.init.empty))+/
    {
        auto retval = R.init;
    }
    //An infinite range sliced at [0 .. 0] would likely still not be empty...
    else static if(hasSlicing!R && !isInfinite!R)
        auto retval = range[0 .. 0];
    else
        auto retval = takeExactly(range, 0);

    //@@@BUG@@@ 7892 prevents this from being done in an out block.
    assert(retval.empty);
    return retval;
}

//Verify Examples.
unittest
{
    assert(takeNone([42, 27, 19]).empty);
    assert(takeNone("dlang.org").empty);
    assert(takeNone(filter!"true"([42, 27, 19])).empty);
}

unittest
{
    string genInput()
    {
        return "@property bool empty() { return _arr.empty; }" ~
                "@property auto front() { return _arr.front; }" ~
                "void popFront() { _arr.popFront(); }" ~
                "static assert(isInputRange!(typeof(this)));";
    }

    static struct NormalStruct
    {
        //Disabled to make sure that the takeExactly version is used.
        @disable this();
        this(int[] arr) { _arr = arr; }
        mixin(genInput());
        int[] _arr;
    }

    static struct SliceStruct
    {
        @disable this();
        this(int[] arr) { _arr = arr; }
        mixin(genInput());
        @property auto save() { return this; }
        auto opSlice(size_t i, size_t j) { return typeof(this)(_arr[i .. j]); }
        @property size_t length() { return _arr.length; }
        int[] _arr;
    }

    static struct InitStruct
    {
        mixin(genInput());
        int[] _arr;
    }

    static struct TakeNoneStruct
    {
        this(int[] arr) { _arr = arr; }
        @disable this();
        mixin(genInput());
        auto takeNone() { return typeof(this)(null); }
        int[] _arr;
    }

    static class NormalClass
    {
        this(int[] arr) {_arr = arr;}
        mixin(genInput());
        int[] _arr;
    }

    static class SliceClass
    {
        this(int[] arr) { _arr = arr; }
        mixin(genInput());
        @property auto save() { return new typeof(this)(_arr); }
        auto opSlice(size_t i, size_t j) { return new typeof(this)(_arr[i .. j]); }
        @property size_t length() { return _arr.length; }
        int[] _arr;
    }

    static class TakeNoneClass
    {
        this(int[] arr) { _arr = arr; }
        mixin(genInput());
        auto takeNone() { return new typeof(this)(null); }
        int[] _arr;
    }

    import std.string : format;

    foreach(range; TypeTuple!(`[1, 2, 3, 4, 5]`,
                              `"hello world"`,
                              `"hello world"w`,
                              `"hello world"d`,
                              `SliceStruct([1, 2, 3])`,
                              //@@@BUG@@@ 8339 forces this to be takeExactly
                              //`InitStruct([1, 2, 3])`,
                              `TakeNoneStruct([1, 2, 3])`))
    {
        mixin(format("enum a = takeNone(%s).empty;", range));
        assert(a, typeof(range).stringof);
        mixin(format("assert(takeNone(%s).empty);", range));
        mixin(format("static assert(is(typeof(%s) == typeof(takeNone(%s))), typeof(%s).stringof);",
                     range, range, range));
    }

    foreach(range; TypeTuple!(`NormalStruct([1, 2, 3])`,
                              `InitStruct([1, 2, 3])`))
    {
        mixin(format("enum a = takeNone(%s).empty;", range));
        assert(a, typeof(range).stringof);
        mixin(format("assert(takeNone(%s).empty);", range));
        mixin(format("static assert(is(typeof(takeExactly(%s, 0)) == typeof(takeNone(%s))), typeof(%s).stringof);",
                     range, range, range));
    }

    //Don't work in CTFE.
    auto normal = new NormalClass([1, 2, 3]);
    assert(takeNone(normal).empty);
    static assert(is(typeof(takeExactly(normal, 0)) == typeof(takeNone(normal))), typeof(normal).stringof);

    auto slice = new SliceClass([1, 2, 3]);
    assert(takeNone(slice).empty);
    static assert(is(SliceClass == typeof(takeNone(slice))), typeof(slice).stringof);

    auto taken = new TakeNoneClass([1, 2, 3]);
    assert(takeNone(taken).empty);
    static assert(is(TakeNoneClass == typeof(takeNone(taken))), typeof(taken).stringof);

    auto filtered = filter!"true"([1, 2, 3, 4, 5]);
    assert(takeNone(filtered).empty);
    //@@@BUG@@@ 8339 and 5941 force this to be takeExactly
    //static assert(is(typeof(filtered) == typeof(takeNone(filtered))), typeof(filtered).stringof);
}

/++
    Convenience function which calls
    $(D range.$(LREF popFrontN)(n)) and returns $(D range). $(D drop)
    makes it easier to pop elements from a range
    and then pass it to another function within a single expression,
    whereas $(D popFrontN) would require multiple statements.

    $(D dropBack) provides the same functionality but instead calls
    $(D range.popBackN(n)).

    Note: $(D drop) and $(D dropBack) will only pop $(I up to)
    $(D n) elements but will stop if the range is empty first.

    Examples:
--------------------
assert([0, 2, 1, 5, 0, 3].drop(3) == [5, 0, 3]);
assert("hello world".drop(6) == "world");
assert("hello world".drop(50).empty);
assert("hello world".take(6).drop(3).equal("lo "));
--------------------

--------------------
//Remove all but the first two elements
auto a = DList!int(0, 1, 9, 9, 9);
a.remove(a[].drop(2));
assert(a[].equal(a[].take(2)));
--------------------

--------------------
assert([0, 2, 1, 5, 0, 3].dropBack(3) == [0, 2, 1]);
assert("hello world".dropBack(6) == "hello");
assert("hello world".dropBack(50).empty);
assert("hello world".drop(4).dropBack(4).equal("o w"));
--------------------

--------------------
//insert before the last two elements
auto a = DList!int(0, 1, 2, 5, 6);
a.insertAfter(a[].dropBack(2), [3, 4]);
assert(a[].equal(iota(0, 7)));
--------------------
  +/
R drop(R)(R range, size_t n)
    if(isInputRange!R)
{
    range.popFrontN(n);
    return range;
}
/// ditto
R dropBack(R)(R range, size_t n)
    if(isBidirectionalRange!R)
{
    range.popBackN(n);
    return range;
}

//Verify Examples
unittest
{
    assert([0, 2, 1, 5, 0, 3].drop(3) == [5, 0, 3]);
    assert("hello world".drop(6) == "world");
    assert("hello world".drop(50).empty);
    assert("hello world".take(6).drop(3).equal("lo "));
}
unittest
{
    import std.container : DList;

    //Remove all but the first two elements
    auto a = DList!int(0, 1, 9, 9, 9, 9);
    a.remove(a[].drop(2));
    assert(a[].equal(a[].take(2)));
}
unittest
{
    assert(drop("", 5).empty);
    assert(equal(drop(filter!"true"([0, 2, 1, 5, 0, 3]), 3), [5, 0, 3]));
}
unittest
{
    assert([0, 2, 1, 5, 0, 3].dropBack(3) == [0, 2, 1]);
    assert("hello world".dropBack(6) == "hello");
    assert("hello world".dropBack(50).empty);
    assert("hello world".drop(4).dropBack(4).equal("o w"));
}
unittest
{
    import std.container : DList;

    //insert before the last two elements
    auto a = DList!int(0, 1, 2, 5, 6);
    a.insertAfter(a[].dropBack(2), [3, 4]);
    assert(a[].equal(iota(0, 7)));
}

/++
    Similar to $(LREF drop) and $(D dropBack) but they call
    $(D range.$(LREF popFrontExactly)(n)) and $(D range.popBackExactly(n))
    instead.

    Note: Unlike $(D drop), $(D dropExactly) will assume that the
    range holds at least $(D n) elements. This makes $(D dropExactly)
    faster than $(D drop), but it also means that if $(D range) does
    not contain at least $(D n) elements, it will attempt to call $(D popFront)
    on an empty range, which is undefined behavior. So, only use
    $(D popFrontExactly) when it is guaranteed that $(D range) holds at least
    $(D n) elements.
+/
R dropExactly(R)(R range, size_t n)
    if(isInputRange!R)
{
    popFrontExactly(range, n);
    return range;
}
/// ditto
R dropBackExactly(R)(R range, size_t n)
    if(isBidirectionalRange!R)
{
    popBackExactly(range, n);
    return range;
}

unittest
{
    //RA+slicing
    auto a = [1, 2, 3];
    assert(a.dropExactly(1) == [2, 3]);
    assert(a.dropBackExactly(1) == [1, 2]);

    //UTF string
    string s = "日本語";
    assert(s.dropExactly(1) == "本語");
    assert(s.dropBackExactly(1) == "日本");

    //Bidirectional
    auto bd = filterBidirectional!"true"([1, 2, 3]);
    assert(bd.dropExactly(1).equal([2, 3]));
    assert(bd.dropBackExactly(1).equal([1, 2]));
}

/++
    Convenience function which calls
    $(D range.popFront()) and returns $(D range). $(D dropOne)
    makes it easier to pop an element from a range
    and then pass it to another function within a single expression,
    whereas $(D popFront) would require multiple statements.

    $(D dropBackOne) provides the same functionality but instead calls
    $(D range.popBack()).

    Example:
----
auto dl = DList!int(9, 1, 2, 3, 9);
assert(dl[].dropOne().dropBackOne().equal([1, 2, 3]));
----
+/
R dropOne(R)(R range)
    if (isInputRange!R)
{
    range.popFront();
    return range;
}
/// ditto
R dropBackOne(R)(R range)
    if (isBidirectionalRange!R)
{
    range.popBack();
    return range;
}

unittest
{
    import std.container : DList;

    auto dl = DList!int(9, 1, 2, 3, 9);
    assert(dl[].dropOne().dropBackOne().equal([1, 2, 3]));
}
unittest
{
    //RA+slicing
    auto a = [1, 2, 3];
    assert(a.dropOne() == [2, 3]);
    assert(a.dropBackOne() == [1, 2]);

    //UTF string
    string s = "日本語";
    assert(s.dropOne() == "本語");
    assert(s.dropBackOne() == "日本");

    //Bidirectional
    auto bd = filterBidirectional!"true"([1, 2, 3]);
    assert(bd.dropOne().equal([2, 3]));
    assert(bd.dropBackOne().equal([1, 2]));
}

/**
    Eagerly advances $(D r) itself (not a copy) up to $(D n) times (by
    calling $(D r.popFront)). $(D popFrontN) takes $(D r) by $(D ref),
    so it mutates the original range. Completes in $(BIGOH 1) steps for ranges
    that support slicing and have length.
    Completes in $(BIGOH n) time for all other ranges.

    Returns:
    How much $(D r) was actually advanced, which may be less than $(D n) if
    $(D r) did not have at least $(D n) elements.

    $(D popBackN) will behave the same but instead removes elements from
    the back of the (bidirectional) range instead of the front.

    Example:
----
int[] a = [ 1, 2, 3, 4, 5 ];
a.popFrontN(2);
assert(a == [ 3, 4, 5 ]);
a.popFrontN(7);
assert(a == [ ]);
----

----
int[] a = [ 1, 2, 3, 4, 5 ];
a.popBackN(2);
assert(a == [ 1, 2, 3 ]);
a.popBackN(7);
assert(a == [ ]);
----
*/
size_t popFrontN(Range)(ref Range r, size_t n)
    if (isInputRange!Range)
{
    static if (hasLength!Range)
        n = min(n, r.length);

    static if (hasSlicing!Range && is(typeof(r = r[n .. $])))
    {
        r = r[n .. $];
    }
    else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
    {
        r = r[n .. r.length];
    }
    else
    {
        static if (hasLength!Range)
        {
            foreach (i; 0 .. n)
                r.popFront();
        }
        else
        {
            foreach (i; 0 .. n)
            {
                if (r.empty) return i;
                r.popFront();
            }
        }
    }
    return n;
}
/// ditto
size_t popBackN(Range)(ref Range r, size_t n)
    if (isBidirectionalRange!Range)
{
    static if (hasLength!Range)
        n = min(n, r.length);

    static if (hasSlicing!Range && is(typeof(r = r[0 .. $ - n])))
    {
        r = r[0 .. $ - n];
    }
    else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
    {
        r = r[0 .. r.length - n];
    }
    else
    {
        static if (hasLength!Range)
        {
            foreach (i; 0 .. n)
                r.popBack();
        }
        else
        {
            foreach (i; 0 .. n)
            {
                if (r.empty) return i;
                r.popBack();
            }
        }
    }
    return n;
}

unittest
{
    int[] a = [ 1, 2, 3, 4, 5 ];
    a.popFrontN(2);
    assert(a == [ 3, 4, 5 ]);
    a.popFrontN(7);
    assert(a == [ ]);
}
unittest
{
    auto LL = iota(1L, 7L);
    auto r = popFrontN(LL, 2);
    assert(equal(LL, [3L, 4L, 5L, 6L]));
    assert(r == 2);
}
unittest
{
    int[] a = [ 1, 2, 3, 4, 5 ];
    a.popBackN(2);
    assert(a == [ 1, 2, 3 ]);
    a.popBackN(7);
    assert(a == [ ]);
}
unittest
{
    auto LL = iota(1L, 7L);
    auto r = popBackN(LL, 2);
    assert(equal(LL, [1L, 2L, 3L, 4L]));
    assert(r == 2);
}

/**
    Eagerly advances $(D r) itself (not a copy) exactly $(D n) times (by
    calling $(D r.popFront)). $(D popFrontExactly) takes $(D r) by $(D ref),
    so it mutates the original range. Completes in $(BIGOH 1) steps for ranges
    that support slicing, and have either length or are infinite.
    Completes in $(BIGOH n) time for all other ranges.

    Note: Unlike $(LREF popFrontN), $(D popFrontExactly) will assume that the
    range holds at least $(D n) elements. This makes $(D popFrontExactly)
    faster than $(D popFrontN), but it also means that if $(D range) does
    not contain at least $(D n) elements, it will attempt to call $(D popFront)
    on an empty range, which is undefined behavior. So, only use
    $(D popFrontExactly) when it is guaranteed that $(D range) holds at least
    $(D n) elements.

    $(D popBackExactly) will behave the same but instead removes elements from
    the back of the (bidirectional) range instead of the front.
*/
void popFrontExactly(Range)(ref Range r, size_t n)
    if (isInputRange!Range)
{
    static if (hasLength!Range)
        assert(n <= r.length, "range is smaller than amount of items to pop");

    static if (hasSlicing!Range && is(typeof(r = r[n .. $])))
        r = r[n .. $];
    else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
        r = r[n .. r.length];
    else
        foreach (i; 0 .. n)
            r.popFront();
}
/// ditto
void popBackExactly(Range)(ref Range r, size_t n)
    if (isBidirectionalRange!Range)
{
    static if (hasLength!Range)
        assert(n <= r.length, "range is smaller than amount of items to pop");

    static if (hasSlicing!Range && is(typeof(r = r[0 .. $ - n])))
        r = r[0 .. $ - n];
    else static if (hasSlicing!Range && hasLength!Range) //TODO: Remove once hasSlicing forces opDollar.
        r = r[0 .. r.length - n];
    else
        foreach (i; 0 .. n)
            r.popBack();
}

unittest
{
    //RA+slicing
    auto a = [1, 2, 3];
    a.popFrontExactly(1);
    assert(a == [2, 3]);
    a.popBackExactly(1);
    assert(a == [2]);

    //UTF string
    string s = "日本語";
    s.popFrontExactly(1);
    assert(s == "本語");
    s.popBackExactly(1);
    assert(s == "本");

    //Bidirectional
    auto bd = filterBidirectional!"true"([1, 2, 3]);
    bd.popFrontExactly(1);
    assert(bd.equal([2, 3]));
    bd.popBackExactly(1);
    assert(bd.equal([2]));
}

/**
Repeats one value forever.

Models an infinite bidirectional and random access range, with slicing.
*/
struct Repeat(T)
{
    private T _value;
    @property inout(T) front() inout { return _value; }
    @property inout(T) back() inout { return _value; }
    enum bool empty = false;
    void popFront() {}
    void popBack() {}
    @property auto save() inout { return this; }
    inout(T) opIndex(size_t) inout { return _value; }
    auto opSlice(size_t i, size_t j)
    in
    {
        import core.exception : RangeError;
        if (i > j) throw new RangeError();
    }
    body
    {
        return this.takeExactly(j - i);
    }
    private static struct DollarToken {}
    enum opDollar = DollarToken.init;
    auto opSlice(size_t, DollarToken) inout { return this; }
}

/// Ditto
Repeat!T repeat(T)(T value) { return Repeat!T(value); }

///
unittest
{
    assert(equal(5.repeat().take(4), [ 5, 5, 5, 5 ]));
}

unittest
{
    auto  r = repeat(5);
    alias R = typeof(r);
    static assert(isBidirectionalRange!R);
    static assert(isForwardRange!R);
    static assert(isInfinite!R);
    static assert(hasSlicing!R);

    assert(r.back == 5);
    assert(r.front == 5);
    assert(r.take(4).equal([ 5, 5, 5, 5 ]));
    assert(r[0 .. 4].equal([ 5, 5, 5, 5 ]));

    R r2 = r[5 .. $];
}

/**
   Repeats $(D value) exactly $(D n) times. Equivalent to $(D
   take(repeat(value), n)).
*/
Take!(Repeat!T) repeat(T)(T value, size_t n)
{
    return take(repeat(value), n);
}

///
unittest
{
    assert(equal(5.repeat(4), 5.repeat().take(4)));
}

/**
Repeats the given forward range ad infinitum. If the original range is
infinite (fact that would make $(D Cycle) the identity application),
$(D Cycle) detects that and aliases itself to the range type
itself. If the original range has random access, $(D Cycle) offers
random access and also offers a constructor taking an initial position
$(D index). $(D Cycle) works with static arrays in addition to ranges,
mostly for performance reasons.

Example:
----
assert(equal(take(cycle([1, 2][]), 5), [ 1, 2, 1, 2, 1 ][]));
----

Tip: This is a great way to implement simple circular buffers.
*/
struct Cycle(R)
    if (isForwardRange!R && !isInfinite!R)
{
    static if (isRandomAccessRange!R && hasLength!R)
    {
        private R _original;
        private size_t _index;

        this(R input, size_t index = 0)
        {
            _original = input;
            _index = index;
        }

        @property auto ref front()
        {
            return _original[_index % _original.length];
        }

        static if (is(typeof((cast(const R)_original)[0])) &&
                   is(typeof((cast(const R)_original).length)))
        {
            @property auto ref front() const
            {
                return _original[_index % _original.length];
            }
        }

        static if (hasAssignableElements!R)
        {
            @property auto front(ElementType!R val)
            {
                _original[_index % _original.length] = val;
            }
        }

        enum bool empty = false;

        void popFront()
        {
            ++_index;
        }

        auto ref opIndex(size_t n)
        {
            return _original[(n + _index) % _original.length];
        }

        static if (is(typeof((cast(const R)_original)[0])) &&
                   is(typeof((cast(const R)_original).length)))
        {
            auto ref opIndex(size_t n) const
            {
                return _original[(n + _index) % _original.length];
            }
        }

        static if (hasAssignableElements!R)
        {
            auto opIndexAssign(ElementType!R val, size_t n)
            {
                _original[(n + _index) % _original.length] = val;
            }
        }

        @property Cycle save()
        {
            //No need to call _original.save, because Cycle never actually modifies _original
            return Cycle(_original, _index);
        }

        private static struct DollarToken {}
        enum opDollar = DollarToken.init;

        auto opSlice(size_t i, size_t j)
        in
        {
            import core.exception : RangeError;
            if (i > j) throw new RangeError();
        }
        body
        {
            return this[i .. $].takeExactly(j - i);
        }

        auto opSlice(size_t i, DollarToken)
        {
            return typeof(this)(_original, _index + i);
        }
    }
    else
    {
        private R _original;
        private R _current;

        this(R input)
        {
            _original = input;
            _current = input.save;
        }

        @property auto ref front()
        {
            return _current.front;
        }

        static if (is(typeof((cast(const R)_current).front)))
        {
            @property auto ref front() const
            {
                return _current.front;
            }
        }

        static if (hasAssignableElements!R)
        {
            @property auto front(ElementType!R val)
            {
                return _current.front = val;
            }
        }

        enum bool empty = false;

        void popFront()
        {
            _current.popFront();
            if (_current.empty) _current = _original;
        }

        @property Cycle save()
        {
            //No need to call _original.save, because Cycle never actually modifies _original
            Cycle ret = this;
            ret._original = _original;
            ret._current =  _current.save;
            return ret;
        }
    }
}

template Cycle(R)
    if (isInfinite!R)
{
    alias Cycle = R;
}

struct Cycle(R)
    if (isStaticArray!R)
{
    private alias ElementType = typeof(R.init[0]);
    private ElementType* _ptr;
    private size_t _index;

nothrow:
    this(ref R input, size_t index = 0)
    {
        _ptr = input.ptr;
        _index = index;
    }

    @property ref inout(ElementType) front() inout
    {
        return _ptr[_index % R.length];
    }

    enum bool empty = false;

    void popFront()
    {
        ++_index;
    }

    ref inout(ElementType) opIndex(size_t n) inout
    {
        return _ptr[(n + _index) % R.length];
    }

    @property inout(Cycle) save() inout
    {
        return this;
    }

    private static struct DollarToken {}
    enum opDollar = DollarToken.init;

    auto opSlice(size_t i, size_t j)
    in
    {
        import core.exception : RangeError;
        if (i > j) throw new RangeError();
    }
    body
    {
        return this[i .. $].takeExactly(j - i);
    }

    inout(typeof(this)) opSlice(size_t i, DollarToken) inout
    {
        return Cycle(*cast(R*)_ptr, _index + i);
    }
}

/// Ditto
Cycle!R cycle(R)(R input)
    if (isForwardRange!R && !isInfinite!R)
{
    return Cycle!R(input);
}

/// Ditto
Cycle!R cycle(R)(R input, size_t index = 0)
    if (isRandomAccessRange!R && !isInfinite!R)
{
    return Cycle!R(input, index);
}

Cycle!R cycle(R)(R input)
    if (isInfinite!R)
{
    return input;
}

Cycle!R cycle(R)(ref R input, size_t index = 0)
    if (isStaticArray!R)
{
    return Cycle!R(input, index);
}

unittest
{
    assert(equal(take(cycle([1, 2][]), 5), [ 1, 2, 1, 2, 1 ][]));
    static assert(isForwardRange!(Cycle!(uint[])));

    // Make sure ref is getting propagated properly.
    int[] nums = [1,2,3];
    auto c2 = cycle(nums);
    c2[3]++;
    assert(nums[0] == 2);

    immutable int[] immarr = [1, 2, 3];
    auto cycleimm = cycle(immarr);

    foreach(DummyType; AllDummyRanges)
    {
        static if (isForwardRange!DummyType)
        {
            DummyType dummy;
            auto cy = cycle(dummy);
            static assert(isForwardRange!(typeof(cy)));
            auto t = take(cy, 20);
            assert(equal(t, [1,2,3,4,5,6,7,8,9,10,1,2,3,4,5,6,7,8,9,10]));

            const cRange = cy;
            assert(cRange.front == 1);

            static if (hasAssignableElements!DummyType)
            {
                {
                    cy.front = 66;
                    scope(exit) cy.front = 1;
                    assert(dummy.front == 66);
                }

                static if (isRandomAccessRange!DummyType)
                {
                    import core.exception : RangeError;
                    import std.exception : assertThrown;

                    {
                        cy[10] = 66;
                        scope(exit) cy[10] = 1;
                        assert(dummy.front == 66);
                    }

                    assert(cRange[10] == 1);
                }
            }

            static if(hasSlicing!DummyType)
            {
                auto slice = cy[5 .. 15];
                assert(equal(slice, [6, 7, 8, 9, 10, 1, 2, 3, 4, 5]));
                static assert(is(typeof(slice) == typeof(takeExactly(cy, 5))));

                auto infSlice = cy[7 .. $];
                assert(equal(take(infSlice, 5), [8, 9, 10, 1, 2]));
                static assert(isInfinite!(typeof(infSlice)));
            }
        }
    }
}

unittest // For static arrays.
{
    int[3] a = [ 1, 2, 3 ];
    static assert(isStaticArray!(typeof(a)));
    auto c = cycle(a);
    assert(a.ptr == c._ptr);
    assert(equal(take(cycle(a), 5), [ 1, 2, 3, 1, 2 ][]));
    static assert(isForwardRange!(typeof(c)));

    // Test qualifiers on slicing.
    alias C = typeof(c);
    static assert(is(typeof(c[1 .. $]) == C));
    const cConst = c;
    static assert(is(typeof(cConst[1 .. $]) == const(C)));
}

unittest // For infinite ranges
{
    struct InfRange
    {
        void popFront() { }
        @property int front() { return 0; }
        enum empty = false;
    }

    InfRange i;
    auto c = cycle(i);
    assert (c == i);
}

private template lengthType(R) { alias typeof((inout int = 0){ R r = void; return r.length; }()) lengthType; }

/**
   Iterate several ranges in lockstep. The element type is a proxy tuple
   that allows accessing the current element in the $(D n)th range by
   using $(D e[n]).

   Example:
   ----
   int[] a = [ 1, 2, 3 ];
   string[] b = [ "a", "b", "c" ];
   // prints 1:a 2:b 3:c
   foreach (e; zip(a, b))
   {
   write(e[0], ':', e[1], ' ');
   }
   ----

   $(D Zip) offers the lowest range facilities of all components, e.g. it
   offers random access iff all ranges offer random access, and also
   offers mutation and swapping if all ranges offer it. Due to this, $(D
   Zip) is extremely powerful because it allows manipulating several
   ranges in lockstep. For example, the following code sorts two arrays
   in parallel:

   ----
   int[] a = [ 1, 2, 3 ];
   string[] b = [ "a", "b", "c" ];
   sort!("a[0] > b[0]")(zip(a, b));
   assert(a == [ 3, 2, 1 ]);
   assert(b == [ "c", "b", "a" ]);
   ----
*/
struct Zip(Ranges...)
    if (Ranges.length && allSatisfy!(isInputRange, Ranges))
{
    alias R = Ranges;
    R ranges;
    alias Tuple!(staticMap!(.ElementType, R)) ElementType;
    StoppingPolicy stoppingPolicy = StoppingPolicy.shortest;

/**
   Builds an object. Usually this is invoked indirectly by using the
   $(LREF zip) function.
 */
    this(R rs, StoppingPolicy s = StoppingPolicy.shortest)
    {
        stoppingPolicy = s;
        foreach (i, Unused; R)
        {
            ranges[i] = rs[i];
        }
    }

/**
   Returns $(D true) if the range is at end. The test depends on the
   stopping policy.
*/
    static if (allSatisfy!(isInfinite, R))
    {
        // BUG:  Doesn't propagate infiniteness if only some ranges are infinite
        //       and s == StoppingPolicy.longest.  This isn't fixable in the
        //       current design since StoppingPolicy is known only at runtime.
        enum bool empty = false;
    }
    else
    {
        @property bool empty()
        {
            import std.exception : enforce;

            final switch (stoppingPolicy)
            {
            case StoppingPolicy.shortest:
                foreach (i, Unused; R)
                {
                    if (ranges[i].empty) return true;
                }
                return false;
            case StoppingPolicy.longest:
                foreach (i, Unused; R)
                {
                    if (!ranges[i].empty) return false;
                }
                return true;
            case StoppingPolicy.requireSameLength:
                foreach (i, Unused; R[1 .. $])
                {
                    enforce(ranges[0].empty ==
                            ranges[i + 1].empty,
                            "Inequal-length ranges passed to Zip");
                }
                return ranges[0].empty;
            }
            assert(false);
        }
    }

    static if (allSatisfy!(isForwardRange, R))
        @property Zip save()
        {
            Zip result = this;
            foreach (i, Unused; R)
            {
                result.ranges[i] = result.ranges[i].save;
            }
            return result;
        }

    private void emplaceIfCan(T)(T* addr)
    {
        import std.conv : emplace;

        static if(__traits(compiles, emplace(addr)))
            emplace(addr);
        else
            throw new Exception("Range with non-default constructable elements exhausted.");
    }

/**
   Returns the current iterated element.
*/
    @property ElementType front()
    {
        import std.conv : emplace;

        ElementType result = void;
        foreach (i, Unused; R)
        {
            auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
            if (ranges[i].empty)
            {
                emplaceIfCan(addr);
            }
            else
            {
                emplace(addr, ranges[i].front);
            }
        }
        return result;
    }

    static if (allSatisfy!(hasAssignableElements, R))
    {
/**
   Sets the front of all iterated ranges.
*/
        @property void front(ElementType v)
        {
            foreach (i, Unused; R)
            {
                if (!ranges[i].empty)
                {
                    ranges[i].front = v[i];
                }
            }
        }
    }

/**
   Moves out the front.
*/
    static if (allSatisfy!(hasMobileElements, R))
    {
        ElementType moveFront()
        {
            import std.conv : emplace;

            ElementType result = void;
            foreach (i, Unused; R)
            {
                auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
                if (!ranges[i].empty)
                {
                    emplace(addr, .moveFront(ranges[i]));
                }
                else
                {
                    emplaceIfCan(addr);
                }
            }
            return result;
        }
    }

/**
   Returns the rightmost element.
*/
    static if (allSatisfy!(isBidirectionalRange, R))
    {
        @property ElementType back()
        {
            import std.conv : emplace;

            ElementType result = void;
            foreach (i, Unused; R)
            {
                auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
                if (!ranges[i].empty)
                {
                    emplace(addr, ranges[i].back);
                }
                else
                {
                    emplaceIfCan(addr);
                }
            }
            return result;
        }

/**
   Moves out the back.
*/
        static if (allSatisfy!(hasMobileElements, R))
        {
            ElementType moveBack()
            {
                import std.conv : emplace;

                ElementType result = void;
                foreach (i, Unused; R)
                {
                    auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
                    if (!ranges[i].empty)
                    {
                        emplace(addr, .moveBack(ranges[i]));
                    }
                    else
                    {
                        emplaceIfCan(addr);
                    }
                }
                return result;
            }
        }

/**
   Returns the current iterated element.
*/
        static if (allSatisfy!(hasAssignableElements, R))
        {
            @property void back(ElementType v)
            {
                foreach (i, Unused; R)
                {
                    if (!ranges[i].empty)
                    {
                        ranges[i].back = v[i];
                    }
                }
            }
        }
    }

/**
   Advances to the next element in all controlled ranges.
*/
    void popFront()
    {
        import std.exception : enforce;

        final switch (stoppingPolicy)
        {
        case StoppingPolicy.shortest:
            foreach (i, Unused; R)
            {
                assert(!ranges[i].empty);
                ranges[i].popFront();
            }
            break;
        case StoppingPolicy.longest:
            foreach (i, Unused; R)
            {
                if (!ranges[i].empty) ranges[i].popFront();
            }
            break;
        case StoppingPolicy.requireSameLength:
            foreach (i, Unused; R)
            {
                enforce(!ranges[i].empty, "Invalid Zip object");
                ranges[i].popFront();
            }
            break;
        }
    }

    static if (allSatisfy!(isBidirectionalRange, R))
/**
   Calls $(D popBack) for all controlled ranges.
*/
        void popBack()
        {
            import std.exception : enforce;

            final switch (stoppingPolicy)
            {
            case StoppingPolicy.shortest:
                foreach (i, Unused; R)
                {
                    assert(!ranges[i].empty);
                    ranges[i].popBack();
                }
                break;
            case StoppingPolicy.longest:
                foreach (i, Unused; R)
                {
                    if (!ranges[i].empty) ranges[i].popBack();
                }
                break;
            case StoppingPolicy.requireSameLength:
                foreach (i, Unused; R)
                {
                    enforce(!ranges[i].empty, "Invalid Zip object");
                    ranges[i].popBack();
                }
                break;
            }
        }

/**
   Returns the length of this range. Defined only if all ranges define
   $(D length).
*/
    static if (allSatisfy!(hasLength, R))
    {
        @property auto length()
        {
            CommonType!(staticMap!(lengthType, R)) result = ranges[0].length;
            if (stoppingPolicy == StoppingPolicy.requireSameLength)
                return result;
            foreach (i, Unused; R[1 .. $])
            {
                if (stoppingPolicy == StoppingPolicy.shortest)
                {
                    result = min(ranges[i + 1].length, result);
                }
                else
                {
                    assert(stoppingPolicy == StoppingPolicy.longest);
                    result = max(ranges[i + 1].length, result);
                }
            }
            return result;
        }

        alias length opDollar;
    }

/**
   Returns a slice of the range. Defined only if all range define
   slicing.
*/
    static if (allSatisfy!(hasSlicing, R))
        auto opSlice(size_t from, size_t to)
        {
            import std.conv : emplace;

            //Slicing an infinite range yields the type Take!R
            //For finite ranges, the type Take!R aliases to R
            Zip!(staticMap!(Take, R)) result = void;
            emplace(&result.stoppingPolicy, stoppingPolicy);
            foreach (i, Unused; R)
            {
                emplace(&result.ranges[i], ranges[i][from .. to]);
            }
            return result;
        }

    static if (allSatisfy!(isRandomAccessRange, R))
    {
/**
   Returns the $(D n)th element in the composite range. Defined if all
   ranges offer random access.
*/
        ElementType opIndex(size_t n)
        {
            import std.conv : emplace;

            ElementType result = void;
            foreach (i, Range; R)
            {
                auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
                emplace(addr, ranges[i][n]);
            }
            return result;
        }

        static if (allSatisfy!(hasAssignableElements, R))
        {
/**
   Assigns to the $(D n)th element in the composite range. Defined if
   all ranges offer random access.
*/
            void opIndexAssign(ElementType v, size_t n)
            {
                foreach (i, Range; R)
                {
                    ranges[i][n] = v[i];
                }
            }
        }

/**
   Destructively reads the $(D n)th element in the composite
   range. Defined if all ranges offer random access.
*/
        static if (allSatisfy!(hasMobileElements, R))
        {
            ElementType moveAt(size_t n)
            {
                import std.conv : emplace;

                ElementType result = void;
                foreach (i, Range; R)
                {
                    auto addr = cast(Unqual!(typeof(result[i]))*) &result[i];
                    emplace(addr, .moveAt(ranges[i], n));
                }
                return result;
            }
        }
    }
}

/// Ditto
auto zip(Ranges...)(Ranges ranges)
    if (Ranges.length && allSatisfy!(isInputRange, Ranges))
{
    return Zip!Ranges(ranges);
}

/// Ditto
auto zip(Ranges...)(StoppingPolicy sp, Ranges ranges)
    if (Ranges.length && allSatisfy!(isInputRange, Ranges))
{
    return Zip!Ranges(ranges, sp);
}

/**
   Dictates how iteration in a $(D Zip) should stop. By default stop at
   the end of the shortest of all ranges.
*/
enum StoppingPolicy
{
    /// Stop when the shortest range is exhausted
    shortest,
    /// Stop when the longest range is exhausted
    longest,
    /// Require that all ranges are equal
    requireSameLength,
}

unittest
{
    import std.exception : assertThrown, assertNotThrown;

    int[] a = [ 1, 2, 3 ];
    float[] b = [ 1.0, 2.0, 3.0 ];
    foreach (e; zip(a, b))
    {
        assert(e[0] == e[1]);
    }

    swap(a[0], a[1]);
    auto z = zip(a, b);
    //swap(z.front(), z.back());
    sort!("a[0] < b[0]")(zip(a, b));
    assert(a == [1, 2, 3]);
    assert(b == [2.0, 1.0, 3.0]);

    z = zip(StoppingPolicy.requireSameLength, a, b);
    assertNotThrown((z.popBack(), z.popBack(), z.popBack()));
    assert(z.empty);
    assertThrown(z.popBack());

    a = [ 1, 2, 3 ];
    b = [ 1.0, 2.0, 3.0 ];
    sort!("a[0] > b[0]")(zip(StoppingPolicy.requireSameLength, a, b));
    assert(a == [3, 2, 1]);
    assert(b == [3.0, 2.0, 1.0]);

    a = [];
    b = [];
    assert(zip(StoppingPolicy.requireSameLength, a, b).empty);

    // Test infiniteness propagation.
    static assert(isInfinite!(typeof(zip(repeat(1), repeat(1)))));

    // Test stopping policies with both value and reference.
    auto a1 = [1, 2];
    auto a2 = [1, 2, 3];
    auto stuff = tuple(tuple(a1, a2),
            tuple(filter!"a"(a1), filter!"a"(a2)));

    alias Zip!(immutable(int)[], immutable(float)[]) FOO;

    foreach(t; stuff.expand) {
        auto arr1 = t[0];
        auto arr2 = t[1];
        auto zShortest = zip(arr1, arr2);
        assert(equal(map!"a[0]"(zShortest), [1, 2]));
        assert(equal(map!"a[1]"(zShortest), [1, 2]));

        try {
            auto zSame = zip(StoppingPolicy.requireSameLength, arr1, arr2);
            foreach(elem; zSame) {}
            assert(0);
        } catch { /* It's supposed to throw.*/ }

        auto zLongest = zip(StoppingPolicy.longest, arr1, arr2);
        assert(!zLongest.ranges[0].empty);
        assert(!zLongest.ranges[1].empty);

        zLongest.popFront();
        zLongest.popFront();
        assert(!zLongest.empty);
        assert(zLongest.ranges[0].empty);
        assert(!zLongest.ranges[1].empty);

        zLongest.popFront();
        assert(zLongest.empty);
    }

    // BUG 8900
    static assert(__traits(compiles, zip([1, 2], repeat('a'))));
    static assert(__traits(compiles, zip(repeat('a'), [1, 2])));

    // Doesn't work yet.  Issues w/ emplace.
    // static assert(is(Zip!(immutable int[], immutable float[])));


    // These unittests pass, but make the compiler consume an absurd amount
    // of RAM and time.  Therefore, they should only be run if explicitly
    // uncommented when making changes to Zip.  Also, running them using
    // make -fwin32.mak unittest makes the compiler completely run out of RAM.
    // You need to test just this module.
    /+
     foreach(DummyType1; AllDummyRanges) {
         DummyType1 d1;
         foreach(DummyType2; AllDummyRanges) {
             DummyType2 d2;
             auto r = zip(d1, d2);
             assert(equal(map!"a[0]"(r), [1,2,3,4,5,6,7,8,9,10]));
             assert(equal(map!"a[1]"(r), [1,2,3,4,5,6,7,8,9,10]));

             static if (isForwardRange!DummyType1 && isForwardRange!DummyType2) {
                 static assert(isForwardRange!(typeof(r)));
             }

             static if (isBidirectionalRange!DummyType1 &&
                     isBidirectionalRange!DummyType2) {
                 static assert(isBidirectionalRange!(typeof(r)));
             }
             static if (isRandomAccessRange!DummyType1 &&
                     isRandomAccessRange!DummyType2) {
                 static assert(isRandomAccessRange!(typeof(r)));
             }
         }
     }
    +/
}

unittest
{
    auto a = [5,4,3,2,1];
    auto b = [3,1,2,5,6];
    auto z = zip(a, b);

    sort!"a[0] < b[0]"(z);

    assert(a == [1, 2, 3, 4, 5]);
    assert(b == [6, 5, 2, 1, 3]);
}
unittest
{
    auto LL = iota(1L, 1000L);
    auto z = zip(LL, [4]);

    assert(equal(z, [tuple(1L,4)]));

    auto LL2 = iota(0L, 500L);
    auto z2 = zip([7], LL2);
    assert(equal(z2, [tuple(7, 0L)]));
}

// Text for Issue 11196
unittest
{
    import std.exception : assertThrown;

    static struct S { @disable this(); }
    static assert(__traits(compiles, zip((S[5]).init[])));
    auto z = zip(StoppingPolicy.longest, cast(S[]) null, new int[1]);
    assertThrown(zip(StoppingPolicy.longest, cast(S[]) null, new int[1]).front);
}

/*
    Generate lockstep's opApply function as a mixin string.
    If withIndex is true prepend a size_t index to the delegate.
*/
private string lockstepMixin(Ranges...)(bool withIndex)
{
    import std.string : format, outdent;

    string[] params;
    string[] emptyChecks;
    string[] dgArgs;
    string[] popFronts;

    if (withIndex)
    {
        params ~= "size_t";
        dgArgs ~= "index";
    }

    foreach (idx, Range; Ranges)
    {
        params ~= format("%sElementType!(Ranges[%s])", hasLvalueElements!Range ? "ref " : "", idx);
        emptyChecks ~= format("!ranges[%s].empty", idx);
        dgArgs ~= format("ranges[%s].front", idx);
        popFronts ~= format("ranges[%s].popFront();", idx);
    }

    return format(
    q{
        int opApply(scope int delegate(%s) dg)
        {
            import std.exception : enforce;

            auto ranges = _ranges;
            int res;
            %s

            while (%s)
            {
                res = dg(%s);
                if (res) break;
                %s
                %s
            }

            if (_stoppingPolicy == StoppingPolicy.requireSameLength)
            {
                foreach(range; ranges)
                    enforce(range.empty);
            }
            return res;
        }
    }, params.join(", "), withIndex ? "size_t index = 0;" : "",
       emptyChecks.join(" && "), dgArgs.join(", "),
       popFronts.join("\n                "),
       withIndex ? "index++;" : "").outdent();
}

/**
   Iterate multiple ranges in lockstep using a $(D foreach) loop.  If only a single
   range is passed in, the $(D Lockstep) aliases itself away.  If the
   ranges are of different lengths and $(D s) == $(D StoppingPolicy.shortest)
   stop after the shortest range is empty.  If the ranges are of different
   lengths and $(D s) == $(D StoppingPolicy.requireSameLength), throw an
   exception.  $(D s) may not be $(D StoppingPolicy.longest), and passing this
   will throw an exception.

   By default $(D StoppingPolicy) is set to $(D StoppingPolicy.shortest).

   BUGS:  If a range does not offer lvalue access, but $(D ref) is used in the
   $(D foreach) loop, it will be silently accepted but any modifications
   to the variable will not be propagated to the underlying range.

   Examples:
   ---
   auto arr1 = [1,2,3,4,5];
   auto arr2 = [6,7,8,9,10];

   foreach(ref a, ref b; lockstep(arr1, arr2))
   {
       a += b;
   }

   assert(arr1 == [7,9,11,13,15]);

   // Lockstep also supports iterating with an index variable:
   foreach(index, a, b; lockstep(arr1, arr2)) {
       writefln("Index %s:  a = %s, b = %s", index, a, b);
   }
   ---
*/
struct Lockstep(Ranges...)
    if (Ranges.length > 1 && allSatisfy!(isInputRange, Ranges))
{
    this(R ranges, StoppingPolicy sp = StoppingPolicy.shortest)
    {
        import std.exception : enforce;

        _ranges = ranges;
        enforce(sp != StoppingPolicy.longest,
                "Can't use StoppingPolicy.Longest on Lockstep.");
        _stoppingPolicy = sp;
    }

    mixin(lockstepMixin!Ranges(false));
    mixin(lockstepMixin!Ranges(true));

private:
    alias R = Ranges;
    R _ranges;
    StoppingPolicy _stoppingPolicy;
}

// For generic programming, make sure Lockstep!(Range) is well defined for a
// single range.
template Lockstep(Range)
{
    alias Range Lockstep;
}

/// Ditto
Lockstep!(Ranges) lockstep(Ranges...)(Ranges ranges)
    if (allSatisfy!(isInputRange, Ranges))
{
    return Lockstep!(Ranges)(ranges);
}
/// Ditto
Lockstep!(Ranges) lockstep(Ranges...)(Ranges ranges, StoppingPolicy s)
    if (allSatisfy!(isInputRange, Ranges))
{
    static if (Ranges.length > 1)
        return Lockstep!Ranges(ranges, s);
    else
        return ranges[0];
}

unittest
{
    import std.conv : to;

    // The filters are to make these the lowest common forward denominator ranges,
    // i.e. w/o ref return, random access, length, etc.
    auto foo = filter!"a"([1,2,3,4,5]);
    immutable bar = [6f,7f,8f,9f,10f].idup;
    auto l = lockstep(foo, bar);

    // Should work twice.  These are forward ranges with implicit save.
    foreach(i; 0..2)
    {
        uint[] res1;
        float[] res2;

        foreach(a, ref b; l) {
            res1 ~= a;
            res2 ~= b;
        }

        assert(res1 == [1,2,3,4,5]);
        assert(res2 == [6,7,8,9,10]);
        assert(bar == [6f,7f,8f,9f,10f]);
    }

    // Doc example.
    auto arr1 = [1,2,3,4,5];
    auto arr2 = [6,7,8,9,10];

    foreach(ref a, ref b; lockstep(arr1, arr2))
    {
        a += b;
    }

    assert(arr1 == [7,9,11,13,15]);

    // Make sure StoppingPolicy.requireSameLength doesn't throw.
    auto ls = lockstep(arr1, arr2, StoppingPolicy.requireSameLength);

    foreach(a, b; ls) {}

    // Make sure StoppingPolicy.requireSameLength throws.
    arr2.popBack();
    ls = lockstep(arr1, arr2, StoppingPolicy.requireSameLength);

    try {
        foreach(a, b; ls) {}
        assert(0);
    } catch {}

    // Just make sure 1-range case instantiates.  This hangs the compiler
    // when no explicit stopping policy is specified due to Bug 4652.
    auto stuff = lockstep([1,2,3,4,5], StoppingPolicy.shortest);

    // Test with indexing.
    uint[] res1;
    float[] res2;
    size_t[] indices;
    foreach(i, a, b; lockstep(foo, bar))
    {
        indices ~= i;
        res1 ~= a;
        res2 ~= b;
    }

    assert(indices == to!(size_t[])([0, 1, 2, 3, 4]));
    assert(res1 == [1,2,3,4,5]);
    assert(res2 == [6f,7f,8f,9f,10f]);

    // Make sure we've worked around the relevant compiler bugs and this at least
    // compiles w/ >2 ranges.
    lockstep(foo, foo, foo);

    // Make sure it works with const.
    const(int[])[] foo2 = [[1, 2, 3]];
    const(int[])[] bar2 = [[4, 5, 6]];
    auto c = chain(foo2, bar2);

    foreach(f, b; lockstep(c, c)) {}

    // Regression 10468
    foreach (x, y; lockstep(iota(0, 10), iota(0, 10))) { }
}

/**
Creates a mathematical sequence given the initial values and a
recurrence function that computes the next value from the existing
values. The sequence comes in the form of an infinite forward
range. The type $(D Recurrence) itself is seldom used directly; most
often, recurrences are obtained by calling the function $(D
recurrence).

When calling $(D recurrence), the function that computes the next
value is specified as a template argument, and the initial values in
the recurrence are passed as regular arguments. For example, in a
Fibonacci sequence, there are two initial values (and therefore a
state size of 2) because computing the next Fibonacci value needs the
past two values.

If the function is passed in string form, the state has name $(D "a")
and the zero-based index in the recurrence has name $(D "n"). The
given string must return the desired value for $(D a[n]) given $(D a[n
- 1]), $(D a[n - 2]), $(D a[n - 3]),..., $(D a[n - stateSize]). The
state size is dictated by the number of arguments passed to the call
to $(D recurrence). The $(D Recurrence) struct itself takes care of
managing the recurrence's state and shifting it appropriately.

Example:
----
// a[0] = 1, a[1] = 1, and compute a[n+1] = a[n-1] + a[n]
auto fib = recurrence!("a[n-1] + a[n-2]")(1, 1);
// print the first 10 Fibonacci numbers
foreach (e; take(fib, 10)) { writeln(e); }
// print the first 10 factorials
foreach (e; take(recurrence!("a[n-1] * n")(1), 10)) { writeln(e); }
----
 */
struct Recurrence(alias fun, StateType, size_t stateSize)
{
    private import std.functional : binaryFun;

    StateType[stateSize] _state;
    size_t _n;

    this(StateType[stateSize] initial) { _state = initial; }

    void popFront()
    {
        // The cast here is reasonable because fun may cause integer
        // promotion, but needs to return a StateType to make its operation
        // closed.  Therefore, we have no other choice.
        _state[_n % stateSize] = cast(StateType) binaryFun!(fun, "a", "n")(
            cycle(_state), _n + stateSize);
        ++_n;
    }

    @property StateType front()
    {
        return _state[_n % stateSize];
    }

    @property typeof(this) save()
    {
        return this;
    }

    enum bool empty = false;
}

/// Ditto
Recurrence!(fun, CommonType!(State), State.length)
recurrence(alias fun, State...)(State initial)
{
    CommonType!(State)[State.length] state;
    foreach (i, Unused; State)
    {
        state[i] = initial[i];
    }
    return typeof(return)(state);
}

unittest
{
    auto fib = recurrence!("a[n-1] + a[n-2]")(1, 1);
    static assert(isForwardRange!(typeof(fib)));

    int[] witness = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55 ];
    assert(equal(take(fib, 10), witness));
    foreach (e; take(fib, 10)) {}
    auto fact = recurrence!("n * a[n-1]")(1);
    assert( equal(take(fact, 10), [1, 1, 2, 2*3, 2*3*4, 2*3*4*5, 2*3*4*5*6,
                            2*3*4*5*6*7, 2*3*4*5*6*7*8, 2*3*4*5*6*7*8*9][]) );
    auto piapprox = recurrence!("a[n] + (n & 1 ? 4.0 : -4.0) / (2 * n + 3)")(4.0);
    foreach (e; take(piapprox, 20)) {}
    // Thanks to yebblies for this test and the associated fix
    auto r = recurrence!"a[n-2]"(1, 2);
    witness = [1, 2, 1, 2, 1];
    assert(equal(take(r, 5), witness));
}

/**
   $(D Sequence) is similar to $(D Recurrence) except that iteration is
   presented in the so-called $(WEB en.wikipedia.org/wiki/Closed_form,
   closed form). This means that the $(D n)th element in the series is
   computable directly from the initial values and $(D n) itself. This
   implies that the interface offered by $(D Sequence) is a random-access
   range, as opposed to the regular $(D Recurrence), which only offers
   forward iteration.

   The state of the sequence is stored as a $(D Tuple) so it can be
   heterogeneous.

   Example:
   ----
   // a[0] = 1, a[1] = 2, a[n] = a[0] + n * a[1]
   auto odds = sequence!("a[0] + n * a[1]")(1, 2);
   ----
*/
struct Sequence(alias fun, State)
{
private:
    import std.functional : binaryFun;

    alias binaryFun!(fun, "a", "n") compute;
    alias typeof(compute(State.init, cast(size_t) 1)) ElementType;
    State _state;
    size_t _n;
    ElementType _cache;

    static struct DollarToken{}

public:
    this(State initial, size_t n = 0)
    {
        _state = initial;
        _n = n;
        _cache = compute(_state, _n);
    }

    @property ElementType front()
    {
        return _cache;
    }

    ElementType moveFront()
    {
        return move(this._cache);
    }

    void popFront()
    {
        _cache = compute(_state, ++_n);
    }

    enum opDollar = DollarToken();

    auto opSlice(size_t lower, size_t upper)
    in
    {
        assert(upper >= lower);
    }
    body
    {
        return typeof(this)(_state, _n + lower).take(upper - lower);
    }

    auto opSlice(size_t lower, DollarToken)
    {
        return typeof(this)(_state, _n + lower);
    }

    ElementType opIndex(size_t n)
    {
        return compute(_state, n + _n);
    }

    enum bool empty = false;

    @property Sequence save() { return this; }
}

/// Ditto
Sequence!(fun, Tuple!(State)) sequence(alias fun, State...)(State args)
{
    return typeof(return)(tuple(args));
}

unittest
{
    auto y = Sequence!("a[0] + n * a[1]", Tuple!(int, int))
        (tuple(0, 4));
    static assert(isForwardRange!(typeof(y)));

    //@@BUG
    //auto y = sequence!("a[0] + n * a[1]")(0, 4);
    //foreach (e; take(y, 15))
    {}                                 //writeln(e);

    auto odds = Sequence!("a[0] + n * a[1]", Tuple!(int, int))(
        tuple(1, 2));
    for(int currentOdd = 1; currentOdd <= 21; currentOdd += 2) {
        assert(odds.front == odds[0]);
        assert(odds[0] == currentOdd);
        odds.popFront();
    }
}



unittest
{
    // documentation example
    auto odds = sequence!("a[0] + n * a[1]")(1, 2);
    assert(odds.front == 1);
    odds.popFront();
    assert(odds.front == 3);
    odds.popFront();
    assert(odds.front == 5);
}

unittest
{
    auto odds = sequence!("a[0] + n * a[1]")(1, 2);
    static assert(hasSlicing!(typeof(odds)));

    //Note: don't use drop or take as the target of an equal,
    //since they'll both just forward to opSlice, making the tests irrelevant

    // static slicing tests
    assert(equal(odds[0 .. 5], [1,  3,  5,  7,  9]));
    assert(equal(odds[3 .. 7], [7,  9, 11, 13]));

    // relative slicing test, testing slicing is NOT agnostic of state
    auto odds_less5 = odds.drop(5); //this should actually call odds[5 .. $]
    assert(equal(odds_less5[0 ..  3], [11, 13, 15]));
    assert(equal(odds_less5[0 .. 10], odds[5 .. 15]));

    //Infinite slicing tests
    odds = odds[10 .. $];
    assert(equal(odds.take(3), [21, 23, 25]));
}

/**
   Returns a range that goes through the numbers $(D begin), $(D begin +
   step), $(D begin + 2 * step), $(D ...), up to and excluding $(D
   end). The range offered is a random access range. The two-arguments
   version has $(D step = 1). If $(D begin < end && step < 0) or $(D
   begin > end && step > 0) or $(D begin == end), then an empty range is
   returned.

   Throws:
   $(D Exception) if $(D begin != end && step == 0), an exception is
   thrown.

   Example:
   ----
   auto r = iota(0, 10, 1);
   assert(equal(r, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));
   r = iota(0, 11, 3);
   assert(equal(r, [0, 3, 6, 9][]));
   assert(r[2] == 6);
   auto rf = iota(0.0, 0.5, 0.1);
   assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4]));
   ----
*/
auto iota(B, E, S)(B begin, E end, S step)
if ((isIntegral!(CommonType!(B, E)) || isPointer!(CommonType!(B, E)))
        && isIntegral!S)
{
    import std.conv : unsigned;

    alias CommonType!(Unqual!B, Unqual!E) Value;
    alias Unqual!S StepType;
    alias typeof(unsigned((end - begin) / step)) IndexType;

    static struct Result
    {
        private Value current, pastLast;
        private StepType step;

        this(Value current, Value pastLast, StepType step)
        {
            import std.exception : enforce;

            if ((current < pastLast && step >= 0) ||
                    (current > pastLast && step <= 0))
            {
                enforce(step != 0);
                this.step = step;
                this.current = current;
                if (step > 0)
                {
                    this.pastLast = pastLast - 1;
                    this.pastLast -= (this.pastLast - current) % step;
                }
                else
                {
                    this.pastLast = pastLast + 1;
                    this.pastLast += (current - this.pastLast) % -step;
                }
                this.pastLast += step;
            }
            else
            {
                // Initialize an empty range
                this.current = this.pastLast = current;
                this.step = 1;
            }
        }

        @property bool empty() const { return current == pastLast; }
        @property inout(Value) front() inout { assert(!empty); return current; }
        void popFront() { assert(!empty); current += step; }

        @property inout(Value) back() inout { assert(!empty); return pastLast - step; }
        void popBack() { assert(!empty); pastLast -= step; }

        @property auto save() { return this; }

        inout(Value) opIndex(ulong n) inout
        {
            assert(n < this.length);

            // Just cast to Value here because doing so gives overflow behavior
            // consistent with calling popFront() n times.
            return cast(inout Value) (current + step * n);
        }
        inout(Result) opSlice() inout { return this; }
        inout(Result) opSlice(ulong lower, ulong upper) inout
        {
            assert(upper >= lower && upper <= this.length);

            return cast(inout Result)Result(cast(Value)(current + lower * step),
                                            cast(Value)(pastLast - (length - upper) * step),
                                            step);
        }
        @property IndexType length() const
        {
            if (step > 0)
            {
                return unsigned((pastLast - current) / step);
            }
            else
            {
                return unsigned((current - pastLast) / -step);
            }
        }

        alias length opDollar;
    }

    return Result(begin, end, step);
}

/// Ditto
auto iota(B, E)(B begin, E end)
if (isFloatingPoint!(CommonType!(B, E)))
{
    return iota(begin, end, 1.0);
}

/// Ditto
auto iota(B, E)(B begin, E end)
if (isIntegral!(CommonType!(B, E)) || isPointer!(CommonType!(B, E)))
{
    import std.conv : unsigned;

    alias CommonType!(Unqual!B, Unqual!E) Value;
    alias typeof(unsigned(end - begin)) IndexType;

    static struct Result
    {
        private Value current, pastLast;

        this(Value current, Value pastLast)
        {
            if (current < pastLast)
            {
                this.current = current;
                this.pastLast = pastLast;
            }
            else
            {
                // Initialize an empty range
                this.current = this.pastLast = current;
            }
        }

        @property bool empty() const { return current == pastLast; }
        @property inout(Value) front() inout { assert(!empty); return current; }
        void popFront() { assert(!empty); ++current; }

        @property inout(Value) back() inout { assert(!empty); return cast(inout(Value))(pastLast - 1); }
        void popBack() { assert(!empty); --pastLast; }

        @property auto save() { return this; }

        inout(Value) opIndex(ulong n) inout
        {
            assert(n < this.length);

            // Just cast to Value here because doing so gives overflow behavior
            // consistent with calling popFront() n times.
            return cast(inout Value) (current + n);
        }
        inout(Result) opSlice() inout { return this; }
        inout(Result) opSlice(ulong lower, ulong upper) inout
        {
            assert(upper >= lower && upper <= this.length);

            return cast(inout Result)Result(cast(Value)(current + lower),
                                            cast(Value)(pastLast - (length - upper)));
        }
        @property IndexType length() const
        {
            return unsigned(pastLast - current);
        }

        alias length opDollar;
    }

    return Result(begin, end);
}

/// Ditto
auto iota(E)(E end)
{
    E begin = 0;
    return iota(begin, end);
}

// Specialization for floating-point types
auto iota(B, E, S)(B begin, E end, S step)
if (isFloatingPoint!(CommonType!(B, E, S)))
{
    alias Unqual!(CommonType!(B, E, S)) Value;
    static struct Result
    {
        private Value start, step;
        private size_t index, count;

        this(Value start, Value end, Value step)
        {
            import std.conv : to;
            import std.exception : enforce;

            this.start = start;
            this.step = step;
            enforce(step != 0);
            immutable fcount = (end - start) / step;
            enforce(fcount >= 0, "iota: incorrect startup parameters");
            count = to!size_t(fcount);
            auto pastEnd = start + count * step;
            if (step > 0)
            {
                if (pastEnd < end) ++count;
                assert(start + count * step >= end);
            }
            else
            {
                if (pastEnd > end) ++count;
                assert(start + count * step <= end);
            }
        }

        @property bool empty() const { return index == count; }
        @property Value front() const { assert(!empty); return start + step * index; }
        void popFront()
        {
            assert(!empty);
            ++index;
        }
        @property Value back() const
        {
            assert(!empty);
            return start + step * (count - 1);
        }
        void popBack()
        {
            assert(!empty);
            --count;
        }

        @property auto save() { return this; }

        Value opIndex(size_t n) const
        {
            assert(n < count);
            return start + step * (n + index);
        }
        inout(Result) opSlice() inout
        {
            return this;
        }
        inout(Result) opSlice(size_t lower, size_t upper) inout
        {
            assert(upper >= lower && upper <= count);

            Result ret = this;
            ret.index += lower;
            ret.count = upper - lower + ret.index;
            return cast(inout Result)ret;
        }
        @property size_t length() const
        {
            return count - index;
        }

        alias length opDollar;
    }

    return Result(begin, end, step);
}

unittest
{
    import std.math : approxEqual, nextUp, nextDown;

    static assert(hasLength!(typeof(iota(0, 2))));
    auto r = iota(0, 10, 1);
    assert(r[$ - 1] == 9);
    assert(equal(r, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));

    auto rSlice = r[2..8];
    assert(equal(rSlice, [2, 3, 4, 5, 6, 7]));

    rSlice.popFront();
    assert(rSlice[0] == rSlice.front);
    assert(rSlice.front == 3);

    rSlice.popBack();
    assert(rSlice[rSlice.length - 1] == rSlice.back);
    assert(rSlice.back == 6);

    rSlice = r[0..4];
    assert(equal(rSlice, [0, 1, 2, 3]));

    auto rr = iota(10);
    assert(equal(rr, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][]));

    r = iota(0, -10, -1);
    assert(equal(r, [0, -1, -2, -3, -4, -5, -6, -7, -8, -9][]));
    rSlice = r[3..9];
    assert(equal(rSlice, [-3, -4, -5, -6, -7, -8]));

    r = iota(0, -6, -3);
    assert(equal(r, [0, -3][]));
    rSlice = r[1..2];
    assert(equal(rSlice, [-3]));

    r = iota(0, -7, -3);
    assert(equal(r, [0, -3, -6][]));
    rSlice = r[1..3];
    assert(equal(rSlice, [-3, -6]));

    r = iota(0, 11, 3);
    assert(equal(r, [0, 3, 6, 9][]));
    assert(r[2] == 6);
    rSlice = r[1..3];
    assert(equal(rSlice, [3, 6]));

    int[] a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
    auto r1 = iota(a.ptr, a.ptr + a.length, 1);
    assert(r1.front == a.ptr);
    assert(r1.back == a.ptr + a.length - 1);

    auto rf = iota(0.0, 0.5, 0.1);
    assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4][]));
    assert(rf.length == 5);

    rf.popFront();
    assert(rf.length == 4);

    auto rfSlice = rf[1..4];
    assert(rfSlice.length == 3);
    assert(approxEqual(rfSlice, [0.2, 0.3, 0.4]));

    rfSlice.popFront();
    assert(approxEqual(rfSlice[0], 0.3));

    rf.popFront();
    assert(rf.length == 3);

    rfSlice = rf[1..3];
    assert(rfSlice.length == 2);
    assert(approxEqual(rfSlice, [0.3, 0.4]));
    assert(approxEqual(rfSlice[0], 0.3));

    // With something just above 0.5
    rf = iota(0.0, nextUp(0.5), 0.1);
    assert(approxEqual(rf, [0.0, 0.1, 0.2, 0.3, 0.4, 0.5][]));
    rf.popBack();
    assert(rf[rf.length - 1] == rf.back);
    assert(approxEqual(rf.back, 0.4));
    assert(rf.length == 5);

    // going down
    rf = iota(0.0, -0.5, -0.1);
    assert(approxEqual(rf, [0.0, -0.1, -0.2, -0.3, -0.4][]));
    rfSlice = rf[2..5];
    assert(approxEqual(rfSlice, [-0.2, -0.3, -0.4]));

    rf = iota(0.0, nextDown(-0.5), -0.1);
    assert(approxEqual(rf, [0.0, -0.1, -0.2, -0.3, -0.4, -0.5][]));

    // iota of longs
    auto rl = iota(5_000_000L);
    assert(rl.length == 5_000_000L);

    // iota of longs with steps
    auto iota_of_longs_with_steps = iota(50L, 101L, 10);
    assert(iota_of_longs_with_steps.length == 6);
    assert(equal(iota_of_longs_with_steps, [50L, 60L, 70L, 80L, 90L, 100L]));

    // iota of unsigned zero length (issue 6222, actually trying to consume it
    // is the only way to find something is wrong because the public
    // properties are all correct)
    auto iota_zero_unsigned = iota(0, 0u, 3);
    assert(count(iota_zero_unsigned) == 0);

    // unsigned reverse iota can be buggy if .length doesn't take them into
    // account (issue 7982).
    assert(iota(10u, 0u, -1).length == 10);
    assert(iota(10u, 0u, -2).length == 5);
    assert(iota(uint.max, uint.max-10, -1).length == 10);
    assert(iota(uint.max, uint.max-10, -2).length == 5);
    assert(iota(uint.max, 0u, -1).length == uint.max);

    // Issue 8920
    foreach (Type; TypeTuple!(byte, ubyte, short, ushort,
        int, uint, long, ulong))
    {
        Type val;
        foreach (i; iota(cast(Type)0, cast(Type)10)) { val++; }
        assert(val == 10);
    }
}

unittest
{
    auto idx = new size_t[100];
    copy(iota(0, idx.length), idx);
}

unittest
{
    foreach(range; TypeTuple!(iota(2, 27, 4),
                              iota(3, 9),
                              iota(2.7, 12.3, .1),
                              iota(3.2, 9.7)))
    {
        const cRange = range;
        const e = cRange.empty;
        const f = cRange.front;
        const b = cRange.back;
        const i = cRange[2];
        const s1 = cRange[];
        const s2 = cRange[0 .. 3];
        const l = cRange.length;
    }

    //The ptr stuff can't be done at compile time, so we unfortunately end
    //up with some code duplication here.
    auto arr = [0, 5, 3, 5, 5, 7, 9, 2, 0, 42, 7, 6];

    {
        const cRange = iota(arr.ptr, arr.ptr + arr.length, 3);
        const e = cRange.empty;
        const f = cRange.front;
        const b = cRange.back;
        const i = cRange[2];
        const s1 = cRange[];
        const s2 = cRange[0 .. 3];
        const l = cRange.length;
    }

    {
        const cRange = iota(arr.ptr, arr.ptr + arr.length);
        const e = cRange.empty;
        const f = cRange.front;
        const b = cRange.back;
        const i = cRange[2];
        const s1 = cRange[];
        const s2 = cRange[0 .. 3];
        const l = cRange.length;
    }
}

/**
   Options for the $(LREF FrontTransversal) and $(LREF Transversal) ranges
   (below).
*/
enum TransverseOptions
{
/**
   When transversed, the elements of a range of ranges are assumed to
   have different lengths (e.g. a jagged array).
*/
    assumeJagged,                      //default
    /**
       The transversal enforces that the elements of a range of ranges have
       all the same length (e.g. an array of arrays, all having the same
       length). Checking is done once upon construction of the transversal
       range.
    */
        enforceNotJagged,
    /**
       The transversal assumes, without verifying, that the elements of a
       range of ranges have all the same length. This option is useful if
       checking was already done from the outside of the range.
    */
        assumeNotJagged,
        }

/**
   Given a range of ranges, iterate transversally through the first
   elements of each of the enclosed ranges.

   Example:
   ----
   int[][] x = new int[][2];
   x[0] = [1, 2];
   x[1] = [3, 4];
   auto ror = frontTransversal(x);
   assert(equal(ror, [ 1, 3 ][]));
   ---
*/
struct FrontTransversal(Ror,
        TransverseOptions opt = TransverseOptions.assumeJagged)
{
    alias Unqual!(Ror)               RangeOfRanges;
    alias .ElementType!RangeOfRanges RangeType;
    alias .ElementType!RangeType     ElementType;

    private void prime()
    {
        static if (opt == TransverseOptions.assumeJagged)
        {
            while (!_input.empty && _input.front.empty)
            {
                _input.popFront();
            }
            static if (isBidirectionalRange!RangeOfRanges)
            {
                while (!_input.empty && _input.back.empty)
                {
                    _input.popBack();
                }
            }
        }
    }

/**
   Construction from an input.
*/
    this(RangeOfRanges input)
    {
        _input = input;
        prime();
        static if (opt == TransverseOptions.enforceNotJagged)
            // (isRandomAccessRange!RangeOfRanges
            //     && hasLength!RangeType)
        {
            import std.exception : enforce;

            if (empty) return;
            immutable commonLength = _input.front.length;
            foreach (e; _input)
            {
                enforce(e.length == commonLength);
            }
        }
    }

/**
   Forward range primitives.
*/
    static if (isInfinite!RangeOfRanges)
    {
        enum bool empty = false;
    }
    else
    {
        @property bool empty()
        {
            return _input.empty;
        }
    }

    /// Ditto
    @property auto ref front()
    {
        assert(!empty);
        return _input.front.front;
    }

    /// Ditto
    static if (hasMobileElements!RangeType)
    {
        ElementType moveFront()
        {
            return .moveFront(_input.front);
        }
    }

    static if (hasAssignableElements!RangeType)
    {
        @property auto front(ElementType val)
        {
            _input.front.front = val;
        }
    }

    /// Ditto
    void popFront()
    {
        assert(!empty);
        _input.popFront();
        prime();
    }

/**
   Duplicates this $(D frontTransversal). Note that only the encapsulating
   range of range will be duplicated. Underlying ranges will not be
   duplicated.
*/
    static if (isForwardRange!RangeOfRanges)
    {
        @property FrontTransversal save()
        {
            return FrontTransversal(_input.save);
        }
    }

    static if (isBidirectionalRange!RangeOfRanges)
    {
/**
   Bidirectional primitives. They are offered if $(D
   isBidirectionalRange!RangeOfRanges).
*/
        @property auto ref back()
        {
            assert(!empty);
            return _input.back.front;
        }
        /// Ditto
        void popBack()
        {
            assert(!empty);
            _input.popBack();
            prime();
        }

        /// Ditto
        static if (hasMobileElements!RangeType)
        {
            ElementType moveBack()
            {
                return .moveFront(_input.back);
            }
        }

        static if (hasAssignableElements!RangeType)
        {
            @property auto back(ElementType val)
            {
                _input.back.front = val;
            }
        }
    }

    static if (isRandomAccessRange!RangeOfRanges &&
            (opt == TransverseOptions.assumeNotJagged ||
                    opt == TransverseOptions.enforceNotJagged))
    {
/**
   Random-access primitive. It is offered if $(D
   isRandomAccessRange!RangeOfRanges && (opt ==
   TransverseOptions.assumeNotJagged || opt ==
   TransverseOptions.enforceNotJagged)).
*/
        auto ref opIndex(size_t n)
        {
            return _input[n].front;
        }

        /// Ditto
        static if (hasMobileElements!RangeType)
        {
            ElementType moveAt(size_t n)
            {
                return .moveFront(_input[n]);
            }
        }
        /// Ditto
        static if (hasAssignableElements!RangeType)
        {
            void opIndexAssign(ElementType val, size_t n)
            {
                _input[n].front = val;
            }
        }

/**
   Slicing if offered if $(D RangeOfRanges) supports slicing and all the
   conditions for supporting indexing are met.
*/
        static if (hasSlicing!RangeOfRanges)
        {
            typeof(this) opSlice(size_t lower, size_t upper)
            {
                return typeof(this)(_input[lower..upper]);
            }
        }
    }

    auto opSlice() { return this; }

private:
    RangeOfRanges _input;
}

/// Ditto
FrontTransversal!(RangeOfRanges, opt) frontTransversal(
    TransverseOptions opt = TransverseOptions.assumeJagged,
    RangeOfRanges)
(RangeOfRanges rr)
{
    return typeof(return)(rr);
}

unittest {
    static assert(is(FrontTransversal!(immutable int[][])));

    foreach(DummyType; AllDummyRanges) {
        auto dummies =
            [DummyType.init, DummyType.init, DummyType.init, DummyType.init];

        foreach(i, ref elem; dummies) {
            // Just violate the DummyRange abstraction to get what I want.
            elem.arr = elem.arr[i..$ - (3 - i)];
        }

        auto ft = frontTransversal!(TransverseOptions.assumeNotJagged)(dummies);
        static if (isForwardRange!DummyType) {
            static assert(isForwardRange!(typeof(ft)));
        }

        assert(equal(ft, [1, 2, 3, 4]));

        // Test slicing.
        assert(equal(ft[0..2], [1, 2]));
        assert(equal(ft[1..3], [2, 3]));

        assert(ft.front == ft.moveFront());
        assert(ft.back == ft.moveBack());
        assert(ft.moveAt(1) == ft[1]);


        // Test infiniteness propagation.
        static assert(isInfinite!(typeof(frontTransversal(repeat("foo")))));

        static if (DummyType.r == ReturnBy.Reference) {
            {
                ft.front++;
                scope(exit) ft.front--;
                assert(dummies.front.front == 2);
            }

            {
                ft.front = 5;
                scope(exit) ft.front = 1;
                assert(dummies[0].front == 5);
            }

            {
                ft.back = 88;
                scope(exit) ft.back = 4;
                assert(dummies.back.front == 88);
            }

            {
                ft[1] = 99;
                scope(exit) ft[1] = 2;
                assert(dummies[1].front == 99);
            }
        }
    }
}

/**
   Given a range of ranges, iterate transversally through the the $(D
   n)th element of each of the enclosed ranges. All elements of the
   enclosing range must offer random access.

   Example:
   ----
   int[][] x = new int[][2];
   x[0] = [1, 2];
   x[1] = [3, 4];
   auto ror = transversal(x, 1);
   assert(equal(ror, [ 2, 4 ][]));
   ---
*/
struct Transversal(Ror,
        TransverseOptions opt = TransverseOptions.assumeJagged)
{
    private alias Unqual!Ror RangeOfRanges;
    private alias ElementType!RangeOfRanges InnerRange;
    private alias ElementType!InnerRange E;

    private void prime()
    {
        static if (opt == TransverseOptions.assumeJagged)
        {
            while (!_input.empty && _input.front.length <= _n)
            {
                _input.popFront();
            }
            static if (isBidirectionalRange!RangeOfRanges)
            {
                while (!_input.empty && _input.back.length <= _n)
                {
                    _input.popBack();
                }
            }
        }
    }

/**
   Construction from an input and an index.
*/
    this(RangeOfRanges input, size_t n)
    {
        _input = input;
        _n = n;
        prime();
        static if (opt == TransverseOptions.enforceNotJagged)
        {
            import std.exception : enforce;

            if (empty) return;
            immutable commonLength = _input.front.length;
            foreach (e; _input)
            {
                enforce(e.length == commonLength);
            }
        }
    }

/**
   Forward range primitives.
*/
    static if (isInfinite!(RangeOfRanges))
    {
        enum bool empty = false;
    }
    else
    {
        @property bool empty()
        {
            return _input.empty;
        }
    }

    /// Ditto
    @property auto ref front()
    {
        assert(!empty);
        return _input.front[_n];
    }

    /// Ditto
    static if (hasMobileElements!InnerRange)
    {
        E moveFront()
        {
            return .moveAt(_input.front, _n);
        }
    }

    /// Ditto
    static if (hasAssignableElements!InnerRange)
    {
        @property auto front(E val)
        {
            _input.front[_n] = val;
        }
    }


    /// Ditto
    void popFront()
    {
        assert(!empty);
        _input.popFront();
        prime();
    }

    /// Ditto
    static if (isForwardRange!RangeOfRanges)
    {
        @property typeof(this) save()
        {
            auto ret = this;
            ret._input = _input.save;
            return ret;
        }
    }

    static if (isBidirectionalRange!RangeOfRanges)
    {
/**
   Bidirectional primitives. They are offered if $(D
   isBidirectionalRange!RangeOfRanges).
*/
        @property auto ref back()
        {
            return _input.back[_n];
        }

        /// Ditto
        void popBack()
        {
            assert(!empty);
            _input.popBack();
            prime();
        }

        /// Ditto
        static if (hasMobileElements!InnerRange)
        {
            E moveBack()
            {
                return .moveAt(_input.back, _n);
            }
        }

        /// Ditto
        static if (hasAssignableElements!InnerRange)
        {
            @property auto back(E val)
            {
                _input.back[_n] = val;
            }
        }

    }

    static if (isRandomAccessRange!RangeOfRanges &&
            (opt == TransverseOptions.assumeNotJagged ||
                    opt == TransverseOptions.enforceNotJagged))
    {
/**
   Random-access primitive. It is offered if $(D
   isRandomAccessRange!RangeOfRanges && (opt ==
   TransverseOptions.assumeNotJagged || opt ==
   TransverseOptions.enforceNotJagged)).
*/
        auto ref opIndex(size_t n)
        {
            return _input[n][_n];
        }

        /// Ditto
        static if (hasMobileElements!InnerRange)
        {
            E moveAt(size_t n)
            {
                return .moveAt(_input[n], _n);
            }
        }

        /// Ditto
        static if (hasAssignableElements!InnerRange)
        {
            void opIndexAssign(E val, size_t n)
            {
                _input[n][_n] = val;
            }
        }

        /// Ditto
        static if(hasLength!RangeOfRanges)
        {
            @property size_t length()
            {
                return _input.length;
            }

            alias length opDollar;
        }

/**
   Slicing if offered if $(D RangeOfRanges) supports slicing and all the
   conditions for supporting indexing are met.
*/
        static if (hasSlicing!RangeOfRanges)
        {
            typeof(this) opSlice(size_t lower, size_t upper)
            {
                return typeof(this)(_input[lower..upper], _n);
            }
        }
    }

    auto opSlice() { return this; }

private:
    RangeOfRanges _input;
    size_t _n;
}

/// Ditto
Transversal!(RangeOfRanges, opt) transversal
(TransverseOptions opt = TransverseOptions.assumeJagged, RangeOfRanges)
(RangeOfRanges rr, size_t n)
{
    return typeof(return)(rr, n);
}

unittest
{
    int[][] x = new int[][2];
    x[0] = [ 1, 2 ];
    x[1] = [3, 4];
    auto ror = transversal!(TransverseOptions.assumeNotJagged)(x, 1);
    auto witness = [ 2, 4 ];
    uint i;
    foreach (e; ror) assert(e == witness[i++]);
    assert(i == 2);
    assert(ror.length == 2);

    static assert(is(Transversal!(immutable int[][])));

    // Make sure ref, assign is being propagated.
    {
        ror.front++;
        scope(exit) ror.front--;
        assert(x[0][1] == 3);
    }
    {
        ror.front = 5;
        scope(exit) ror.front = 2;
        assert(x[0][1] == 5);
        assert(ror.moveFront() == 5);
    }
    {
        ror.back = 999;
        scope(exit) ror.back = 4;
        assert(x[1][1] == 999);
        assert(ror.moveBack() == 999);
    }
    {
        ror[0] = 999;
        scope(exit) ror[0] = 2;
        assert(x[0][1] == 999);
        assert(ror.moveAt(0) == 999);
    }

    // Test w/o ref return.
    alias DummyRange!(ReturnBy.Value, Length.Yes, RangeType.Random) D;
    auto drs = [D.init, D.init];
    foreach(num; 0..10) {
        auto t = transversal!(TransverseOptions.enforceNotJagged)(drs, num);
        assert(t[0] == t[1]);
        assert(t[1] == num + 1);
    }

    static assert(isInfinite!(typeof(transversal(repeat([1,2,3]), 1))));

    // Test slicing.
    auto mat = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]];
    auto mat1 = transversal!(TransverseOptions.assumeNotJagged)(mat, 1)[1..3];
    assert(mat1[0] == 6);
    assert(mat1[1] == 10);
}

struct Transposed(RangeOfRanges)
{
    //alias typeof(map!"a.front"(RangeOfRanges.init)) ElementType;

    this(RangeOfRanges input)
    {
        this._input = input;
    }

    @property auto front()
    {
        return map!"a.front"(_input);
    }

    void popFront()
    {
        foreach (ref e; _input)
        {
            if (e.empty) continue;
            e.popFront();
        }
    }

    // ElementType opIndex(size_t n)
    // {
    //     return _input[n].front;
    // }

    @property bool empty()
    {
        foreach (e; _input)
            if (!e.empty) return false;
        return true;
    }

    @property Transposed save()
    {
        return Transposed(_input.save);
    }

    auto opSlice() { return this; }

private:
    RangeOfRanges _input;
}

auto transposed(RangeOfRanges)(RangeOfRanges rr)
{
    return Transposed!RangeOfRanges(rr);
}

unittest
{
    int[][] x = new int[][2];
    x[0] = [1, 2];
    x[1] = [3, 4];
    auto tr = transposed(x);
    int[][] witness = [ [ 1, 3 ], [ 2, 4 ] ];
    uint i;

    foreach (e; tr)
    {
        assert(array(e) == witness[i++]);
    }
}

/**
This struct takes two ranges, $(D source) and $(D indices), and creates a view
of $(D source) as if its elements were reordered according to $(D indices).
$(D indices) may include only a subset of the elements of $(D source) and
may also repeat elements.

$(D Source) must be a random access range.  The returned range will be
bidirectional or random-access if $(D Indices) is bidirectional or
random-access, respectively.

Examples:
---
auto source = [1, 2, 3, 4, 5];
auto indices = [4, 3, 1, 2, 0, 4];
auto ind = indexed(source, indices);
assert(equal(ind, [5, 4, 2, 3, 1, 5]));

// When elements of indices are duplicated and Source has lvalue elements,
// these are aliased in ind.
ind[0]++;
assert(ind[0] == 6);
assert(ind[5] == 6);
---
*/
struct Indexed(Source, Indices)
    if(isRandomAccessRange!Source && isInputRange!Indices &&
        is(typeof(Source.init[ElementType!(Indices).init])))
{
    this(Source source, Indices indices)
    {
        this._source = source;
        this._indices = indices;
    }

    /// Range primitives
    @property auto ref front()
    {
        assert(!empty);
        return _source[_indices.front];
    }

    /// Ditto
    void popFront()
    {
        assert(!empty);
        _indices.popFront();
    }

    static if(isInfinite!Indices)
    {
        enum bool empty = false;
    }
    else
    {
        /// Ditto
        @property bool empty()
        {
            return _indices.empty;
        }
    }

    static if(isForwardRange!Indices)
    {
        /// Ditto
        @property typeof(this) save()
        {
            // Don't need to save _source because it's never consumed.
            return typeof(this)(_source, _indices.save);
        }
    }

    /// Ditto
    static if(hasAssignableElements!Source)
    {
        @property auto ref front(ElementType!Source newVal)
        {
            assert(!empty);
            return _source[_indices.front] = newVal;
        }
    }


    static if(hasMobileElements!Source)
    {
        /// Ditto
        auto moveFront()
        {
            assert(!empty);
            return .moveAt(_source, _indices.front);
        }
    }

    static if(isBidirectionalRange!Indices)
    {
        /// Ditto
        @property auto ref back()
        {
            assert(!empty);
            return _source[_indices.back];
        }

        /// Ditto
        void popBack()
        {
           assert(!empty);
           _indices.popBack();
        }

        /// Ditto
        static if(hasAssignableElements!Source)
        {
            @property auto ref back(ElementType!Source newVal)
            {
                assert(!empty);
                return _source[_indices.back] = newVal;
            }
        }


        static if(hasMobileElements!Source)
        {
            /// Ditto
            auto moveBack()
            {
                assert(!empty);
                return .moveAt(_source, _indices.back);
            }
        }
    }

    static if(hasLength!Indices)
    {
        /// Ditto
         @property size_t length()
        {
            return _indices.length;
        }

        alias length opDollar;
    }

    static if(isRandomAccessRange!Indices)
    {
        /// Ditto
        auto ref opIndex(size_t index)
        {
            return _source[_indices[index]];
        }

        /// Ditto
        typeof(this) opSlice(size_t a, size_t b)
        {
            return typeof(this)(_source, _indices[a..b]);
        }


        static if(hasAssignableElements!Source)
        {
            /// Ditto
            auto opIndexAssign(ElementType!Source newVal, size_t index)
            {
                return _source[_indices[index]] = newVal;
            }
        }


        static if(hasMobileElements!Source)
        {
            /// Ditto
            auto moveAt(size_t index)
            {
                return .moveAt(_source, _indices[index]);
            }
        }
    }

    // All this stuff is useful if someone wants to index an Indexed
    // without adding a layer of indirection.

    /**
    Returns the source range.
    */
    @property Source source()
    {
        return _source;
    }

    /**
    Returns the indices range.
    */
     @property Indices indices()
    {
        return _indices;
    }

    static if(isRandomAccessRange!Indices)
    {
        /**
        Returns the physical index into the source range corresponding to a
        given logical index.  This is useful, for example, when indexing
        an $(D Indexed) without adding another layer of indirection.

        Examples:
        ---
        auto ind = indexed([1, 2, 3, 4, 5], [1, 3, 4]);
        assert(ind.physicalIndex(0) == 1);
        ---
        */
        size_t physicalIndex(size_t logicalIndex)
        {
            return _indices[logicalIndex];
        }
    }

private:
    Source _source;
    Indices _indices;

}

/// Ditto
Indexed!(Source, Indices) indexed(Source, Indices)(Source source, Indices indices)
{
    return typeof(return)(source, indices);
}

unittest
{
    {
        // Test examples.
        auto ind = indexed([1, 2, 3, 4, 5], [1, 3, 4]);
        assert(ind.physicalIndex(0) == 1);
    }

    auto source = [1, 2, 3, 4, 5];
    auto indices = [4, 3, 1, 2, 0, 4];
    auto ind = indexed(source, indices);
    assert(equal(ind, [5, 4, 2, 3, 1, 5]));
    assert(equal(retro(ind), [5, 1, 3, 2, 4, 5]));

    // When elements of indices are duplicated and Source has lvalue elements,
    // these are aliased in ind.
    ind[0]++;
    assert(ind[0] == 6);
    assert(ind[5] == 6);

    foreach(DummyType; AllDummyRanges)
    {
        auto d = DummyType.init;
        auto r = indexed([1, 2, 3, 4, 5], d);
        static assert(propagatesRangeType!(DummyType, typeof(r)));
        static assert(propagatesLength!(DummyType, typeof(r)));
    }
}

/**
This range iterates over fixed-sized chunks of size $(D chunkSize) of a
$(D source) range. $(D Source) must be a forward range.

If $(D !isInfinite!Source) and $(D source.walkLength) is not evenly
divisible by $(D chunkSize), the back element of this range will contain
fewer than $(D chunkSize) elements.

Examples:
---
auto source = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
auto chunks = chunks(source, 4);
assert(chunks[0] == [1, 2, 3, 4]);
assert(chunks[1] == [5, 6, 7, 8]);
assert(chunks[2] == [9, 10]);
assert(chunks.back == chunks[2]);
assert(chunks.front == chunks[0]);
assert(chunks.length == 3);
---
*/
struct Chunks(Source)
    if (isForwardRange!Source)
{
    /// Standard constructor
    this(Source source, size_t chunkSize)
    {
        assert(chunkSize != 0, "Cannot create a Chunk with an empty chunkSize");
        _source = source;
        _chunkSize = chunkSize;
    }

    /// Forward range primitives. Always present.
    @property auto front()
    {
        assert(!empty);
        return _source.save.take(_chunkSize);
    }

    /// Ditto
    void popFront()
    {
        assert(!empty);
        _source.popFrontN(_chunkSize);
    }

    static if (!isInfinite!Source)
        /// Ditto
        @property bool empty()
        {
            return _source.empty;
        }
    else
        // undocumented
        enum empty = false;

    /// Ditto
    @property typeof(this) save()
    {
        return typeof(this)(_source.save, _chunkSize);
    }

    static if (hasLength!Source)
    {
        /// Length. Only if $(D hasLength!Source) is $(D true)
        @property size_t length()
        {
            // Note: _source.length + _chunkSize may actually overflow.
            // We cast to ulong to mitigate the problem on x86 machines.
            // For x64 machines, we just suppose we'll never overflow.
            // The "safe" code would require either an extra branch, or a
            //   modulo operation, which is too expensive for such a rare case
            return cast(size_t)((cast(ulong)(_source.length) + _chunkSize - 1) / _chunkSize);
        }
        //Note: No point in defining opDollar here without slicing.
        //opDollar is defined below in the hasSlicing!Source section
    }

    static if (hasSlicing!Source)
    {
        //Used for various purposes
        private enum hasSliceToEnd = is(typeof(Source.init[_chunkSize .. $]) == Source);

        /**
        Indexing and slicing operations. Provided only if
        $(D hasSlicing!Source) is $(D true).
         */
        auto opIndex(size_t index)
        {
            immutable start = index * _chunkSize;
            immutable end   = start + _chunkSize;

            static if (isInfinite!Source)
                return _source[start .. end];
            else
            {
                immutable len = _source.length;
                assert(start < len, "chunks index out of bounds");
                return _source[start .. min(end, len)];
            }
        }

        /// Ditto
        static if (hasLength!Source)
            typeof(this) opSlice(size_t lower, size_t upper)
            {
                assert(lower <= upper && upper <= length, "chunks slicing index out of bounds");
                immutable len = _source.length;
                return chunks(_source[min(lower * _chunkSize, len) .. min(upper * _chunkSize, len)], _chunkSize);
            }
        else static if (hasSliceToEnd)
            //For slicing an infinite chunk, we need to slice the source to the end.
            typeof(takeExactly(this, 0)) opSlice(size_t lower, size_t upper)
            {
                assert(lower <= upper, "chunks slicing index out of bounds");
                return chunks(_source[lower * _chunkSize .. $], _chunkSize).takeExactly(upper - lower);
            }

        static if (isInfinite!Source)
        {
            static if (hasSliceToEnd)
            {
                private static struct DollarToken{}
                DollarToken opDollar()
                {
                    return DollarToken();
                }
                //Slice to dollar
                typeof(this) opSlice(size_t lower, DollarToken)
                {
                    return typeof(this)(_source[lower * _chunkSize .. $], _chunkSize);
                }
            }
        }
        else
        {
            //Dollar token carries a static type, with no extra information.
            //It can lazily transform into _source.length on algorithmic
            //operations such as : chunks[$/2, $-1];
            private static struct DollarToken
            {
                Chunks!Source* mom;
                @property size_t momLength()
                {
                    return mom.length;
                }
                alias momLength this;
            }
            DollarToken opDollar()
            {
                return DollarToken(&this);
            }

            //Slice overloads optimized for using dollar. Without this, to slice to end, we would...
            //1. Evaluate chunks.length
            //2. Multiply by _chunksSize
            //3. To finally just compare it (with min) to the original length of source (!)
            //These overloads avoid that.
            typeof(this) opSlice(DollarToken, DollarToken)
            {
                static if (hasSliceToEnd)
                    return chunks(_source[$ .. $], _chunkSize);
                else
                {
                    immutable len = _source.length;
                    return chunks(_source[len .. len], _chunkSize);
                }
            }
            typeof(this) opSlice(size_t lower, DollarToken)
            {
                assert(lower <= length, "chunks slicing index out of bounds");
                static if (hasSliceToEnd)
                    return chunks(_source[min(lower * _chunkSize, _source.length) .. $], _chunkSize);
                else
                {
                    immutable len = _source.length;
                    return chunks(_source[min(lower * _chunkSize, len) .. len], _chunkSize);
                }
            }
            typeof(this) opSlice(DollarToken, size_t upper)
            {
                assert(upper == length, "chunks slicing index out of bounds");
                return this[$ .. $];
            }
        }
    }

    //Bidirectional range primitives
    static if (hasSlicing!Source && hasLength!Source)
    {
        /**
        Bidirectional range primitives. Provided only if both
        $(D hasSlicing!Source) and $(D hasLength!Source) are $(D true).
         */
        @property auto back()
        {
            assert(!empty, "back called on empty chunks");
            immutable len = _source.length;
            immutable start = (len - 1) / _chunkSize * _chunkSize;
            return _source[start .. len];
        }

        /// Ditto
        void popBack()
        {
            assert(!empty, "popBack() called on empty chunks");
            immutable end = (_source.length - 1) / _chunkSize * _chunkSize;
            _source = _source[0 .. end];
        }
    }

private:
    Source _source;
    size_t _chunkSize;
}

/// Ditto
Chunks!Source chunks(Source)(Source source, size_t chunkSize)
if (isForwardRange!Source)
{
    return typeof(return)(source, chunkSize);
}

unittest
{
    auto source = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
    auto chunks = chunks(source, 4);
    assert(chunks[0] == [1, 2, 3, 4]);
    assert(chunks[1] == [5, 6, 7, 8]);
    assert(chunks[2] == [9, 10]);
    assert(chunks.back == chunks[2]);
    assert(chunks.front == chunks[0]);
    assert(chunks.length == 3);
    assert(equal(retro(array(chunks)), array(retro(chunks))));

    auto chunks2 = chunks.save;
    chunks.popFront();
    assert(chunks[0] == [5, 6, 7, 8]);
    assert(chunks[1] == [9, 10]);
    chunks2.popBack();
    assert(chunks2[1] == [5, 6, 7, 8]);
    assert(chunks2.length == 2);

    static assert(isRandomAccessRange!(typeof(chunks)));
}

unittest
{
    //Extra toying with slicing and indexing.
    auto chunks1 = [0, 0, 1, 1, 2, 2, 3, 3, 4].chunks(2);
    auto chunks2 = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4].chunks(2);

    assert (chunks1.length == 5);
    assert (chunks2.length == 5);
    assert (chunks1[4] == [4]);
    assert (chunks2[4] == [4, 4]);
    assert (chunks1.back == [4]);
    assert (chunks2.back == [4, 4]);

    assert (chunks1[0 .. 1].equal([[0, 0]]));
    assert (chunks1[0 .. 2].equal([[0, 0], [1, 1]]));
    assert (chunks1[4 .. 5].equal([[4]]));
    assert (chunks2[4 .. 5].equal([[4, 4]]));

    assert (chunks1[0 .. 0].equal((int[][]).init));
    assert (chunks1[5 .. 5].equal((int[][]).init));
    assert (chunks2[5 .. 5].equal((int[][]).init));

    //Fun with opDollar
    assert (chunks1[$ .. $].equal((int[][]).init)); //Quick
    assert (chunks2[$ .. $].equal((int[][]).init)); //Quick
    assert (chunks1[$ - 1 .. $].equal([[4]]));      //Semiquick
    assert (chunks2[$ - 1 .. $].equal([[4, 4]]));   //Semiquick
    assert (chunks1[$ .. 5].equal((int[][]).init)); //Semiquick
    assert (chunks2[$ .. 5].equal((int[][]).init)); //Semiquick

    assert (chunks1[$ / 2 .. $ - 1].equal([[2, 2], [3, 3]])); //Slow
}

unittest
{
    //ForwardRange
    auto r = filter!"true"([1, 2, 3, 4, 5]).chunks(2);
    assert(equal!"equal(a, b)"(r, [[1, 2], [3, 4], [5]]));

    //InfiniteRange w/o RA
    auto fibsByPairs = recurrence!"a[n-1] + a[n-2]"(1, 1).chunks(2);
    assert(equal!`equal(a, b)`(fibsByPairs.take(2),         [[ 1,  1], [ 2,  3]]));

    //InfiniteRange w/ RA and slicing
    auto odds = sequence!("a[0] + n * a[1]")(1, 2);
    auto oddsByPairs = odds.chunks(2);
    assert(equal!`equal(a, b)`(oddsByPairs.take(2),         [[ 1,  3], [ 5,  7]]));

    //Requires phobos#991 for Sequence to have slice to end
    static assert(hasSlicing!(typeof(odds)));
    assert(equal!`equal(a, b)`(oddsByPairs[3 .. 5],         [[13, 15], [17, 19]]));
    assert(equal!`equal(a, b)`(oddsByPairs[3 .. $].take(2), [[13, 15], [17, 19]]));
}

private struct OnlyResult(T, size_t arity)
{
    private this(Values...)(auto ref Values values)
    {
        this.data = [values];
    }

    bool empty() @property
    {
        return frontIndex >= backIndex;
    }

    T front() @property
    {
        assert(!empty);
        return data[frontIndex];
    }

    void popFront()
    {
        assert(!empty);
        ++frontIndex;
    }

    T back() @property
    {
        assert(!empty);
        return data[backIndex - 1];
    }

    void popBack()
    {
        assert(!empty);
        --backIndex;
    }

    OnlyResult save() @property
    {
        return this;
    }

    size_t length() @property
    {
        return backIndex - frontIndex;
    }

    alias opDollar = length;

    T opIndex(size_t idx)
    {
        // data[i + idx] will not throw a RangeError
        // when i + idx points to elements popped
        // with popBack
        version(assert)
        {
            import core.exception  : RangeError;
            if (idx >= length)
                throw new RangeError;
        }
        return data[frontIndex + idx];
    }

    OnlyResult opSlice()
    {
        return this;
    }

    OnlyResult opSlice(size_t from, size_t to)
    {
        OnlyResult result = this;
        result.frontIndex += from;
        result.backIndex = this.frontIndex + to;

        version(assert)
        {
            import core.exception : RangeError;
            if (to < from || to > length)
                throw new RangeError;
        }
        return result;
    }

    private size_t frontIndex = 0;
    private size_t backIndex = arity;

    // @@@BUG@@@ 10643
    version(none)
    {
        static if(hasElaborateAssign!T)
            private T[arity] data;
        else
            private T[arity] data = void;
    }
    else
        private T[arity] data;
}

// Specialize for single-element results
private struct OnlyResult(T, size_t arity : 1)
{
    @property T front() { assert(!_empty); return _value; }
    @property T back() { assert(!_empty); return _value; }
    @property bool empty() const { return _empty; }
    @property size_t length() const { return !_empty; }
    @property auto save() { return this; }
    void popFront() { assert(!_empty); _empty = true; }
    void popBack() { assert(!_empty); _empty = true; }
    alias opDollar = length;

    T opIndex(size_t i)
    {
        version (assert)
        {
            import core.exception : RangeError;
            if (_empty || i != 0)
                throw new RangeError;
        }
        return _value;
    }

    OnlyResult opSlice()
    {
        return this;
    }

    OnlyResult opSlice(size_t from, size_t to)
    {
        version (assert)
        {
            import core.exception : RangeError;
            if (from > to || to > length)
                throw new RangeError;
        }
        OnlyResult copy = this;
        copy._empty = _empty || from == to;
        return copy;
    }

    private Unqual!T _value;
    private bool _empty = false;
}

// Specialize for the empty range
private struct OnlyResult(T, size_t arity : 0)
{
    private static struct EmptyElementType {}

    bool empty() @property { return true; }
    size_t length() @property { return 0; }
    alias opDollar = length;
    EmptyElementType front() @property { assert(false); }
    void popFront() { assert(false); }
    EmptyElementType back() @property { assert(false); }
    void popBack() { assert(false); }
    OnlyResult save() @property { return this; }

    EmptyElementType opIndex(size_t i)
    {
        version(assert)
        {
            import core.exception : RangeError;
            throw new RangeError;
        }
        assert(false);
    }

    OnlyResult opSlice() { return this; }

    OnlyResult opSlice(size_t from, size_t to)
    {
        version(assert)
        {
            import core.exception : RangeError;
            if (from != 0 || to != 0)
                throw new RangeError;
        }
        return this;
    }
}

/**
Assemble $(D values) into a range that carries all its
elements in-situ.

Useful when a single value or multiple disconnected values
must be passed to an algorithm expecting a range, without
having to perform dynamic memory allocation.

As copying the range means copying all elements, it can be
safely returned from functions. For the same reason, copying
the returned range may be expensive for a large number of arguments.
 */
auto only(Values...)(auto ref Values values)
    if(!is(CommonType!Values == void) || Values.length == 0)
{
    return OnlyResult!(CommonType!Values, Values.length)(values);
}

///
unittest
{
    assert(equal(only('♡'), "♡"));
    assert([1, 2, 3, 4].findSplitBefore(only(3))[0] == [1, 2]);

    assert(only("one", "two", "three").joiner(" ").equal("one two three"));

    import std.uni;
    string title = "The D Programming Language";
    assert(filter!isUpper(title).map!only().join(".") == "T.D.P.L");
}

version(unittest)
{
    // Verify that the same common type and same arity
    // results in the same template instantiation
    static assert(is(typeof(only(byte.init, int.init)) ==
        typeof(only(int.init, byte.init))));

    static assert(is(typeof(only((const(char)[]).init, string.init)) ==
        typeof(only((const(char)[]).init, (const(char)[]).init))));
}

// Tests the zero-element result
unittest
{
    auto emptyRange = only();

    alias EmptyRange = typeof(emptyRange);
    static assert(isInputRange!EmptyRange);
    static assert(isForwardRange!EmptyRange);
    static assert(isBidirectionalRange!EmptyRange);
    static assert(isRandomAccessRange!EmptyRange);
    static assert(hasLength!EmptyRange);
    static assert(hasSlicing!EmptyRange);

    assert(emptyRange.empty);
    assert(emptyRange.length == 0);
    assert(emptyRange.equal(emptyRange[]));
    assert(emptyRange.equal(emptyRange.save));
    assert(emptyRange[0 .. 0].equal(emptyRange));
}

// Tests the single-element result
unittest
{
    foreach (x; tuple(1, '1', 1.0, "1", [1]))
    {
        auto a = only(x);
        typeof(x)[] e = [];
        assert(a.front == x);
        assert(a.back == x);
        assert(!a.empty);
        assert(a.length == 1);
        assert(equal(a, a[]));
        assert(equal(a, a[0..1]));
        assert(equal(a[0..0], e));
        assert(equal(a[1..1], e));
        assert(a[0] == x);

        auto b = a.save;
        assert(equal(a, b));
        a.popFront();
        assert(a.empty && a.length == 0 && a[].empty);
        b.popBack();
        assert(b.empty && b.length == 0 && b[].empty);

        alias typeof(a) A;
        static assert(isInputRange!A);
        static assert(isForwardRange!A);
        static assert(isBidirectionalRange!A);
        static assert(isRandomAccessRange!A);
        static assert(hasLength!A);
        static assert(hasSlicing!A);
    }

    auto imm = only!(immutable int)(1);
    immutable int[] imme = [];
    assert(imm.front == 1);
    assert(imm.back == 1);
    assert(!imm.empty);
    assert(imm.length == 1);
    assert(equal(imm, imm[]));
    assert(equal(imm, imm[0..1]));
    assert(equal(imm[0..0], imme));
    assert(equal(imm[1..1], imme));
    assert(imm[0] == 1);
}

// Tests multiple-element results
unittest
{
    static assert(!__traits(compiles, only(1, "1")));

    auto nums = only!(byte, uint, long)(1, 2, 3);
    static assert(is(ElementType!(typeof(nums)) == long));
    assert(nums.length == 3);

    foreach(i; 0 .. 3)
        assert(nums[i] == i + 1);

    auto saved = nums.save;

    foreach(i; 1 .. 4)
    {
        assert(nums.front == nums[0]);
        assert(nums.front == i);
        nums.popFront();
        assert(nums.length == 3 - i);
    }

    assert(nums.empty);

    assert(saved.equal(only(1, 2, 3)));
    assert(saved.equal(saved[]));
    assert(saved[0 .. 1].equal(only(1)));
    assert(saved[0 .. 2].equal(only(1, 2)));
    assert(saved[0 .. 3].equal(saved));
    assert(saved[1 .. 3].equal(only(2, 3)));
    assert(saved[2 .. 3].equal(only(3)));
    assert(saved[0 .. 0].empty);
    assert(saved[3 .. 3].empty);

    alias data = TypeTuple!("one", "two", "three", "four");
    static joined =
        ["one two", "one two three", "one two three four"];
    string[] joinedRange = joined;

    foreach(argCount; TypeTuple!(2, 3, 4))
    {
        auto values = only(data[0 .. argCount]);
        alias Values = typeof(values);
        static assert(is(ElementType!Values == string));
        static assert(isInputRange!Values);
        static assert(isForwardRange!Values);
        static assert(isBidirectionalRange!Values);
        static assert(isRandomAccessRange!Values);
        static assert(hasSlicing!Values);
        static assert(hasLength!Values);

        assert(values.length == argCount);
        assert(values[0 .. $].equal(values[0 .. values.length]));
        assert(values.joiner(" ").equal(joinedRange.front));
        joinedRange.popFront();
    }

    assert(saved.retro.equal(only(3, 2, 1)));
    assert(saved.length == 3);

    assert(saved.back == 3);
    saved.popBack();
    assert(saved.length == 2);
    assert(saved.back == 2);

    assert(saved.front == 1);
    saved.popFront();
    assert(saved.length == 1);
    assert(saved.front == 2);

    saved.popBack();
    assert(saved.empty);

    auto imm = only!(immutable int, immutable int)(42, 24);
    alias Imm = typeof(imm);
    static assert(is(ElementType!Imm == immutable(int)));
    assert(imm.front == 42);
    imm.popFront();
    assert(imm.front == 24);
    imm.popFront();
    assert(imm.empty);

    static struct Test { int* a; }
    immutable(Test) test;
    only(test, test); // Works with mutable indirection
}

/**
   Moves the front of $(D r) out and returns it. Leaves $(D r.front) in a
   destroyable state that does not allocate any resources (usually equal
   to its $(D .init) value).
*/
ElementType!R moveFront(R)(R r)
{
    static if (is(typeof(&r.moveFront))) {
        return r.moveFront();
    } else static if (!hasElaborateCopyConstructor!(ElementType!R)) {
        return r.front;
    } else static if (is(typeof(&(r.front())) == ElementType!R*)) {
        return move(r.front);
    } else {
        static assert(0,
                "Cannot move front of a range with a postblit and an rvalue front.");
    }
}

unittest
{
    struct R
    {
        @property ref int front() { static int x = 42; return x; }
        this(this){}
    }
    R r;
    assert(moveFront(r) == 42);
}

/**
   Moves the back of $(D r) out and returns it. Leaves $(D r.back) in a
   destroyable state that does not allocate any resources (usually equal
   to its $(D .init) value).
*/
ElementType!R moveBack(R)(R r)
{
    static if (is(typeof(&r.moveBack))) {
        return r.moveBack();
    } else static if (!hasElaborateCopyConstructor!(ElementType!R)) {
        return r.back;
    } else static if (is(typeof(&(r.back())) == ElementType!R*)) {
        return move(r.back);
    } else {
        static assert(0,
                "Cannot move back of a range with a postblit and an rvalue back.");
    }
}

unittest
{
    struct TestRange
    {
        int payload;
        @property bool empty() { return false; }
        @property TestRange save() { return this; }
        @property ref int front() { return payload; }
        @property ref int back() { return payload; }
        void popFront() { }
        void popBack() { }
    }
    static assert(isBidirectionalRange!TestRange);
    TestRange r;
    auto x = moveBack(r);
}

/**
   Moves element at index $(D i) of $(D r) out and returns it. Leaves $(D
   r.front) in a destroyable state that does not allocate any resources
   (usually equal to its $(D .init) value).
*/
ElementType!R moveAt(R, I)(R r, I i) if (isIntegral!I)
{
    static if (is(typeof(&r.moveAt))) {
        return r.moveAt(i);
    } else static if (!hasElaborateCopyConstructor!(ElementType!(R))) {
        return r[i];
    } else static if (is(typeof(&r[i]) == ElementType!R*)) {
        return move(r[i]);
    } else {
        static assert(0,
                "Cannot move element of a range with a postblit and rvalue elements.");
    }
}

unittest
{
    auto a = [ 1, 2, 3 ];
    assert(moveFront(a) == 1);
    // define a perfunctory input range
    struct InputRange
    {
        @property bool empty() { return false; }
        @property int front() { return 42; }
        void popFront() {}
        int moveFront() { return 43; }
    }
    InputRange r;
    assert(moveFront(r) == 43);

    foreach(DummyType; AllDummyRanges) {
        auto d = DummyType.init;
        assert(moveFront(d) == 1);

        static if (isBidirectionalRange!DummyType) {
            assert(moveBack(d) == 10);
        }

        static if (isRandomAccessRange!DummyType) {
            assert(moveAt(d, 2) == 3);
        }
    }
}

/**These interfaces are intended to provide virtual function-based wrappers
 * around input ranges with element type E.  This is useful where a well-defined
 * binary interface is required, such as when a DLL function or virtual function
 * needs to accept a generic range as a parameter.  Note that
 * $(LREF isInputRange) and friends check for conformance to structural
 * interfaces, not for implementation of these $(D interface) types.
 *
 * Examples:
 * ---
 * void useRange(InputRange!int range) {
 *     // Function body.
 * }
 *
 * // Create a range type.
 * auto squares = map!"a * a"(iota(10));
 *
 * // Wrap it in an interface.
 * auto squaresWrapped = inputRangeObject(squares);
 *
 * // Use it.
 * useRange(squaresWrapped);
 * ---
 *
 * Limitations:
 *
 * These interfaces are not capable of forwarding $(D ref) access to elements.
 *
 * Infiniteness of the wrapped range is not propagated.
 *
 * Length is not propagated in the case of non-random access ranges.
 *
 * See_Also:
 * $(LREF inputRangeObject)
 */
interface InputRange(E) {
    ///
    @property E front();

    ///
    E moveFront();

    ///
    void popFront();

    ///
    @property bool empty();

    /* Measurements of the benefits of using opApply instead of range primitives
     * for foreach, using timings for iterating over an iota(100_000_000) range
     * with an empty loop body, using the same hardware in each case:
     *
     * Bare Iota struct, range primitives:  278 milliseconds
     * InputRangeObject, opApply:           436 milliseconds  (1.57x penalty)
     * InputRangeObject, range primitives:  877 milliseconds  (3.15x penalty)
     */

    /**$(D foreach) iteration uses opApply, since one delegate call per loop
     * iteration is faster than three virtual function calls.
     */
    int opApply(int delegate(E));

    /// Ditto
    int opApply(int delegate(size_t, E));

}

/**Interface for a forward range of type $(D E).*/
interface ForwardRange(E) : InputRange!E {
    ///
    @property ForwardRange!E save();
}

/**Interface for a bidirectional range of type $(D E).*/
interface BidirectionalRange(E) : ForwardRange!(E) {
    ///
    @property BidirectionalRange!E save();

    ///
    @property E back();

    ///
    E moveBack();

    ///
    void popBack();
}

/**Interface for a finite random access range of type $(D E).*/
interface RandomAccessFinite(E) : BidirectionalRange!(E) {
    ///
    @property RandomAccessFinite!E save();

    ///
    E opIndex(size_t);

    ///
    E moveAt(size_t);

    ///
    @property size_t length();

    ///
    alias length opDollar;

    // Can't support slicing until issues with requiring slicing for all
    // finite random access ranges are fully resolved.
    version(none) {
        ///
        RandomAccessFinite!E opSlice(size_t, size_t);
    }
}

/**Interface for an infinite random access range of type $(D E).*/
interface RandomAccessInfinite(E) : ForwardRange!E {
    ///
    E moveAt(size_t);

    ///
    @property RandomAccessInfinite!E save();

    ///
    E opIndex(size_t);
}

/**Adds assignable elements to InputRange.*/
interface InputAssignable(E) : InputRange!E {
    ///
    @property void front(E newVal);
}

/**Adds assignable elements to ForwardRange.*/
interface ForwardAssignable(E) : InputAssignable!E, ForwardRange!E {
    ///
    @property ForwardAssignable!E save();
}

/**Adds assignable elements to BidirectionalRange.*/
interface BidirectionalAssignable(E) : ForwardAssignable!E, BidirectionalRange!E {
    ///
    @property BidirectionalAssignable!E save();

    ///
    @property void back(E newVal);
}

/**Adds assignable elements to RandomAccessFinite.*/
interface RandomFiniteAssignable(E) : RandomAccessFinite!E, BidirectionalAssignable!E {
    ///
    @property RandomFiniteAssignable!E save();

    ///
    void opIndexAssign(E val, size_t index);
}

/**Interface for an output range of type $(D E).  Usage is similar to the
 * $(D InputRange) interface and descendants.*/
interface OutputRange(E) {
    ///
    void put(E);
}

// CTFE function that generates mixin code for one put() method for each
// type E.
private string putMethods(E...)()
{
    import std.conv : to;

    string ret;

    foreach (ti, Unused; E)
    {
        ret ~= "void put(E[" ~ to!string(ti) ~ "] e) { .put(_range, e); }";
    }

    return ret;
}

/**Implements the $(D OutputRange) interface for all types E and wraps the
 * $(D put) method for each type $(D E) in a virtual function.
 */
class OutputRangeObject(R, E...) : staticMap!(OutputRange, E) {
    // @BUG 4689:  There should be constraints on this template class, but
    // DMD won't let me put them in.
    private R _range;

    this(R range) {
        this._range = range;
    }

    mixin(putMethods!E());
}


/**Returns the interface type that best matches $(D R).*/
template MostDerivedInputRange(R) if (isInputRange!(Unqual!R)) {
    private alias ElementType!R E;

    static if (isRandomAccessRange!R) {
        static if (isInfinite!R) {
            alias RandomAccessInfinite!E MostDerivedInputRange;
        } else static if (hasAssignableElements!R) {
            alias RandomFiniteAssignable!E MostDerivedInputRange;
        } else {
            alias RandomAccessFinite!E MostDerivedInputRange;
        }
    } else static if (isBidirectionalRange!R) {
        static if (hasAssignableElements!R) {
            alias BidirectionalAssignable!E MostDerivedInputRange;
        } else {
            alias BidirectionalRange!E MostDerivedInputRange;
        }
    } else static if (isForwardRange!R) {
        static if (hasAssignableElements!R) {
            alias ForwardAssignable!E MostDerivedInputRange;
        } else {
            alias ForwardRange!E MostDerivedInputRange;
        }
    } else {
        static if (hasAssignableElements!R) {
            alias InputAssignable!E MostDerivedInputRange;
        } else {
            alias InputRange!E MostDerivedInputRange;
        }
    }
}

/**Implements the most derived interface that $(D R) works with and wraps
 * all relevant range primitives in virtual functions.  If $(D R) is already
 * derived from the $(D InputRange) interface, aliases itself away.
 */
template InputRangeObject(R) if (isInputRange!(Unqual!R)) {
    static if (is(R : InputRange!(ElementType!R))) {
        alias R InputRangeObject;
    } else static if (!is(Unqual!R == R)) {
        alias InputRangeObject!(Unqual!R) InputRangeObject;
    } else {

        ///
        class InputRangeObject : MostDerivedInputRange!(R) {
            private R _range;
            private alias ElementType!R E;

            this(R range) {
                this._range = range;
            }

            @property E front() { return _range.front; }

            E moveFront() {
                return .moveFront(_range);
            }

            void popFront() { _range.popFront(); }
            @property bool empty() { return _range.empty; }

            static if (isForwardRange!R) {
                @property typeof(this) save() {
                    return new typeof(this)(_range.save);
                }
            }

            static if (hasAssignableElements!R) {
                @property void front(E newVal) {
                    _range.front = newVal;
                }
            }

            static if (isBidirectionalRange!R) {
                @property E back() { return _range.back; }

                E moveBack() {
                    return .moveBack(_range);
                }

                void popBack() { return _range.popBack(); }

                static if (hasAssignableElements!R) {
                    @property void back(E newVal) {
                        _range.back = newVal;
                    }
                }
            }

            static if (isRandomAccessRange!R) {
                E opIndex(size_t index) {
                    return _range[index];
                }

                E moveAt(size_t index) {
                    return .moveAt(_range, index);
                }

                static if (hasAssignableElements!R) {
                    void opIndexAssign(E val, size_t index) {
                        _range[index] = val;
                    }
                }

                static if (!isInfinite!R) {
                    @property size_t length() {
                        return _range.length;
                    }

                    alias length opDollar;

                    // Can't support slicing until all the issues with
                    // requiring slicing support for finite random access
                    // ranges are resolved.
                    version(none) {
                        typeof(this) opSlice(size_t lower, size_t upper) {
                            return new typeof(this)(_range[lower..upper]);
                        }
                    }
                }
            }

            // Optimization:  One delegate call is faster than three virtual
            // function calls.  Use opApply for foreach syntax.
            int opApply(int delegate(E) dg) {
                int res;

                for(auto r = _range; !r.empty; r.popFront()) {
                    res = dg(r.front);
                    if (res) break;
                }

                return res;
            }

            int opApply(int delegate(size_t, E) dg) {
                int res;

                size_t i = 0;
                for(auto r = _range; !r.empty; r.popFront()) {
                    res = dg(i, r.front);
                    if (res) break;
                    i++;
                }

                return res;
            }
        }
    }
}

/**Convenience function for creating an $(D InputRangeObject) of the proper type.
 * See $(LREF InputRange) for an example.
 */
InputRangeObject!R inputRangeObject(R)(R range) if (isInputRange!R) {
    static if (is(R : InputRange!(ElementType!R))) {
        return range;
    } else {
        return new InputRangeObject!R(range);
    }
}

/**Convenience function for creating an $(D OutputRangeObject) with a base range
 * of type $(D R) that accepts types $(D E).

 Examples:
 ---
 uint[] outputArray;
 auto app = appender(&outputArray);
 auto appWrapped = outputRangeObject!(uint, uint[])(app);
 static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
 static assert(is(typeof(appWrapped) : OutputRange!(uint)));
 ---
*/
template outputRangeObject(E...) {

    ///
    OutputRangeObject!(R, E) outputRangeObject(R)(R range) {
        return new OutputRangeObject!(R, E)(range);
    }
}

unittest {
    static void testEquality(R)(iInputRange r1, R r2) {
        assert(equal(r1, r2));
    }

    auto arr = [1,2,3,4];
    RandomFiniteAssignable!int arrWrapped = inputRangeObject(arr);
    static assert(isRandomAccessRange!(typeof(arrWrapped)));
    //    static assert(hasSlicing!(typeof(arrWrapped)));
    static assert(hasLength!(typeof(arrWrapped)));
    arrWrapped[0] = 0;
    assert(arr[0] == 0);
    assert(arr.moveFront() == 0);
    assert(arr.moveBack() == 4);
    assert(arr.moveAt(1) == 2);

    foreach(elem; arrWrapped) {}
    foreach(i, elem; arrWrapped) {}

    assert(inputRangeObject(arrWrapped) is arrWrapped);

    foreach(DummyType; AllDummyRanges) {
        auto d = DummyType.init;
        static assert(propagatesRangeType!(DummyType,
                        typeof(inputRangeObject(d))));
        static assert(propagatesRangeType!(DummyType,
                        MostDerivedInputRange!DummyType));
        InputRange!uint wrapped = inputRangeObject(d);
        assert(equal(wrapped, d));
    }

    // Test output range stuff.
    auto app = appender!(uint[])();
    auto appWrapped = outputRangeObject!(uint, uint[])(app);
    static assert(is(typeof(appWrapped) : OutputRange!(uint[])));
    static assert(is(typeof(appWrapped) : OutputRange!(uint)));

    appWrapped.put(1);
    appWrapped.put([2, 3]);
    assert(app.data.length == 3);
    assert(equal(app.data, [1,2,3]));
}

/**
  Returns true if $(D fn) accepts variables of type T1 and T2 in any order.
  The following code should compile:
  ---
  T1 foo();
  T2 bar();

  fn(foo(), bar());
  fn(bar(), foo());
  ---
*/
template isTwoWayCompatible(alias fn, T1, T2)
{
    enum isTwoWayCompatible = is(typeof( (){
            T1 foo();
            T2 bar();

            fn(foo(), bar());
            fn(bar(), foo());
        }
    ));
}


/**
   Policy used with the searching primitives $(D lowerBound), $(D
   upperBound), and $(D equalRange) of $(LREF SortedRange) below.
 */
enum SearchPolicy
{
    /**
       Searches with a step that is grows linearly (1, 2, 3,...)
       leading to a quadratic search schedule (indexes tried are 0, 1,
       3, 6, 10, 15, 21, 28,...) Once the search overshoots its target,
       the remaining interval is searched using binary search. The
       search is completed in $(BIGOH sqrt(n)) time. Use it when you
       are reasonably confident that the value is around the beginning
       of the range.
    */
    trot,

    /**
       Performs a $(LUCKY galloping search algorithm), i.e. searches
       with a step that doubles every time, (1, 2, 4, 8, ...)  leading
       to an exponential search schedule (indexes tried are 0, 1, 3,
       7, 15, 31, 63,...) Once the search overshoots its target, the
       remaining interval is searched using binary search. A value is
       found in $(BIGOH log(n)) time.
    */
        gallop,

    /**
       Searches using a classic interval halving policy. The search
       starts in the middle of the range, and each search step cuts
       the range in half. This policy finds a value in $(BIGOH log(n))
       time but is less cache friendly than $(D gallop) for large
       ranges. The $(D binarySearch) policy is used as the last step
       of $(D trot), $(D gallop), $(D trotBackwards), and $(D
       gallopBackwards) strategies.
    */
        binarySearch,

    /**
       Similar to $(D trot) but starts backwards. Use it when
       confident that the value is around the end of the range.
    */
        trotBackwards,

    /**
       Similar to $(D gallop) but starts backwards. Use it when
       confident that the value is around the end of the range.
    */
        gallopBackwards
        }

/**
   Represents a sorted random-access range. In addition to the regular
   range primitives, supports fast operations using binary search. To
   obtain a $(D SortedRange) from an unsorted range $(D r), use
   $(XREF algorithm, sort) which sorts $(D r) in place and returns the
   corresponding $(D SortedRange). To construct a $(D SortedRange)
   from a range $(D r) that is known to be already sorted, use
   $(LREF assumeSorted) described below.

   Example:

   ----
   auto a = [ 1, 2, 3, 42, 52, 64 ];
   auto r = assumeSorted(a);
   assert(r.contains(3));
   assert(!r.contains(32));
   auto r1 = sort!"a > b"(a);
   assert(r1.contains(3));
   assert(!r1.contains(32));
   assert(r1.release() == [ 64, 52, 42, 3, 2, 1 ]);
   ----

   $(D SortedRange) could accept ranges weaker than random-access, but it
   is unable to provide interesting functionality for them. Therefore,
   $(D SortedRange) is currently restricted to random-access ranges.

   No copy of the original range is ever made. If the underlying range is
   changed concurrently with its corresponding $(D SortedRange) in ways
   that break its sortedness, $(D SortedRange) will work erratically.

   Example:

   ----
   auto a = [ 1, 2, 3, 42, 52, 64 ];
   auto r = assumeSorted(a);
   assert(r.contains(42));
   swap(a[3], a[5]);                      // illegal to break sortedness of original range
   assert(!r.contains(42));                // passes although it shouldn't
   ----
*/
struct SortedRange(Range, alias pred = "a < b")
if (isRandomAccessRange!Range && hasLength!Range)
{
    private import std.functional : binaryFun;

    private alias binaryFun!pred predFun;
    private bool geq(L, R)(L lhs, R rhs)
    {
        return !predFun(lhs, rhs);
    }
    private bool gt(L, R)(L lhs, R rhs)
    {
        return predFun(rhs, lhs);
    }
    private Range _input;

    // Undocummented because a clearer way to invoke is by calling
    // assumeSorted.
    this(Range input)
    {
        this._input = input;
        if(!__ctfe)
        debug
        {
            import core.bitop : bsr;
            import std.conv : text;
            import std.random : MinstdRand, uniform;

            // Check the sortedness of the input
            if (this._input.length < 2) return;
            immutable size_t msb = bsr(this._input.length) + 1;
            assert(msb > 0 && msb <= this._input.length);
            immutable step = this._input.length / msb;
            static MinstdRand gen;
            immutable start = uniform(0, step, gen);
            auto st = stride(this._input, step);
            assert(isSorted!pred(st), text(st));
        }
    }

    /// Range primitives.
    @property bool empty()             //const
    {
        return this._input.empty;
    }

    /// Ditto
    @property auto save()
    {
        // Avoid the constructor
        typeof(this) result = this;
        result._input = _input.save;
        return result;
    }

    /// Ditto
    @property auto front()
    {
        return _input.front;
    }

    /// Ditto
    void popFront()
    {
        _input.popFront();
    }

    /// Ditto
    @property auto back()
    {
        return _input.back;
    }

    /// Ditto
    void popBack()
    {
        _input.popBack();
    }

    /// Ditto
    auto opIndex(size_t i)
    {
        return _input[i];
    }

    /// Ditto
    static if (hasSlicing!Range)
        auto opSlice(size_t a, size_t b)
        {
            assert(a <= b);
            typeof(this) result = this;
            result._input = _input[a .. b];// skip checking
            return result;
        }

    /// Ditto
    @property size_t length()          //const
    {
        return _input.length;
    }

    alias length opDollar;

/**
   Releases the controlled range and returns it.
*/
    auto release()
    {
        return move(_input);
    }

    // Assuming a predicate "test" that returns 0 for a left portion
    // of the range and then 1 for the rest, returns the index at
    // which the first 1 appears. Used internally by the search routines.
    private size_t getTransitionIndex(SearchPolicy sp, alias test, V)(V v)
    if (sp == SearchPolicy.binarySearch)
    {
        size_t first = 0, count = _input.length;
        while (count > 0)
        {
            immutable step = count / 2, it = first + step;
            if (!test(_input[it], v))
            {
                first = it + 1;
                count -= step + 1;
            }
            else
            {
                count = step;
            }
        }
        return first;
    }

    // Specialization for trot and gallop
    private size_t getTransitionIndex(SearchPolicy sp, alias test, V)(V v)
    if (sp == SearchPolicy.trot || sp == SearchPolicy.gallop)
    {
        if (empty || test(front, v)) return 0;
        immutable count = length;
        if (count == 1) return 1;
        size_t below = 0, above = 1, step = 2;
        while (!test(_input[above], v))
        {
            // Still too small, update below and increase gait
            below = above;
            immutable next = above + step;
            if (next >= count)
            {
                // Overshot - the next step took us beyond the end. So
                // now adjust next and simply exit the loop to do the
                // binary search thingie.
                above = count;
                break;
            }
            // Still in business, increase step and continue
            above = next;
            static if (sp == SearchPolicy.trot)
                ++step;
            else
                step <<= 1;
        }
        return below + this[below .. above].getTransitionIndex!(
            SearchPolicy.binarySearch, test, V)(v);
    }

    // Specialization for trotBackwards and gallopBackwards
    private size_t getTransitionIndex(SearchPolicy sp, alias test, V)(V v)
    if (sp == SearchPolicy.trotBackwards || sp == SearchPolicy.gallopBackwards)
    {
        immutable count = length;
        if (empty || !test(back, v)) return count;
        if (count == 1) return 0;
        size_t below = count - 2, above = count - 1, step = 2;
        while (test(_input[below], v))
        {
            // Still too large, update above and increase gait
            above = below;
            if (below < step)
            {
                // Overshot - the next step took us beyond the end. So
                // now adjust next and simply fall through to do the
                // binary search thingie.
                below = 0;
                break;
            }
            // Still in business, increase step and continue
            below -= step;
            static if (sp == SearchPolicy.trot)
                ++step;
            else
                step <<= 1;
        }
        return below + this[below .. above].getTransitionIndex!(
            SearchPolicy.binarySearch, test, V)(v);
    }

// lowerBound
/**
   This function uses binary search with policy $(D sp) to find the
   largest left subrange on which $(D pred(x, value)) is $(D true) for
   all $(D x) (e.g., if $(D pred) is "less than", returns the portion of
   the range with elements strictly smaller than $(D value)). The search
   schedule and its complexity are documented in
   $(LREF SearchPolicy).  See also STL's
   $(WEB sgi.com/tech/stl/lower_bound.html, lower_bound).

   Example:
   ----
   auto a = assumeSorted([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ]);
   auto p = a.lowerBound(4);
   assert(equal(p, [ 0, 1, 2, 3 ]));
   ----
*/
    auto lowerBound(SearchPolicy sp = SearchPolicy.binarySearch, V)(V value)
    if (isTwoWayCompatible!(predFun, ElementType!Range, V))
    {
        return this[0 .. getTransitionIndex!(sp, geq)(value)];
    }

// upperBound
/**
   This function uses binary search with policy $(D sp) to find the
   largest right subrange on which $(D pred(value, x)) is $(D true)
   for all $(D x) (e.g., if $(D pred) is "less than", returns the
   portion of the range with elements strictly greater than $(D
   value)). The search schedule and its complexity are documented in
   $(LREF SearchPolicy).  See also STL's
   $(WEB sgi.com/tech/stl/lower_bound.html,upper_bound).

   Example:
   ----
   auto a = assumeSorted([ 1, 2, 3, 3, 3, 4, 4, 5, 6 ]);
   auto p = a.upperBound(3);
   assert(equal(p, [4, 4, 5, 6]));
   ----
*/
    auto upperBound(SearchPolicy sp = SearchPolicy.binarySearch, V)(V value)
    if (isTwoWayCompatible!(predFun, ElementType!Range, V))
    {
        return this[getTransitionIndex!(sp, gt)(value) .. length];
    }

// equalRange
/**
   Returns the subrange containing all elements $(D e) for which both $(D
   pred(e, value)) and $(D pred(value, e)) evaluate to $(D false) (e.g.,
   if $(D pred) is "less than", returns the portion of the range with
   elements equal to $(D value)). Uses a classic binary search with
   interval halving until it finds a value that satisfies the condition,
   then uses $(D SearchPolicy.gallopBackwards) to find the left boundary
   and $(D SearchPolicy.gallop) to find the right boundary. These
   policies are justified by the fact that the two boundaries are likely
   to be near the first found value (i.e., equal ranges are relatively
   small). Completes the entire search in $(BIGOH log(n)) time. See also
   STL's $(WEB sgi.com/tech/stl/equal_range.html, equal_range).

   Example:
   ----
   auto a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
   auto r = equalRange(a, 3);
   assert(equal(r, [ 3, 3, 3 ]));
   ----
*/
    auto equalRange(V)(V value)
    if (isTwoWayCompatible!(predFun, ElementType!Range, V))
    {
        size_t first = 0, count = _input.length;
        while (count > 0)
        {
            immutable step = count / 2;
            auto it = first + step;
            if (predFun(_input[it], value))
            {
                // Less than value, bump left bound up
                first = it + 1;
                count -= step + 1;
            }
            else if (predFun(value, _input[it]))
            {
                // Greater than value, chop count
                count = step;
            }
            else
            {
                // Equal to value, do binary searches in the
                // leftover portions
                // Gallop towards the left end as it's likely nearby
                immutable left = first
                    + this[first .. it]
                    .lowerBound!(SearchPolicy.gallopBackwards)(value).length;
                first += count;
                // Gallop towards the right end as it's likely nearby
                immutable right = first
                    - this[it + 1 .. first]
                    .upperBound!(SearchPolicy.gallop)(value).length;
                return this[left .. right];
            }
        }
        return this.init;
    }

// trisect
/**
Returns a tuple $(D r) such that $(D r[0]) is the same as the result
of $(D lowerBound(value)), $(D r[1]) is the same as the result of $(D
equalRange(value)), and $(D r[2]) is the same as the result of $(D
upperBound(value)). The call is faster than computing all three
separately. Uses a search schedule similar to $(D
equalRange). Completes the entire search in $(BIGOH log(n)) time.

Example:
----
auto a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
auto r = assumeSorted(a).trisect(3);
assert(equal(r[0], [ 1, 2 ]));
assert(equal(r[1], [ 3, 3, 3 ]));
assert(equal(r[2], [ 4, 4, 5, 6 ]));
----
*/
    auto trisect(V)(V value)
    if (isTwoWayCompatible!(predFun, ElementType!Range, V))
    {
        size_t first = 0, count = _input.length;
        while (count > 0)
        {
            immutable step = count / 2;
            auto it = first + step;
            if (predFun(_input[it], value))
            {
                // Less than value, bump left bound up
                first = it + 1;
                count -= step + 1;
            }
            else if (predFun(value, _input[it]))
            {
                // Greater than value, chop count
                count = step;
            }
            else
            {
                // Equal to value, do binary searches in the
                // leftover portions
                // Gallop towards the left end as it's likely nearby
                immutable left = first
                    + this[first .. it]
                    .lowerBound!(SearchPolicy.gallopBackwards)(value).length;
                first += count;
                // Gallop towards the right end as it's likely nearby
                immutable right = first
                    - this[it + 1 .. first]
                    .upperBound!(SearchPolicy.gallop)(value).length;
                return tuple(this[0 .. left], this[left .. right],
                        this[right .. length]);
            }
        }
        // No equal element was found
        return tuple(this[0 .. first], this.init, this[first .. length]);
    }

// contains
/**
Returns $(D true) if and only if $(D value) can be found in $(D
range), which is assumed to be sorted. Performs $(BIGOH log(r.length))
evaluations of $(D pred). See also STL's $(WEB
sgi.com/tech/stl/binary_search.html, binary_search).
 */

    bool contains(V)(V value)
    {
        size_t first = 0, count = _input.length;
        while (count > 0)
        {
            immutable step = count / 2, it = first + step;
            if (predFun(_input[it], value))
            {
                // Less than value, bump left bound up
                first = it + 1;
                count -= step + 1;
            }
            else if (predFun(value, _input[it]))
            {
                // Greater than value, chop count
                count = step;
            }
            else
            {
                // Found!!!
                return true;
            }
        }
        return false;
    }
}

// Doc examples
unittest
{
    auto a = [ 1, 2, 3, 42, 52, 64 ];
    auto r = assumeSorted(a);
    assert(r.contains(3));
    assert(!r.contains(32));
    auto r1 = sort!"a > b"(a);
    assert(r1.contains(3));
    assert(!r1.contains(32));
    assert(r1.release() == [ 64, 52, 42, 3, 2, 1 ]);
}

unittest
{
    auto a = [ 10, 20, 30, 30, 30, 40, 40, 50, 60 ];
    auto r = assumeSorted(a).trisect(30);
    assert(equal(r[0], [ 10, 20 ]));
    assert(equal(r[1], [ 30, 30, 30 ]));
    assert(equal(r[2], [ 40, 40, 50, 60 ]));

    r = assumeSorted(a).trisect(35);
    assert(equal(r[0], [ 10, 20, 30, 30, 30 ]));
    assert(r[1].empty);
    assert(equal(r[2], [ 40, 40, 50, 60 ]));
}

unittest
{
    auto a = [ "A", "AG", "B", "E", "F" ];
    auto r = assumeSorted!"cmp(a,b) < 0"(a).trisect("B"w);
    assert(equal(r[0], [ "A", "AG" ]));
    assert(equal(r[1], [ "B" ]));
    assert(equal(r[2], [ "E", "F" ]));
    r = assumeSorted!"cmp(a,b) < 0"(a).trisect("A"d);
    assert(r[0].empty);
    assert(equal(r[1], [ "A" ]));
    assert(equal(r[2], [ "AG", "B", "E", "F" ]));
}

unittest
{
    static void test(SearchPolicy pol)()
    {
        auto a = [ 1, 2, 3, 42, 52, 64 ];
        auto r = assumeSorted(a);
        assert(equal(r.lowerBound(42), [1, 2, 3]));

        assert(equal(r.lowerBound!(pol)(42), [1, 2, 3]));
        assert(equal(r.lowerBound!(pol)(41), [1, 2, 3]));
        assert(equal(r.lowerBound!(pol)(43), [1, 2, 3, 42]));
        assert(equal(r.lowerBound!(pol)(51), [1, 2, 3, 42]));
        assert(equal(r.lowerBound!(pol)(3), [1, 2]));
        assert(equal(r.lowerBound!(pol)(55), [1, 2, 3, 42, 52]));
        assert(equal(r.lowerBound!(pol)(420), a));
        assert(equal(r.lowerBound!(pol)(0), a[0 .. 0]));

        assert(equal(r.upperBound!(pol)(42), [52, 64]));
        assert(equal(r.upperBound!(pol)(41), [42, 52, 64]));
        assert(equal(r.upperBound!(pol)(43), [52, 64]));
        assert(equal(r.upperBound!(pol)(51), [52, 64]));
        assert(equal(r.upperBound!(pol)(53), [64]));
        assert(equal(r.upperBound!(pol)(55), [64]));
        assert(equal(r.upperBound!(pol)(420), a[0 .. 0]));
        assert(equal(r.upperBound!(pol)(0), a));
    }

    test!(SearchPolicy.trot)();
    test!(SearchPolicy.gallop)();
    test!(SearchPolicy.trotBackwards)();
    test!(SearchPolicy.gallopBackwards)();
    test!(SearchPolicy.binarySearch)();
}

unittest
{
    // Check for small arrays
    int[] a;
    auto r = assumeSorted(a);
    a = [ 1 ];
    r = assumeSorted(a);
    a = [ 1, 2 ];
    r = assumeSorted(a);
    a = [ 1, 2, 3 ];
    r = assumeSorted(a);
}

unittest
{
    auto a = [ 1, 2, 3, 42, 52, 64 ];
    auto r = assumeSorted(a);
    assert(r.contains(42));
    swap(a[3], a[5]);                  // illegal to break sortedness of original range
    assert(!r.contains(42));            // passes although it shouldn't
}

unittest
{
    immutable(int)[] arr = [ 1, 2, 3 ];
    auto s = assumeSorted(arr);
}

/**
Assumes $(D r) is sorted by predicate $(D pred) and returns the
corresponding $(D SortedRange!(pred, R)) having $(D r) as support. To
keep the checking costs low, the cost is $(BIGOH 1) in release mode
(no checks for sortedness are performed). In debug mode, a few random
elements of $(D r) are checked for sortedness. The size of the sample
is proportional $(BIGOH log(r.length)). That way, checking has no
effect on the complexity of subsequent operations specific to sorted
ranges (such as binary search). The probability of an arbitrary
unsorted range failing the test is very high (however, an
almost-sorted range is likely to pass it). To check for sortedness at
cost $(BIGOH n), use $(XREF algorithm,isSorted).
 */
auto assumeSorted(alias pred = "a < b", R)(R r)
if (isRandomAccessRange!(Unqual!R))
{
    return SortedRange!(Unqual!R, pred)(r);
}

unittest
{
    static assert(isRandomAccessRange!(SortedRange!(int[])));
    int[] a = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ];
    auto p = assumeSorted(a).lowerBound(4);
    assert(equal(p, [0, 1, 2, 3]));
    p = assumeSorted(a).lowerBound(5);
    assert(equal(p, [0, 1, 2, 3, 4]));
    p = assumeSorted(a).lowerBound(6);
    assert(equal(p, [ 0, 1, 2, 3, 4, 5]));
    p = assumeSorted(a).lowerBound(6.9);
    assert(equal(p, [ 0, 1, 2, 3, 4, 5, 6]));
}

unittest
{
    int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
    auto p = assumeSorted(a).upperBound(3);
    assert(equal(p, [4, 4, 5, 6 ]));
    p = assumeSorted(a).upperBound(4.2);
    assert(equal(p, [ 5, 6 ]));
}

unittest
{
    import std.conv : text;

    int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
    auto p = assumeSorted(a).equalRange(3);
    assert(equal(p, [ 3, 3, 3 ]), text(p));
    p = assumeSorted(a).equalRange(4);
    assert(equal(p, [ 4, 4 ]), text(p));
    p = assumeSorted(a).equalRange(2);
    assert(equal(p, [ 2 ]));
    p = assumeSorted(a).equalRange(0);
    assert(p.empty);
    p = assumeSorted(a).equalRange(7);
    assert(p.empty);
    p = assumeSorted(a).equalRange(3.0);
    assert(equal(p, [ 3, 3, 3]));
}

unittest
{
    int[] a = [ 1, 2, 3, 3, 3, 4, 4, 5, 6 ];
    if (a.length)
    {
        auto b = a[a.length / 2];
        //auto r = sort(a);
        //assert(r.contains(b));
    }
}

unittest
{
    auto a = [ 5, 7, 34, 345, 677 ];
    auto r = assumeSorted(a);
    a = null;
    r = assumeSorted(a);
    a = [ 1 ];
    r = assumeSorted(a);
    bool ok = true;
    try
    {
        auto r2 = assumeSorted([ 677, 345, 34, 7, 5 ]);
        debug ok = false;
    }
    catch (Throwable)
    {
    }
    assert(ok);
}


/++
    Wrapper which effectively makes it possible to pass a range by reference.
    Both the original range and the RefRange will always have the exact same
    elements. Any operation done on one will affect the other. So, for instance,
    if it's passed to a function which would implicitly copy the original range
    if it were passed to it, the original range is $(I not) copied but is
    consumed as if it were a reference type.

    Note that $(D save) works as normal and operates on a new range, so if
    $(D save) is ever called on the RefRange, then no operations on the saved
    range will affect the original.

    Examples:
--------------------
import std.algorithm;
ubyte[] buffer = [1, 9, 45, 12, 22];
auto found1 = find(buffer, 45);
assert(found1 == [45, 12, 22]);
assert(buffer == [1, 9, 45, 12, 22]);

auto wrapped1 = refRange(&buffer);
auto found2 = find(wrapped1, 45);
assert(*found2.ptr == [45, 12, 22]);
assert(buffer == [45, 12, 22]);

auto found3 = find(wrapped2.save, 22);
assert(*found3.ptr == [22]);
assert(buffer == [45, 12, 22]);

string str = "hello world";
auto wrappedStr = refRange(&str);
assert(str.front == 'h');
str.popFrontN(5);
assert(str == " world");
assert(wrappedStr.front == ' ');
assert(*wrappedStr.ptr == " world");
--------------------
  +/
struct RefRange(R)
    if(isForwardRange!R)
{
public:

    /++ +/
    this(R* range) @safe pure nothrow
    {
        _range = range;
    }


    /++
        This does not assign the pointer of $(D rhs) to this $(D RefRange).
        Rather it assigns the range pointed to by $(D rhs) to the range pointed
        to by this $(D RefRange). This is because $(I any) operation on a
        $(D RefRange) is the same is if it occurred to the original range. The
        one exception is when a $(D RefRange) is assigned $(D null) either
        directly or because $(D rhs) is $(D null). In that case, $(D RefRange)
        no longer refers to the original range but is $(D null).

    Examples:
--------------------
ubyte[] buffer1 = [1, 2, 3, 4, 5];
ubyte[] buffer2 = [6, 7, 8, 9, 10];
auto wrapped1 = refRange(&buffer1);
auto wrapped2 = refRange(&buffer2);
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);
assert(buffer1 != buffer2);

wrapped1 = wrapped2;

//Everything points to the same stuff as before.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);

//But buffer1 has changed due to the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [6, 7, 8, 9, 10]);

buffer2 = [11, 12, 13, 14, 15];

//Everything points to the same stuff as before.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is &buffer2);
assert(wrapped1.ptr !is wrapped2.ptr);

//But buffer2 has changed due to the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [11, 12, 13, 14, 15]);

wrapped2 = null;

//The pointer changed for wrapped2 but not wrapped1.
assert(wrapped1.ptr is &buffer1);
assert(wrapped2.ptr is null);
assert(wrapped1.ptr !is wrapped2.ptr);

//buffer2 is not affected by the assignment.
assert(buffer1 == [6, 7, 8, 9, 10]);
assert(buffer2 == [11, 12, 13, 14, 15]);
--------------------
      +/
    auto opAssign(RefRange rhs)
    {
        if(_range && rhs._range)
            *_range = *rhs._range;
        else
            _range = rhs._range;

        return this;
    }

    /++ +/
    auto opAssign(typeof(null) rhs)
    {
        _range = null;
    }


    /++
        A pointer to the wrapped range.
      +/
    @property inout(R*) ptr() @safe inout pure nothrow
    {
        return _range;
    }


    version(StdDdoc)
    {
        /++ +/
        @property auto front() {assert(0);}
        /++ Ditto +/
        @property auto front() const {assert(0);}
        /++ Ditto +/
        @property auto front(ElementType!R value) {assert(0);}
    }
    else
    {
        @property auto front()
        {
            return (*_range).front;
        }

        static if(is(typeof((*(cast(const R*)_range)).front))) @property ElementType!R front() const
        {
            return (*_range).front;
        }

        static if(is(typeof((*_range).front = (*_range).front))) @property auto front(ElementType!R value)
        {
            return (*_range).front = value;
        }
    }


    version(StdDdoc)
    {
        @property bool empty(); ///
        @property bool empty() const; ///Ditto
    }
    else static if(isInfinite!R)
        enum empty = false;
    else
    {
        @property bool empty()
        {
            return (*_range).empty;
        }

        static if(is(typeof((*cast(const R*)_range).empty))) @property bool empty() const
        {
            return (*_range).empty;
        }
    }


    /++ +/
    void popFront()
    {
        return (*_range).popFront();
    }


    version(StdDdoc)
    {
        /++ +/
        @property auto save() {assert(0);}
        /++ Ditto +/
        @property auto save() const {assert(0);}
        /++ Ditto +/
        auto opSlice() {assert(0);}
        /++ Ditto +/
        auto opSlice() const {assert(0);}
    }
    else
    {
        private static void _testSave(R)(R* range)
        {
            (*range).save;
        }

        static if(isSafe!(_testSave!R))
        {
            @property auto save() @trusted
            {
                mixin(_genSave());
            }

            static if(is(typeof((*cast(const R*)_range).save))) @property auto save() @trusted const
            {
                mixin(_genSave());
            }
        }
        else
        {
            @property auto save()
            {
                mixin(_genSave());
            }

            static if(is(typeof((*cast(const R*)_range).save))) @property auto save() const
            {
                mixin(_genSave());
            }
        }

        auto opSlice()()
        {
            return save;
        }

        auto opSlice()() const
        {
            return save;
        }

        private static string _genSave() @safe pure nothrow
        {
            return `import std.conv;` ~
                   `alias typeof((*_range).save) S;` ~
                   `static assert(isForwardRange!S, S.stringof ~ " is not a forward range.");` ~
                   `auto mem = new void[S.sizeof];` ~
                   `emplace!S(mem, cast(S)(*_range).save);` ~
                   `return RefRange!S(cast(S*)mem.ptr);`;
        }

        static assert(isForwardRange!RefRange);
    }


    version(StdDdoc)
    {
        /++
            Only defined if $(D isBidirectionalRange!R) is $(D true).
          +/
        @property auto back() {assert(0);}
        /++ Ditto +/
        @property auto back() const {assert(0);}
        /++ Ditto +/
        @property auto back(ElementType!R value) {assert(0);}
    }
    else static if(isBidirectionalRange!R)
    {
        @property auto back()
        {
            return (*_range).back;
        }

        static if(is(typeof((*(cast(const R*)_range)).back))) @property ElementType!R back() const
        {
            return (*_range).back;
        }

        static if(is(typeof((*_range).back = (*_range).back))) @property auto back(ElementType!R value)
        {
            return (*_range).back = value;
        }
    }


    /++ Ditto +/
    static if(isBidirectionalRange!R) void popBack()
    {
        return (*_range).popBack();
    }


    version(StdDdoc)
    {
        /++
            Only defined if $(D isRandomAccesRange!R) is $(D true).
          +/
        auto ref opIndex(IndexType)(IndexType index) {assert(0);}

        /++ Ditto +/
        auto ref opIndex(IndexType)(IndexType index) const {assert(0);}
    }
    else static if(isRandomAccessRange!R)
    {
        auto ref opIndex(IndexType)(IndexType index)
            if(is(typeof((*_range)[index])))
        {
            return (*_range)[index];
        }

        auto ref opIndex(IndexType)(IndexType index) const
            if(is(typeof((*cast(const R*)_range)[index])))
        {
            return (*_range)[index];
        }
    }


    /++
        Only defined if $(D hasMobileElements!R) and $(D isForwardRange!R) are
        $(D true).
      +/
    static if(hasMobileElements!R && isForwardRange!R) auto moveFront()
    {
        return (*_range).moveFront();
    }


    /++
        Only defined if $(D hasMobileElements!R) and $(D isBidirectionalRange!R)
        are $(D true).
      +/
    static if(hasMobileElements!R && isBidirectionalRange!R) auto moveBack()
    {
        return (*_range).moveBack();
    }


    /++
        Only defined if $(D hasMobileElements!R) and $(D isRandomAccessRange!R)
        are $(D true).
      +/
    static if(hasMobileElements!R && isRandomAccessRange!R) auto moveAt(IndexType)(IndexType index)
        if(is(typeof((*_range).moveAt(index))))
    {
        return (*_range).moveAt(index);
    }


    version(StdDdoc)
    {
        /++
            Only defined if $(D hasLength!R) is $(D true).
          +/
        @property auto length() {assert(0);}

        /++ Ditto +/
        @property auto length() const {assert(0);}
    }
    else static if(hasLength!R)
    {
        @property auto length()
        {
            return (*_range).length;
        }

        static if(is(typeof((*cast(const R*)_range).length))) @property auto length() const
        {
            return (*_range).length;
        }
    }


    version(StdDdoc)
    {
        /++
            Only defined if $(D hasSlicing!R) is $(D true).
          +/
        auto opSlice(IndexType1, IndexType2)
                    (IndexType1 begin, IndexType2 end) {assert(0);}

        /++ Ditto +/
        auto opSlice(IndexType1, IndexType2)
                    (IndexType1 begin, IndexType2 end) const {assert(0);}
    }
    else static if(hasSlicing!R)
    {
        auto opSlice(IndexType1, IndexType2)
                    (IndexType1 begin, IndexType2 end)
            if(is(typeof((*_range)[begin .. end])))
        {
            mixin(_genOpSlice());
        }

        auto opSlice(IndexType1, IndexType2)
                    (IndexType1 begin, IndexType2 end) const
            if(is(typeof((*cast(const R*)_range)[begin .. end])))
        {
            mixin(_genOpSlice());
        }

        private static string _genOpSlice() @safe pure nothrow
        {
            return `import std.conv;` ~
                   `alias typeof((*_range)[begin .. end]) S;` ~
                   `static assert(hasSlicing!S, S.stringof ~ " is not sliceable.");` ~
                   `auto mem = new void[S.sizeof];` ~
                   `emplace!S(mem, cast(S)(*_range)[begin .. end]);` ~
                   `return RefRange!S(cast(S*)mem.ptr);`;
        }
    }


private:

    R* _range;
}

//Verify Example.
unittest
{
    import std.algorithm;
    ubyte[] buffer = [1, 9, 45, 12, 22];
    auto found1 = find(buffer, 45);
    assert(found1 == [45, 12, 22]);
    assert(buffer == [1, 9, 45, 12, 22]);

    auto wrapped1 = refRange(&buffer);
    auto found2 = find(wrapped1, 45);
    assert(*found2.ptr == [45, 12, 22]);
    assert(buffer == [45, 12, 22]);

    auto found3 = find(wrapped1.save, 22);
    assert(*found3.ptr == [22]);
    assert(buffer == [45, 12, 22]);

    string str = "hello world";
    auto wrappedStr = refRange(&str);
    assert(str.front == 'h');
    str.popFrontN(5);
    assert(str == " world");
    assert(wrappedStr.front == ' ');
    assert(*wrappedStr.ptr == " world");
}

//Verify opAssign Example.
unittest
{
    ubyte[] buffer1 = [1, 2, 3, 4, 5];
    ubyte[] buffer2 = [6, 7, 8, 9, 10];
    auto wrapped1 = refRange(&buffer1);
    auto wrapped2 = refRange(&buffer2);
    assert(wrapped1.ptr is &buffer1);
    assert(wrapped2.ptr is &buffer2);
    assert(wrapped1.ptr !is wrapped2.ptr);
    assert(buffer1 != buffer2);

    wrapped1 = wrapped2;

    //Everything points to the same stuff as before.
    assert(wrapped1.ptr is &buffer1);
    assert(wrapped2.ptr is &buffer2);
    assert(wrapped1.ptr !is wrapped2.ptr);

    //But buffer1 has changed due to the assignment.
    assert(buffer1 == [6, 7, 8, 9, 10]);
    assert(buffer2 == [6, 7, 8, 9, 10]);

    buffer2 = [11, 12, 13, 14, 15];

    //Everything points to the same stuff as before.
    assert(wrapped1.ptr is &buffer1);
    assert(wrapped2.ptr is &buffer2);
    assert(wrapped1.ptr !is wrapped2.ptr);

    //But buffer2 has changed due to the assignment.
    assert(buffer1 == [6, 7, 8, 9, 10]);
    assert(buffer2 == [11, 12, 13, 14, 15]);

    wrapped2 = null;

    //The pointer changed for wrapped2 but not wrapped1.
    assert(wrapped1.ptr is &buffer1);
    assert(wrapped2.ptr is null);
    assert(wrapped1.ptr !is wrapped2.ptr);

    //buffer2 is not affected by the assignment.
    assert(buffer1 == [6, 7, 8, 9, 10]);
    assert(buffer2 == [11, 12, 13, 14, 15]);
}

unittest
{
    import std.algorithm;
    {
        ubyte[] buffer = [1, 2, 3, 4, 5];
        auto wrapper = refRange(&buffer);
        auto p = wrapper.ptr;
        auto f = wrapper.front;
        wrapper.front = f;
        auto e = wrapper.empty;
        wrapper.popFront();
        auto s = wrapper.save;
        auto b = wrapper.back;
        wrapper.back = b;
        wrapper.popBack();
        auto i = wrapper[0];
        wrapper.moveFront();
        wrapper.moveBack();
        wrapper.moveAt(0);
        auto l = wrapper.length;
        auto sl = wrapper[0 .. 1];
    }

    {
        ubyte[] buffer = [1, 2, 3, 4, 5];
        const wrapper = refRange(&buffer);
        const p = wrapper.ptr;
        const f = wrapper.front;
        const e = wrapper.empty;
        const s = wrapper.save;
        const b = wrapper.back;
        const i = wrapper[0];
        const l = wrapper.length;
        const sl = wrapper[0 .. 1];
    }

    {
        ubyte[] buffer = [1, 2, 3, 4, 5];
        auto filtered = filter!"true"(buffer);
        auto wrapper = refRange(&filtered);
        auto p = wrapper.ptr;
        auto f = wrapper.front;
        wrapper.front = f;
        auto e = wrapper.empty;
        wrapper.popFront();
        auto s = wrapper.save;
        wrapper.moveFront();
    }

    {
        ubyte[] buffer = [1, 2, 3, 4, 5];
        auto filtered = filter!"true"(buffer);
        const wrapper = refRange(&filtered);
        const p = wrapper.ptr;

        //Cannot currently be const. filter needs to be updated to handle const.
        /+
        const f = wrapper.front;
        const e = wrapper.empty;
        const s = wrapper.save;
        +/
    }

    {
        string str = "hello world";
        auto wrapper = refRange(&str);
        auto p = wrapper.ptr;
        auto f = wrapper.front;
        auto e = wrapper.empty;
        wrapper.popFront();
        auto s = wrapper.save;
        auto b = wrapper.back;
        wrapper.popBack();
    }
}

//Test assignment.
unittest
{
    ubyte[] buffer1 = [1, 2, 3, 4, 5];
    ubyte[] buffer2 = [6, 7, 8, 9, 10];
    RefRange!(ubyte[]) wrapper1;
    RefRange!(ubyte[]) wrapper2 = refRange(&buffer2);
    assert(wrapper1.ptr is null);
    assert(wrapper2.ptr is &buffer2);

    wrapper1 = refRange(&buffer1);
    assert(wrapper1.ptr is &buffer1);

    wrapper1 = wrapper2;
    assert(wrapper1.ptr is &buffer1);
    assert(buffer1 == buffer2);

    wrapper1 = RefRange!(ubyte[]).init;
    assert(wrapper1.ptr is null);
    assert(wrapper2.ptr is &buffer2);
    assert(buffer1 == buffer2);
    assert(buffer1 == [6, 7, 8, 9, 10]);

    wrapper2 = null;
    assert(wrapper2.ptr is null);
    assert(buffer2 == [6, 7, 8, 9, 10]);
}

unittest
{
    import std.algorithm;

    //Test that ranges are properly consumed.
    {
        int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
        auto wrapper = refRange(&arr);

        assert(*find(wrapper, 41).ptr == [41, 3, 40, 4, 42, 9]);
        assert(arr == [41, 3, 40, 4, 42, 9]);

        assert(*drop(wrapper, 2).ptr == [40, 4, 42, 9]);
        assert(arr == [40, 4, 42, 9]);

        assert(equal(until(wrapper, 42), [40, 4]));
        assert(arr == [42, 9]);

        assert(find(wrapper, 12).empty);
        assert(arr.empty);
    }

    {
        string str = "Hello, world-like object.";
        auto wrapper = refRange(&str);

        assert(*find(wrapper, "l").ptr == "llo, world-like object.");
        assert(str == "llo, world-like object.");

        assert(equal(take(wrapper, 5), "llo, "));
        assert(str == "world-like object.");
    }

    //Test that operating on saved ranges does not consume the original.
    {
        int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
        auto wrapper = refRange(&arr);
        auto saved = wrapper.save;
        saved.popFrontN(3);
        assert(*saved.ptr == [41, 3, 40, 4, 42, 9]);
        assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);
    }

    {
        string str = "Hello, world-like object.";
        auto wrapper = refRange(&str);
        auto saved = wrapper.save;
        saved.popFrontN(13);
        assert(*saved.ptr == "like object.");
        assert(str == "Hello, world-like object.");
    }

    //Test that functions which use save work properly.
    {
        int[] arr = [1, 42];
        auto wrapper = refRange(&arr);
        assert(equal(commonPrefix(wrapper, [1, 27]), [1]));
    }

    {
        int[] arr = [4, 5, 6, 7, 1, 2, 3];
        auto wrapper = refRange(&arr);
        assert(bringToFront(wrapper[0 .. 4], wrapper[4 .. arr.length]) == 3);
        assert(arr == [1, 2, 3, 4, 5, 6, 7]);
    }

    //Test bidirectional functions.
    {
        int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
        auto wrapper = refRange(&arr);

        assert(wrapper.back == 9);
        assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);

        wrapper.popBack();
        assert(arr == [1, 42, 2, 41, 3, 40, 4, 42]);
    }

    {
        string str = "Hello, world-like object.";
        auto wrapper = refRange(&str);

        assert(wrapper.back == '.');
        assert(str == "Hello, world-like object.");

        wrapper.popBack();
        assert(str == "Hello, world-like object");
    }

    //Test random access functions.
    {
        int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
        auto wrapper = refRange(&arr);

        assert(wrapper[2] == 2);
        assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);

        assert(*wrapper[3 .. 6].ptr, [41, 3, 40]);
        assert(arr == [1, 42, 2, 41, 3, 40, 4, 42, 9]);
    }

    //Test move functions.
    {
        int[] arr = [1, 42, 2, 41, 3, 40, 4, 42, 9];
        auto wrapper = refRange(&arr);

        auto t1 = wrapper.moveFront();
        auto t2 = wrapper.moveBack();
        wrapper.front = t2;
        wrapper.back = t1;
        assert(arr == [9, 42, 2, 41, 3, 40, 4, 42, 1]);

        sort(wrapper.save);
        assert(arr == [1, 2, 3, 4, 9, 40, 41, 42, 42]);
    }
}

unittest
{
    struct S
    {
        @property int front() @safe const pure nothrow { return 0; }
        enum bool empty = false;
        void popFront() @safe pure nothrow { }
        @property auto save() @safe pure nothrow { return this; }
    }

    S s;
    auto wrapper = refRange(&s);
    static assert(isInfinite!(typeof(wrapper)));
}

unittest
{
    class C
    {
        @property int front() @safe const pure nothrow { return 0; }
        @property bool empty() @safe const pure nothrow { return false; }
        void popFront() @safe pure nothrow { }
        @property auto save() @safe pure nothrow { return this; }
    }
    static assert(isForwardRange!C);

    auto c = new C;
    auto cWrapper = refRange(&c);
    static assert(is(typeof(cWrapper) == C));
    assert(cWrapper is c);

    struct S
    {
        @property int front() @safe const pure nothrow { return 0; }
        @property bool empty() @safe const pure nothrow { return false; }
        void popFront() @safe pure nothrow { }

        int i = 27;
    }
    static assert(isInputRange!S);
    static assert(!isForwardRange!S);

    auto s = S(42);
    auto sWrapper = refRange(&s);
    static assert(is(typeof(sWrapper) == S));
    assert(sWrapper == s);
}

/++
    Helper function for constructing a $(LREF RefRange).

    If the given range is not a forward range or it is a class type (and thus is
    already a reference type), then the original range is returned rather than
    a $(LREF RefRange).
  +/
auto refRange(R)(R* range)
    if(isForwardRange!R && !is(R == class))
{
    return RefRange!R(range);
}

auto refRange(R)(R* range)
    if((!isForwardRange!R && isInputRange!R) ||
       is(R == class))
{
    return *range;
}

/*****************************************************************************/

unittest    // bug 9060
{
    // fix for std.algorithm
    auto r = map!(x => 0)([1]);
    chain(r, r);
    zip(r, r);
    roundRobin(r, r);

    struct NRAR {
        typeof(r) input;
        @property empty() { return input.empty; }
        @property front() { return input.front; }
        void popFront()   { input.popFront(); }
        @property save()  { return NRAR(input.save); }
    }
    auto n1 = NRAR(r);
    cycle(n1);  // non random access range version

    assumeSorted(r);

    // fix for std.range
    joiner([r], [9]);

    struct NRAR2 {
        NRAR input;
        @property empty() { return true; }
        @property front() { return input; }
        void popFront() { }
        @property save()  { return NRAR2(input.save); }
    }
    auto n2 = NRAR2(n1);
    joiner(n2);

    group(r);

    until(r, 7);
    static void foo(R)(R r) { until!(x => x > 7)(r); }
    foo(r);
}