/usr/include/d/4.9/std/numeric.d is in libphobos-4.9-dev 4.9.3-13ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 | // Written in the D programming language.
/**
This module is a port of a growing fragment of the $(D_PARAM numeric)
header in Alexander Stepanov's $(LINK2 http://sgi.com/tech/stl,
Standard Template Library), with a few additions.
Macros:
WIKI = Phobos/StdNumeric
Copyright: Copyright Andrei Alexandrescu 2008 - 2009.
License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
Authors: $(WEB erdani.org, Andrei Alexandrescu),
Don Clugston, Robert Jacques
Source: $(PHOBOSSRC std/_numeric.d)
*/
/*
Copyright Andrei Alexandrescu 2008 - 2009.
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
*/
module std.numeric;
import std.algorithm;
import std.array;
import std.bitmanip;
import std.conv;
import std.typecons;
import std.math;
import std.traits;
import std.exception;
import std.random;
import std.string;
import std.range;
import std.c.stdlib;
import std.functional;
import std.typetuple;
import std.complex;
import core.bitop;
import core.exception;
version(unittest)
{
import std.stdio;
}
/// Format flags for CustomFloat.
public enum CustomFloatFlags {
/// Adds a sign bit to allow for signed numbers.
signed = 1,
/**
* Store values in normalized form by default. The actual precision of the
* significand is extended by 1 bit by assuming an implicit leading bit of 1
* instead of 0. i.e. $(D 1.nnnn) instead of $(D 0.nnnn).
* True for all $(LUCKY IEE754) types
*/
storeNormalized = 2,
/**
* Stores the significand in $(LUCKY IEEE754 denormalized) form when the
* exponent is 0. Required to express the value 0.
*/
allowDenorm = 4,
/// Allows the storage of $(LUCKY IEEE754 _infinity) values.
infinity = 8,
/// Allows the storage of $(LUCKY IEEE754 Not a Number) values.
nan = 16,
/**
* If set, select an exponent bias such that max_exp = 1.
* i.e. so that the maximum value is >= 1.0 and < 2.0.
* Ignored if the exponent bias is manually specified.
*/
probability = 32,
/// If set, unsigned custom floats are assumed to be negative.
negativeUnsigned = 64,
/**If set, 0 is the only allowed $(LUCKY IEEE754 denormalized) number.
* Requires allowDenorm and storeNormalized.
*/
allowDenormZeroOnly = 128 | allowDenorm | storeNormalized,
/// Include _all of the $(LUCKY IEEE754) options.
ieee = signed | storeNormalized | allowDenorm | infinity | nan ,
/// Include none of the above options.
none = 0
}
// 64-bit version of core.bitop.bsr
private int bsr64(ulong value) {
union Ulong {
ulong raw;
struct {
uint low;
uint high;
}
}
Ulong v;
v.raw = value;
return v.high==0 ? core.bitop.bsr(v.low) : core.bitop.bsr(v.high) + 32;
}
private template CustomFloatParams(uint bits)
{
enum CustomFloatFlags flags = CustomFloatFlags.ieee
^ ((bits == 80) ? CustomFloatFlags.storeNormalized : CustomFloatFlags.none);
static if (bits == 8) alias CustomFloatParams!( 4, 3, flags) CustomFloatParams;
static if (bits == 16) alias CustomFloatParams!(10, 5, flags) CustomFloatParams;
static if (bits == 32) alias CustomFloatParams!(23, 8, flags) CustomFloatParams;
static if (bits == 64) alias CustomFloatParams!(52, 11, flags) CustomFloatParams;
static if (bits == 80) alias CustomFloatParams!(64, 15, flags) CustomFloatParams;
}
private template CustomFloatParams(uint precision, uint exponentWidth, CustomFloatFlags flags)
{
alias TypeTuple!(
precision,
exponentWidth,
flags,
(1 << (exponentWidth - ((flags & flags.probability) == 0)))
- ((flags & (flags.nan | flags.infinity)) != 0) - ((flags & flags.probability) != 0)
) CustomFloatParams; // ((flags & CustomFloatFlags.probability) == 0)
}
/**
* Allows user code to define custom floating-point formats. These formats are
* for storage only; all operations on them are performed by first implicitly
* extracting them to $(D real) first. After the operation is completed the
* result can be stored in a custom floating-point value via assignment.
*
* Example:
* ----
* // Define a 16-bit floating point values
* CustomFloat!16 x; // Using the number of bits
* CustomFloat!(10, 5) y; // Using the precision and exponent width
* CustomFloat!(10, 5,CustomFloatFlags.ieee) z; // Using the precision, exponent width and format flags
* CustomFloat!(10, 5,CustomFloatFlags.ieee, 15) w; // Using the precision, exponent width, format flags and exponent offset bias
*
* // Use the 16-bit floats mostly like normal numbers
* w = x*y - 1;
* writeln(w);
*
* // Functions calls require conversion
* z = sin(+x) + cos(+y); // Use uniary plus to concisely convert to a real
* z = sin(x.re) + cos(y.re); // Or use the .re property to convert to a real
* z = sin(x.get!float) + cos(y.get!float); // Or use get!T
* z = sin(cast(float)x) + cos(cast(float)y); // Or use cast(T) to explicitly convert
*
* // Define a 8-bit custom float for storing probabilities
* alias CustomFloat!(4, 4, CustomFloatFlags.ieee^CustomFloatFlags.probability^CustomFloatFlags.signed ) Probability;
* auto p = Probability(0.5);
* ----
*/
template CustomFloat(uint bits)
if (bits == 8 || bits == 16 || bits == 32 || bits == 64 || bits == 80)
{
alias CustomFloat!(CustomFloatParams!(bits)) CustomFloat;
}
/// ditto
template CustomFloat(uint precision, uint exponentWidth, CustomFloatFlags flags = CustomFloatFlags.ieee)
if (((flags & flags.signed) + precision + exponentWidth) % 8 == 0 && precision + exponentWidth > 0)
{
alias CustomFloat!(CustomFloatParams!(precision, exponentWidth, flags)) CustomFloat;
}
/// ditto
struct CustomFloat(
uint precision, // fraction bits (23 for float)
uint exponentWidth, // exponent bits (8 for float) Exponent width
CustomFloatFlags flags,
uint bias)
if(( (flags & flags.signed) + precision + exponentWidth) % 8 == 0 &&
precision + exponentWidth > 0)
{
private:
// get the correct unsigned bitfield type to support > 32 bits
template uType(uint bits) {
static if(bits <= size_t.sizeof*8) alias size_t uType;
else alias ulong uType;
}
// get the correct signed bitfield type to support > 32 bits
template sType(uint bits) {
static if(bits <= ptrdiff_t.sizeof*8-1) alias ptrdiff_t sType;
else alias long sType;
}
alias uType!precision T_sig;
alias uType!exponentWidth T_exp;
alias sType!exponentWidth T_signed_exp;
alias CustomFloatFlags Flags;
// Facilitate converting numeric types to custom float
union ToBinary(F)
if (is(typeof(CustomFloatParams!(F.sizeof*8))) || is(F == real))
{
F set;
// If on Linux or Mac, where 80-bit reals are padded, ignore the
// padding.
CustomFloat!(CustomFloatParams!(min(F.sizeof*8, 80))) get;
// Convert F to the correct binary type.
static typeof(get) opCall(F value) {
ToBinary r;
r.set = value;
return r.get;
}
alias get this;
}
// Perform IEEE rounding with round to nearest detection
void roundedShift(T,U)(ref T sig, U shift) {
if( sig << (T.sizeof*8 - shift) == cast(T) 1uL << (T.sizeof*8 - 1) ) {
// round to even
sig >>= shift;
sig += sig & 1;
} else {
sig >>= shift - 1;
sig += sig & 1;
// Perform standard rounding
sig >>= 1;
}
}
// Convert the current value to signed exponent, normalized form
void toNormalized(T,U)(ref T sig, ref U exp) {
sig = significand;
auto shift = (T.sizeof*8) - precision;
exp = exponent;
static if(flags&(Flags.infinity|Flags.nan)) {
// Handle inf or nan
if(exp == exponent_max) {
exp = exp.max;
sig <<= shift;
static if(flags&Flags.storeNormalized) {
// Save inf/nan in denormalized format
sig >>= 1;
sig += cast(T) 1uL << (T.sizeof*8 - 1);
}
return;
}
}
if( (~flags&Flags.storeNormalized) ||
// Convert denormalized form to normalized form
((flags&Flags.allowDenorm)&&(exp==0)) ){
if(sig > 0) {
auto shift2 = precision - bsr64(sig);
exp -= shift2-1;
shift += shift2;
} else { // value = 0.0
exp = exp.min;
return;
}
}
sig <<= shift;
exp -= bias;
}
// Set the current value from signed exponent, normalized form
void fromNormalized(T,U)(ref T sig, ref U exp) {
auto shift = (T.sizeof*8) - precision;
if(exp == exp.max) {
// infinity or nan
exp = exponent_max;
static if(flags & Flags.storeNormalized) sig <<= 1;
// convert back to normalized form
static if(~flags & Flags.infinity)
// No infinity support?
enforce(sig != 0,"Infinity floating point value assigned to a "
~ typeof(this).stringof~" (no infinity support).");
static if(~flags & Flags.nan) // No NaN support?
enforce(sig == 0,"NaN floating point value assigned to a " ~
typeof(this).stringof~" (no nan support).");
sig >>= shift;
return;
}
if(exp == exp.min){ // 0.0
exp = 0;
sig = 0;
return;
}
exp += bias;
if( exp <= 0 ) {
static if( ( flags&Flags.allowDenorm) ||
// Convert from normalized form to denormalized
(~flags&Flags.storeNormalized) ) {
shift += -exp;
roundedShift(sig,1);
sig += cast(T) 1uL << (T.sizeof*8 - 1);
// Add the leading 1
exp = 0;
} else enforce( (flags&Flags.storeNormalized) && exp == 0,
"Underflow occured assigning to a " ~
typeof(this).stringof ~ " (no denormal support).");
} else {
static if(~flags&Flags.storeNormalized) {
// Convert from normalized form to denormalized
roundedShift(sig,1);
sig += cast(T) 1uL << (T.sizeof*8 - 1);
// Add the leading 1
}
}
if(shift > 0)
roundedShift(sig,shift);
if(sig > significand_max) {
// handle significand overflow (should only be 1 bit)
static if(~flags&Flags.storeNormalized) {
sig >>= 1;
} else
sig &= significand_max;
exp++;
}
static if((flags&Flags.allowDenormZeroOnly)==Flags.allowDenormZeroOnly) {
// disallow non-zero denormals
if(exp == 0) {
sig <<= 1;
if(sig > significand_max && (sig&significand_max) > 0 )
// Check and round to even
exp++;
sig = 0;
}
}
if(exp >= exponent_max ) {
static if( flags&(Flags.infinity|Flags.nan) ) {
sig = 0;
exp = exponent_max;
static if(~flags&(Flags.infinity))
enforce( false, "Overflow occured assigning to a " ~
typeof(this).stringof~" (no infinity support).");
} else
enforce( exp == exponent_max, "Overflow occured assigning to a "
~ typeof(this).stringof~" (no infinity support).");
}
}
public:
static if( precision == 64 ) { // CustomFloat!80 support hack
ulong significand;
enum ulong significand_max = ulong.max;
mixin(bitfields!(
T_exp , "exponent", exponentWidth,
bool , "sign" , flags & flags.signed ));
} else {
mixin(bitfields!(
T_sig, "significand", precision,
T_exp, "exponent" , exponentWidth,
bool , "sign" , flags & flags.signed ));
}
/// Returns: infinity value
static if (flags & Flags.infinity)
static @property CustomFloat infinity() {
CustomFloat value;
static if (flags & Flags.signed)
value.sign = 0;
value.significand = 0;
value.exponent = exponent_max;
return value;
}
/// Returns: NaN value
static if (flags & Flags.nan)
static @property CustomFloat nan() {
CustomFloat value;
static if (flags & Flags.signed)
value.sign = 0;
value.significand = cast(typeof(significand_max)) 1L << (precision-1);
value.exponent = exponent_max;
return value;
}
/// Returns: number of decimal digits of precision
static @property size_t dig(){
auto shiftcnt = precision - ((flags&Flags.storeNormalized) != 0);
auto x = (shiftcnt == 64) ? 0 : 1uL << shiftcnt;
return cast(size_t) log10(x);
}
/// Returns: smallest increment to the value 1
static @property CustomFloat epsilon() {
CustomFloat value;
static if (flags & Flags.signed)
value.sign = 0;
T_signed_exp exp = -precision;
T_sig sig = 0;
value.fromNormalized(sig,exp);
if(exp == 0 && sig == 0) { // underflowed to zero
static if((flags&Flags.allowDenorm) || (~flags&Flags.storeNormalized))
sig = 1;
else
sig = cast(T) 1uL << (precision - 1);
}
value.exponent = cast(value.T_exp) exp;
value.significand = cast(value.T_sig) sig;
return value;
}
/// the number of bits in mantissa
enum mant_dig = precision + ((flags&Flags.storeNormalized) != 0);
/// Returns: maximum int value such that 10<sup>max_10_exp</sup> is representable
static @property int max_10_exp(){ return cast(int) log10( +max ); }
/// maximum int value such that 2<sup>max_exp-1</sup> is representable
enum max_exp = exponent_max-bias+((~flags&(Flags.infinity|flags.nan))!=0);
/// Returns: minimum int value such that 10<sup>min_10_exp</sup> is representable
static @property int min_10_exp(){ return cast(int) log10( +min_normal ); }
/// minimum int value such that 2<sup>min_exp-1</sup> is representable as a normalized value
enum min_exp = cast(T_signed_exp)-bias +1+ ((flags&Flags.allowDenorm)!=0);
/// Returns: largest representable value that's not infinity
static @property CustomFloat max() {
CustomFloat value;
static if (flags & Flags.signed)
value.sign = 0;
value.exponent = exponent_max - ((flags&(flags.infinity|flags.nan)) != 0);
value.significand = significand_max;
return value;
}
/// Returns: smallest representable normalized value that's not 0
static @property CustomFloat min_normal() {
CustomFloat value;
static if (flags & Flags.signed)
value.sign = 0;
value.exponent = 1;
static if(flags&Flags.storeNormalized)
value.significand = 0;
else
value.significand = cast(T_sig) 1uL << (precision - 1);
return value;
}
/// Returns: real part
@property CustomFloat re() { return this; }
/// Returns: imaginary part
static @property CustomFloat im() { return CustomFloat(0.0f); }
/// Initialize from any $(D real) compatible type.
this(F)(F input) if (__traits(compiles, cast(real)input )) { this = input; }
/// Self assignment
void opAssign(F:CustomFloat)(F input) {
static if (flags & Flags.signed)
sign = input.sign;
exponent = input.exponent;
significand = input.significand;
}
/// Assigns from any $(D real) compatible type.
void opAssign(F)(F input)
if (__traits(compiles, cast(real)input ))
{
static if( staticIndexOf!(Unqual!F, float, double, real) >= 0 )
auto value = ToBinary!(Unqual!F)(input);
else auto value = ToBinary!(real )(input);
// Assign the sign bit
static if (~flags & Flags.signed)
enforce( (!value.sign)^((flags&flags.negativeUnsigned)>0) ,
"Incorrectly signed floating point value assigned to a " ~
typeof(this).stringof~" (no sign support).");
else
sign = value.sign;
CommonType!(T_signed_exp ,value.T_signed_exp ) exp = value.exponent;
CommonType!(T_sig, value.T_sig ) sig = value.significand;
value.toNormalized(sig,exp);
fromNormalized(sig,exp);
assert(exp <= exponent_max, text(typeof(this).stringof ~
" exponent too large: " ,exp," > ",exponent_max, "\t",input,"\t",sig) );
assert(sig <= significand_max, text(typeof(this).stringof ~
" significand too large: ",sig," > ",significand_max,
"\t",input,"\t",exp," ",exponent_max) );
exponent = cast(T_exp) exp;
significand = cast(T_sig) sig;
}
/// Fetches the stored value either as a $(D float), $(D double) or $(D real).
@property F get(F)()
if (staticIndexOf!(Unqual!F, float, double, real) >= 0)
{
ToBinary!F result;
static if (flags&Flags.signed) result.sign = sign;
else result.sign = (flags&flags.negativeUnsigned) > 0;
CommonType!(T_signed_exp ,result.get.T_signed_exp ) exp = exponent; // Assign the exponent and fraction
CommonType!(T_sig, result.get.T_sig ) sig = significand;
toNormalized(sig,exp);
result.fromNormalized(sig,exp);
assert(exp <= result.exponent_max, text("get exponent too large: " ,exp," > ",result.exponent_max) );
assert(sig <= result.significand_max, text("get significand too large: ",sig," > ",result.significand_max) );
result.exponent = cast(result.get.T_exp) exp;
result.significand = cast(result.get.T_sig) sig;
return result.set;
}
///ditto
T opCast(T)() if (__traits(compiles, get!T )) { return get!T; }
/// Convert the CustomFloat to a real and perform the relavent operator on the result
real opUnary(string op)() if( __traits(compiles, mixin(op~`(get!real)`)) || op=="++" || op=="--" ){
static if(op=="++" || op=="--") {
auto result = get!real;
this = mixin(op~`result`);
return result;
} else
return mixin(op~`get!real`);
}
/// ditto
real opBinary(string op,T)(T b) if( __traits(compiles, mixin(`get!real`~op~`b`) ) ) {
return mixin(`get!real`~op~`b`);
}
/// ditto
real opBinaryRight(string op,T)(T a) if( __traits(compiles, mixin(`a`~op~`get!real`) ) &&
!__traits(compiles, mixin(`get!real`~op~`b`) ) ) {
return mixin(`a`~op~`get!real`);
}
/// ditto
int opCmp(T)(auto ref T b) if(__traits(compiles, cast(real)b ) ) {
auto x = get!real;
auto y = cast(real) b;
return (x>=y)-(x<=y);
}
/// ditto
void opOpAssign(string op, T)(auto ref T b) if ( __traits(compiles, mixin(`get!real`~op~`cast(real)b`))) {
return mixin(`this = this `~op~` cast(real)b`);
}
/// ditto
string toString() { return to!string(get!real); }
}
unittest
{
alias TypeTuple!(
CustomFloat!(5, 10),
CustomFloat!(5, 11, CustomFloatFlags.ieee ^ CustomFloatFlags.signed),
CustomFloat!(1, 15, CustomFloatFlags.ieee ^ CustomFloatFlags.signed),
CustomFloat!(4, 3, CustomFloatFlags.ieee | CustomFloatFlags.probability ^ CustomFloatFlags.signed)
) FPTypes;
foreach (F; FPTypes)
{
auto x = F(0.125);
assert(x.get!float == 0.125F);
assert(x.get!double == 0.125);
x -= 0.0625;
assert(x.get!float == 0.0625F);
assert(x.get!double == 0.0625);
x *= 2;
assert(x.get!float == 0.125F);
assert(x.get!double == 0.125);
x /= 4;
assert(x.get!float == 0.03125);
assert(x.get!double == 0.03125);
x = 0.5;
x ^^= 4;
assert(x.get!float == 1 / 16.0F);
assert(x.get!double == 1 / 16.0);
}
}
/**
Defines the fastest type to use when storing temporaries of a
calculation intended to ultimately yield a result of type $(D F)
(where $(D F) must be one of $(D float), $(D double), or $(D
real)). When doing a multi-step computation, you may want to store
intermediate results as $(D FPTemporary!F).
Example:
----
// Average numbers in an array
double avg(in double[] a)
{
if (a.length == 0) return 0;
FPTemporary!double result = 0;
foreach (e; a) result += e;
return result / a.length;
}
----
The necessity of $(D FPTemporary) stems from the optimized
floating-point operations and registers present in virtually all
processors. When adding numbers in the example above, the addition may
in fact be done in $(D real) precision internally. In that case,
storing the intermediate $(D result) in $(D double format) is not only
less precise, it is also (surprisingly) slower, because a conversion
from $(D real) to $(D double) is performed every pass through the
loop. This being a lose-lose situation, $(D FPTemporary!F) has been
defined as the $(I fastest) type to use for calculations at precision
$(D F). There is no need to define a type for the $(I most accurate)
calculations, as that is always $(D real).
Finally, there is no guarantee that using $(D FPTemporary!F) will
always be fastest, as the speed of floating-point calculations depends
on very many factors.
*/
template FPTemporary(F) if (isFloatingPoint!F)
{
alias real FPTemporary;
}
/**
Implements the $(WEB tinyurl.com/2zb9yr, secant method) for finding a
root of the function $(D fun) starting from points $(D [xn_1, x_n])
(ideally close to the root). $(D Num) may be $(D float), $(D double),
or $(D real).
Example:
----
float f(float x) {
return cos(x) - x*x*x;
}
auto x = secantMethod!(f)(0f, 1f);
assert(approxEqual(x, 0.865474));
----
*/
template secantMethod(alias fun)
{
Num secantMethod(Num)(Num xn_1, Num xn) {
auto fxn = unaryFun!(fun)(xn_1), d = xn_1 - xn;
typeof(fxn) fxn_1;
xn = xn_1;
while (!approxEqual(d, 0) && isfinite(d)) {
xn_1 = xn;
xn -= d;
fxn_1 = fxn;
fxn = unaryFun!(fun)(xn);
d *= -fxn / (fxn - fxn_1);
}
return xn;
}
}
unittest
{
scope(failure) stderr.writeln("Failure testing secantMethod");
float f(float x) {
return cos(x) - x*x*x;
}
immutable x = secantMethod!(f)(0f, 1f);
assert(approxEqual(x, 0.865474));
auto d = &f;
immutable y = secantMethod!(d)(0f, 1f);
assert(approxEqual(y, 0.865474));
}
private:
// Return true if a and b have opposite sign.
bool oppositeSigns(T)(T a, T b)
{
return signbit(a) != signbit(b);
}
public:
/** Find a real root of a real function f(x) via bracketing.
*
* Given a function $(D f) and a range $(D [a..b]) such that $(D f(a))
* and $(D f(b)) have opposite signs, returns the value of $(D x) in
* the range which is closest to a root of $(D f(x)). If $(D f(x))
* has more than one root in the range, one will be chosen
* arbitrarily. If $(D f(x)) returns NaN, NaN will be returned;
* otherwise, this algorithm is guaranteed to succeed.
*
* Uses an algorithm based on TOMS748, which uses inverse cubic
* interpolation whenever possible, otherwise reverting to parabolic
* or secant interpolation. Compared to TOMS748, this implementation
* improves worst-case performance by a factor of more than 100, and
* typical performance by a factor of 2. For 80-bit reals, most
* problems require 8 to 15 calls to $(D f(x)) to achieve full machine
* precision. The worst-case performance (pathological cases) is
* approximately twice the number of bits.
*
* References: "On Enclosing Simple Roots of Nonlinear Equations",
* G. Alefeld, F.A. Potra, Yixun Shi, Mathematics of Computation 61,
* pp733-744 (1993). Fortran code available from $(WEB
* www.netlib.org,www.netlib.org) as algorithm TOMS478.
*
*/
T findRoot(T, R)(scope R delegate(T) f, T a, T b)
{
auto r = findRoot(f, a, b, f(a), f(b), (T lo, T hi){ return false; });
// Return the first value if it is smaller or NaN
return !(fabs(r[2]) > fabs(r[3])) ? r[0] : r[1];
}
/** Find root of a real function f(x) by bracketing, allowing the
* termination condition to be specified.
*
* Params:
*
* f = Function to be analyzed
*
* ax = Left bound of initial range of $(D f) known to contain the
* root.
*
* bx = Right bound of initial range of $(D f) known to contain the
* root.
*
* fax = Value of $(D f(ax)).
*
* fbx = Value of $(D f(bx)). ($(D f(ax)) and $(D f(bx)) are commonly
* known in advance.)
*
*
* tolerance = Defines an early termination condition. Receives the
* current upper and lower bounds on the root. The
* delegate must return $(D true) when these bounds are
* acceptable. If this function always returns $(D false),
* full machine precision will be achieved.
*
* Returns:
*
* A tuple consisting of two ranges. The first two elements are the
* range (in $(D x)) of the root, while the second pair of elements
* are the corresponding function values at those points. If an exact
* root was found, both of the first two elements will contain the
* root, and the second pair of elements will be 0.
*/
Tuple!(T, T, R, R) findRoot(T,R)(scope R delegate(T) f, T ax, T bx, R fax, R fbx,
scope bool delegate(T lo, T hi) tolerance)
in {
assert(!ax.isNaN && !bx.isNaN, "Limits must not be NaN");
assert(signbit(fax) != signbit(fbx), "Parameters must bracket the root.");
}
body {
// Author: Don Clugston. This code is (heavily) modified from TOMS748 (www.netlib.org).
// The changes to improve the worst-cast performance are entirely original.
T a, b, d; // [a..b] is our current bracket. d is the third best guess.
R fa, fb, fd; // Values of f at a, b, d.
bool done = false; // Has a root been found?
// Allow ax and bx to be provided in reverse order
if (ax <= bx) {
a = ax; fa = fax;
b = bx; fb = fbx;
} else {
a = bx; fa = fbx;
b = ax; fb = fax;
}
// Test the function at point c; update brackets accordingly
void bracket(T c)
{
T fc = f(c);
if (fc == 0 || fc.isNaN) { // Exact solution, or NaN
a = c;
fa = fc;
d = c;
fd = fc;
done = true;
return;
}
// Determine new enclosing interval
if (signbit(fa) != signbit(fc)) {
d = b;
fd = fb;
b = c;
fb = fc;
} else {
d = a;
fd = fa;
a = c;
fa = fc;
}
}
/* Perform a secant interpolation. If the result would lie on a or b, or if
a and b differ so wildly in magnitude that the result would be meaningless,
perform a bisection instead.
*/
T secant_interpolate(T a, T b, T fa, T fb)
{
if (( ((a - b) == a) && b!=0) || (a!=0 && ((b - a) == b))) {
// Catastrophic cancellation
if (a == 0) a = copysign(0.0L, b);
else if (b == 0) b = copysign(0.0L, a);
else if (signbit(a) != signbit(b)) return 0;
T c = ieeeMean(a, b);
return c;
}
// avoid overflow
if (b - a > T.max) return b / 2.0 + a / 2.0;
if (fb - fa > T.max) return a - (b - a) / 2;
T c = a - (fa / (fb - fa)) * (b - a);
if (c == a || c == b) return (a + b) / 2;
return c;
}
/* Uses 'numsteps' newton steps to approximate the zero in [a..b] of the
quadratic polynomial interpolating f(x) at a, b, and d.
Returns:
The approximate zero in [a..b] of the quadratic polynomial.
*/
T newtonQuadratic(int numsteps)
{
// Find the coefficients of the quadratic polynomial.
T a0 = fa;
T a1 = (fb - fa)/(b - a);
T a2 = ((fd - fb)/(d - b) - a1)/(d - a);
// Determine the starting point of newton steps.
T c = oppositeSigns(a2, fa) ? a : b;
// start the safeguarded newton steps.
for (int i = 0; i<numsteps; ++i) {
T pc = a0 + (a1 + a2 * (c - b))*(c - a);
T pdc = a1 + a2*((2.0 * c) - (a + b));
if (pdc == 0) return a - a0 / a1;
else c = c - pc / pdc;
}
return c;
}
// On the first iteration we take a secant step:
if (fa == 0 || fa.isNaN) {
done = true;
b = a;
fb = fa;
} else if (fb == 0 || fb.isNaN) {
done = true;
a = b;
fa = fb;
} else {
bracket(secant_interpolate(a, b, fa, fb));
}
// Starting with the second iteration, higher-order interpolation can
// be used.
int itnum = 1; // Iteration number
int baditer = 1; // Num bisections to take if an iteration is bad.
T c, e; // e is our fourth best guess
R fe;
whileloop:
while(!done && (b != nextUp(a)) && !tolerance(a, b)) {
T a0 = a, b0 = b; // record the brackets
// Do two higher-order (cubic or parabolic) interpolation steps.
for (int QQ = 0; QQ < 2; ++QQ) {
// Cubic inverse interpolation requires that
// all four function values fa, fb, fd, and fe are distinct;
// otherwise use quadratic interpolation.
bool distinct = (fa != fb) && (fa != fd) && (fa != fe)
&& (fb != fd) && (fb != fe) && (fd != fe);
// The first time, cubic interpolation is impossible.
if (itnum<2) distinct = false;
bool ok = distinct;
if (distinct) {
// Cubic inverse interpolation of f(x) at a, b, d, and e
real q11 = (d - e) * fd / (fe - fd);
real q21 = (b - d) * fb / (fd - fb);
real q31 = (a - b) * fa / (fb - fa);
real d21 = (b - d) * fd / (fd - fb);
real d31 = (a - b) * fb / (fb - fa);
real q22 = (d21 - q11) * fb / (fe - fb);
real q32 = (d31 - q21) * fa / (fd - fa);
real d32 = (d31 - q21) * fd / (fd - fa);
real q33 = (d32 - q22) * fa / (fe - fa);
c = a + (q31 + q32 + q33);
if (c.isNaN || (c <= a) || (c >= b)) {
// DAC: If the interpolation predicts a or b, it's
// probable that it's the actual root. Only allow this if
// we're already close to the root.
if (c == a && a - b != a) {
c = nextUp(a);
}
else if (c == b && a - b != -b) {
c = nextDown(b);
} else {
ok = false;
}
}
}
if (!ok) {
// DAC: Alefeld doesn't explain why the number of newton steps
// should vary.
c = newtonQuadratic(distinct ? 3 : 2);
if(c.isNaN || (c <= a) || (c >= b)) {
// Failure, try a secant step:
c = secant_interpolate(a, b, fa, fb);
}
}
++itnum;
e = d;
fe = fd;
bracket(c);
if( done || ( b == nextUp(a)) || tolerance(a, b))
break whileloop;
if (itnum == 2)
continue whileloop;
}
// Now we take a double-length secant step:
T u;
R fu;
if(fabs(fa) < fabs(fb)) {
u = a;
fu = fa;
} else {
u = b;
fu = fb;
}
c = u - 2 * (fu / (fb - fa)) * (b - a);
// DAC: If the secant predicts a value equal to an endpoint, it's
// probably false.
if(c==a || c==b || c.isNaN || fabs(c - u) > (b - a) / 2) {
if ((a-b) == a || (b-a) == b) {
if ( (a>0 && b<0) || (a<0 && b>0) ) c = 0;
else {
if (a==0) c = ieeeMean(cast(T)copysign(0.0L, b), b);
else if (b==0) c = ieeeMean(cast(T)copysign(0.0L, a), a);
else c = ieeeMean(a, b);
}
} else {
c = a + (b - a) / 2;
}
}
e = d;
fe = fd;
bracket(c);
if(done || (b == nextUp(a)) || tolerance(a, b))
break;
// IMPROVE THE WORST-CASE PERFORMANCE
// We must ensure that the bounds reduce by a factor of 2
// in binary space! every iteration. If we haven't achieved this
// yet, or if we don't yet know what the exponent is,
// perform a binary chop.
if( (a==0 || b==0 ||
(fabs(a) >= 0.5 * fabs(b) && fabs(b) >= 0.5 * fabs(a)))
&& (b - a) < 0.25 * (b0 - a0)) {
baditer = 1;
continue;
}
// DAC: If this happens on consecutive iterations, we probably have a
// pathological function. Perform a number of bisections equal to the
// total number of consecutive bad iterations.
if ((b - a) < 0.25 * (b0 - a0)) baditer = 1;
for (int QQ = 0; QQ < baditer ;++QQ) {
e = d;
fe = fd;
T w;
if ((a>0 && b<0) ||(a<0 && b>0)) w = 0;
else {
T usea = a;
T useb = b;
if (a == 0) usea = copysign(0.0L, b);
else if (b == 0) useb = copysign(0.0L, a);
w = ieeeMean(usea, useb);
}
bracket(w);
}
++baditer;
}
return Tuple!(T, T, R, R)(a, b, fa, fb);
}
unittest
{
int numProblems = 0;
int numCalls;
void testFindRoot(real delegate(real) f, real x1, real x2) {
numCalls=0;
++numProblems;
assert(!x1.isNaN && !x2.isNaN);
assert(signbit(x1) != signbit(x2));
auto result = findRoot(f, x1, x2, f(x1), f(x2),
(real lo, real hi) { return false; });
auto flo = f(result[0]);
auto fhi = f(result[1]);
if (flo!=0) {
assert(oppositeSigns(flo, fhi));
}
}
// Test functions
real cubicfn (real x) {
++numCalls;
if (x>float.max) x = float.max;
if (x<-double.max) x = -double.max;
// This has a single real root at -59.286543284815
return 0.386*x*x*x + 23*x*x + 15.7*x + 525.2;
}
// Test a function with more than one root.
real multisine(real x) { ++numCalls; return sin(x); }
//testFindRoot( &multisine, 6, 90);
//testFindRoot(&cubicfn, -100, 100);
//testFindRoot( &cubicfn, -double.max, real.max);
/* Tests from the paper:
* "On Enclosing Simple Roots of Nonlinear Equations", G. Alefeld, F.A. Potra,
* Yixun Shi, Mathematics of Computation 61, pp733-744 (1993).
*/
// Parameters common to many alefeld tests.
int n;
real ale_a, ale_b;
int powercalls = 0;
real power(real x) {
++powercalls;
++numCalls;
return pow(x, n) + double.min_normal;
}
int [] power_nvals = [3, 5, 7, 9, 19, 25];
// Alefeld paper states that pow(x,n) is a very poor case, where bisection
// outperforms his method, and gives total numcalls =
// 921 for bisection (2.4 calls per bit), 1830 for Alefeld (4.76/bit),
// 2624 for brent (6.8/bit)
// ... but that is for double, not real80.
// This poor performance seems mainly due to catastrophic cancellation,
// which is avoided here by the use of ieeeMean().
// I get: 231 (0.48/bit).
// IE this is 10X faster in Alefeld's worst case
numProblems=0;
foreach(k; power_nvals) {
n = k;
//testFindRoot(&power, -1, 10);
}
int powerProblems = numProblems;
// Tests from Alefeld paper
int [9] alefeldSums;
real alefeld0(real x){
++alefeldSums[0];
++numCalls;
real q = sin(x) - x/2;
for (int i=1; i<20; ++i)
q+=(2*i-5.0)*(2*i-5.0)/((x-i*i)*(x-i*i)*(x-i*i));
return q;
}
real alefeld1(real x) {
++numCalls;
++alefeldSums[1];
return ale_a*x + exp(ale_b * x);
}
real alefeld2(real x) {
++numCalls;
++alefeldSums[2];
return pow(x, n) - ale_a;
}
real alefeld3(real x) {
++numCalls;
++alefeldSums[3];
return (1.0 +pow(1.0L-n, 2))*x - pow(1.0L-n*x, 2);
}
real alefeld4(real x) {
++numCalls;
++alefeldSums[4];
return x*x - pow(1-x, n);
}
real alefeld5(real x) {
++numCalls;
++alefeldSums[5];
return (1+pow(1.0L-n, 4))*x - pow(1.0L-n*x, 4);
}
real alefeld6(real x) {
++numCalls;
++alefeldSums[6];
return exp(-n*x)*(x-1.01L) + pow(x, n);
}
real alefeld7(real x) {
++numCalls;
++alefeldSums[7];
return (n*x-1)/((n-1)*x);
}
numProblems=0;
//testFindRoot(&alefeld0, PI_2, PI);
for (n=1; n<=10; ++n) {
//testFindRoot(&alefeld0, n*n+1e-9L, (n+1)*(n+1)-1e-9L);
}
ale_a = -40; ale_b = -1;
//testFindRoot(&alefeld1, -9, 31);
ale_a = -100; ale_b = -2;
//testFindRoot(&alefeld1, -9, 31);
ale_a = -200; ale_b = -3;
//testFindRoot(&alefeld1, -9, 31);
int [] nvals_3 = [1, 2, 5, 10, 15, 20];
int [] nvals_5 = [1, 2, 4, 5, 8, 15, 20];
int [] nvals_6 = [1, 5, 10, 15, 20];
int [] nvals_7 = [2, 5, 15, 20];
for(int i=4; i<12; i+=2) {
n = i;
ale_a = 0.2;
//testFindRoot(&alefeld2, 0, 5);
ale_a=1;
//testFindRoot(&alefeld2, 0.95, 4.05);
//testFindRoot(&alefeld2, 0, 1.5);
}
foreach(i; nvals_3) {
n=i;
//testFindRoot(&alefeld3, 0, 1);
}
foreach(i; nvals_3) {
n=i;
//testFindRoot(&alefeld4, 0, 1);
}
foreach(i; nvals_5) {
n=i;
//testFindRoot(&alefeld5, 0, 1);
}
foreach(i; nvals_6) {
n=i;
//testFindRoot(&alefeld6, 0, 1);
}
foreach(i; nvals_7) {
n=i;
//testFindRoot(&alefeld7, 0.01L, 1);
}
real worstcase(real x) { ++numCalls;
return x<0.3*real.max? -0.999e-3 : 1.0;
}
//testFindRoot(&worstcase, -real.max, real.max);
// just check that the double + float cases compile
//findRoot((double x){ return 0.0; }, -double.max, double.max);
//findRoot((float x){ return 0.0f; }, -float.max, float.max);
/*
int grandtotal=0;
foreach(calls; alefeldSums) {
grandtotal+=calls;
}
grandtotal-=2*numProblems;
printf("\nALEFELD TOTAL = %d avg = %f (alefeld avg=19.3 for double)\n",
grandtotal, (1.0*grandtotal)/numProblems);
powercalls -= 2*powerProblems;
printf("POWER TOTAL = %d avg = %f ", powercalls,
(1.0*powercalls)/powerProblems);
*/
}
/**
Computes $(LUCKY Euclidean distance) between input ranges $(D a) and
$(D b). The two ranges must have the same length. The three-parameter
version stops computation as soon as the distance is greater than or
equal to $(D limit) (this is useful to save computation if a small
distance is sought).
*/
CommonType!(ElementType!(Range1), ElementType!(Range2))
euclideanDistance(Range1, Range2)(Range1 a, Range2 b)
if (isInputRange!(Range1) && isInputRange!(Range2))
{
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
typeof(return) result = 0;
for (; !a.empty; a.popFront(), b.popFront())
{
auto t = a.front - b.front;
result += t * t;
}
static if (!haveLen) enforce(b.empty);
return sqrt(result);
}
/// Ditto
CommonType!(ElementType!(Range1), ElementType!(Range2))
euclideanDistance(Range1, Range2, F)(Range1 a, Range2 b, F limit)
if (isInputRange!(Range1) && isInputRange!(Range2))
{
limit *= limit;
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
typeof(return) result = 0;
for (; ; a.popFront(), b.popFront())
{
if (a.empty)
{
static if (!haveLen) enforce(b.empty);
break;
}
auto t = a.front - b.front;
result += t * t;
if (result >= limit) break;
}
return sqrt(result);
}
unittest
{
double[] a = [ 1.0, 2.0, ];
double[] b = [ 4.0, 6.0, ];
assert(euclideanDistance(a, b) == 5);
assert(euclideanDistance(a, b, 5) == 5);
assert(euclideanDistance(a, b, 4) == 5);
assert(euclideanDistance(a, b, 2) == 3);
}
/**
Computes the $(LUCKY dot product) of input ranges $(D a) and $(D
b). The two ranges must have the same length. If both ranges define
length, the check is done once; otherwise, it is done at each
iteration.
*/
CommonType!(ElementType!(Range1), ElementType!(Range2))
dotProduct(Range1, Range2)(Range1 a, Range2 b)
if (isInputRange!(Range1) && isInputRange!(Range2) &&
!(isArray!(Range1) && isArray!(Range2)))
{
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
typeof(return) result = 0;
for (; !a.empty; a.popFront(), b.popFront())
{
result += a.front * b.front;
}
static if (!haveLen) enforce(b.empty);
return result;
}
/// Ditto
Unqual!(CommonType!(F1, F2))
dotProduct(F1, F2)(in F1[] avector, in F2[] bvector)
{
immutable n = avector.length;
assert(n == bvector.length);
auto avec = avector.ptr, bvec = bvector.ptr;
typeof(return) sum0 = 0, sum1 = 0;
const all_endp = avec + n;
const smallblock_endp = avec + (n & ~3);
const bigblock_endp = avec + (n & ~15);
for (; avec != bigblock_endp; avec += 16, bvec += 16)
{
sum0 += avec[0] * bvec[0];
sum1 += avec[1] * bvec[1];
sum0 += avec[2] * bvec[2];
sum1 += avec[3] * bvec[3];
sum0 += avec[4] * bvec[4];
sum1 += avec[5] * bvec[5];
sum0 += avec[6] * bvec[6];
sum1 += avec[7] * bvec[7];
sum0 += avec[8] * bvec[8];
sum1 += avec[9] * bvec[9];
sum0 += avec[10] * bvec[10];
sum1 += avec[11] * bvec[11];
sum0 += avec[12] * bvec[12];
sum1 += avec[13] * bvec[13];
sum0 += avec[14] * bvec[14];
sum1 += avec[15] * bvec[15];
}
for (; avec != smallblock_endp; avec += 4, bvec += 4) {
sum0 += avec[0] * bvec[0];
sum1 += avec[1] * bvec[1];
sum0 += avec[2] * bvec[2];
sum1 += avec[3] * bvec[3];
}
sum0 += sum1;
/* Do trailing portion in naive loop. */
while (avec != all_endp)
{
sum0 += *avec * *bvec;
++avec;
++bvec;
}
return sum0;
}
unittest
{
double[] a = [ 1.0, 2.0, ];
double[] b = [ 4.0, 6.0, ];
assert(dotProduct(a, b) == 16);
assert(dotProduct([1, 3, -5], [4, -2, -1]) == 3);
// Make sure the unrolled loop codepath gets tested.
static const x =
[1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18];
static const y =
[2.0, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19];
assertCTFEable!({ assert(dotProduct(x, y) == 2280); });
}
/**
Computes the $(LUCKY cosine similarity) of input ranges $(D a) and $(D
b). The two ranges must have the same length. If both ranges define
length, the check is done once; otherwise, it is done at each
iteration. If either range has all-zero elements, return 0.
*/
CommonType!(ElementType!(Range1), ElementType!(Range2))
cosineSimilarity(Range1, Range2)(Range1 a, Range2 b)
if (isInputRange!(Range1) && isInputRange!(Range2))
{
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
FPTemporary!(typeof(return)) norma = 0, normb = 0, dotprod = 0;
for (; !a.empty; a.popFront(), b.popFront())
{
immutable t1 = a.front, t2 = b.front;
norma += t1 * t1;
normb += t2 * t2;
dotprod += t1 * t2;
}
static if (!haveLen) enforce(b.empty);
if (norma == 0 || normb == 0) return 0;
return dotprod / sqrt(norma * normb);
}
unittest
{
double[] a = [ 1.0, 2.0, ];
double[] b = [ 4.0, 3.0, ];
// writeln(cosineSimilarity(a, b));
// writeln(10.0 / sqrt(5.0 * 25));
assert(approxEqual(
cosineSimilarity(a, b), 10.0 / sqrt(5.0 * 25),
0.01));
}
/**
Normalizes values in $(D range) by multiplying each element with a
number chosen such that values sum up to $(D sum). If elements in $(D
range) sum to zero, assigns $(D sum / range.length) to
all. Normalization makes sense only if all elements in $(D range) are
positive. $(D normalize) assumes that is the case without checking it.
Returns: $(D true) if normalization completed normally, $(D false) if
all elements in $(D range) were zero or if $(D range) is empty.
*/
bool normalize(R)(R range, ElementType!(R) sum = 1) if (isForwardRange!(R))
{
ElementType!(R) s = 0;
// Step 1: Compute sum and length of the range
static if (hasLength!(R))
{
const length = range.length;
foreach (e; range)
{
s += e;
}
}
else
{
uint length = 0;
foreach (e; range)
{
s += e;
++length;
}
}
// Step 2: perform normalization
if (s == 0)
{
if (length)
{
auto f = sum / range.length;
foreach (ref e; range) e = f;
}
return false;
}
// The path most traveled
assert(s >= 0);
auto f = sum / s;
foreach (ref e; range) e *= f;
return true;
}
unittest
{
double[] a = [];
assert(!normalize(a));
a = [ 1.0, 3.0 ];
assert(normalize(a));
assert(a == [ 0.25, 0.75 ]);
a = [ 0.0, 0.0 ];
assert(!normalize(a));
assert(a == [ 0.5, 0.5 ]);
}
/**
Computes $(LUCKY _entropy) of input range $(D r) in bits. This
function assumes (without checking) that the values in $(D r) are all
in $(D [0, 1]). For the entropy to be meaningful, often $(D r) should
be normalized too (i.e., its values should sum to 1). The
two-parameter version stops evaluating as soon as the intermediate
result is greater than or equal to $(D max).
*/
ElementType!Range entropy(Range)(Range r) if (isInputRange!Range)
{
Unqual!(typeof(return)) result = 0.0;
foreach (e; r)
{
if (!e) continue;
result -= e * log2(e);
}
return result;
}
/// Ditto
ElementType!Range entropy(Range, F)(Range r, F max)
if (isInputRange!Range
&& !is(CommonType!(ElementType!Range, F) == void))
{
typeof(return) result = 0.0;
foreach (e; r)
{
if (!e) continue;
result -= e * log2(e);
if (result >= max) break;
}
return result;
}
unittest
{
double[] p = [ 0.0, 0, 0, 1 ];
assert(entropy(p) == 0);
p = [ 0.25, 0.25, 0.25, 0.25 ];
assert(entropy(p) == 2);
assert(entropy(p, 1) == 1);
}
/**
Computes the $(LUCKY Kullback-Leibler divergence) between input ranges
$(D a) and $(D b), which is the sum $(D ai * log(ai / bi)). The base
of logarithm is 2. The ranges are assumed to contain elements in $(D
[0, 1]). Usually the ranges are normalized probability distributions,
but this is not required or checked by $(D
kullbackLeiblerDivergence). If any element $(D bi) is zero and the
corresponding element $(D ai) nonzero, returns infinity. (Otherwise,
if $(D ai == 0 && bi == 0), the term $(D ai * log(ai / bi)) is
considered zero.) If the inputs are normalized, the result is
positive.
*/
CommonType!(ElementType!Range1, ElementType!Range2)
kullbackLeiblerDivergence(Range1, Range2)(Range1 a, Range2 b)
if (isInputRange!(Range1) && isInputRange!(Range2))
{
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
FPTemporary!(typeof(return)) result = 0;
for (; !a.empty; a.popFront(), b.popFront())
{
immutable t1 = a.front;
if (t1 == 0) continue;
immutable t2 = b.front;
if (t2 == 0) return result.infinity;
assert(t1 > 0 && t2 > 0);
result += t1 * log2(t1 / t2);
}
static if (!haveLen) enforce(b.empty);
return result;
}
unittest
{
double[] p = [ 0.0, 0, 0, 1 ];
assert(kullbackLeiblerDivergence(p, p) == 0);
double[] p1 = [ 0.25, 0.25, 0.25, 0.25 ];
assert(kullbackLeiblerDivergence(p1, p1) == 0);
assert(kullbackLeiblerDivergence(p, p1) == 2);
assert(kullbackLeiblerDivergence(p1, p) == double.infinity);
double[] p2 = [ 0.2, 0.2, 0.2, 0.4 ];
assert(approxEqual(kullbackLeiblerDivergence(p1, p2), 0.0719281));
assert(approxEqual(kullbackLeiblerDivergence(p2, p1), 0.0780719));
}
/**
Computes the $(LUCKY Jensen-Shannon divergence) between $(D a) and $(D
b), which is the sum $(D (ai * log(2 * ai / (ai + bi)) + bi * log(2 *
bi / (ai + bi))) / 2). The base of logarithm is 2. The ranges are
assumed to contain elements in $(D [0, 1]). Usually the ranges are
normalized probability distributions, but this is not required or
checked by $(D jensenShannonDivergence). If the inputs are normalized,
the result is bounded within $(D [0, 1]). The three-parameter version
stops evaluations as soon as the intermediate result is greater than
or equal to $(D limit).
*/
CommonType!(ElementType!Range1, ElementType!Range2)
jensenShannonDivergence(Range1, Range2)(Range1 a, Range2 b)
if (isInputRange!Range1 && isInputRange!Range2
&& is(CommonType!(ElementType!Range1, ElementType!Range2)))
{
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
FPTemporary!(typeof(return)) result = 0;
for (; !a.empty; a.popFront(), b.popFront())
{
immutable t1 = a.front;
immutable t2 = b.front;
immutable avg = (t1 + t2) / 2;
if (t1 != 0)
{
result += t1 * log2(t1 / avg);
}
if (t2 != 0)
{
result += t2 * log2(t2 / avg);
}
}
static if (!haveLen) enforce(b.empty);
return result / 2;
}
/// Ditto
CommonType!(ElementType!Range1, ElementType!Range2)
jensenShannonDivergence(Range1, Range2, F)(Range1 a, Range2 b, F limit)
if (isInputRange!Range1 && isInputRange!Range2
&& is(typeof(CommonType!(ElementType!Range1, ElementType!Range2).init
>= F.init) : bool))
{
enum bool haveLen = hasLength!(Range1) && hasLength!(Range2);
static if (haveLen) enforce(a.length == b.length);
FPTemporary!(typeof(return)) result = 0;
limit *= 2;
for (; !a.empty; a.popFront(), b.popFront())
{
immutable t1 = a.front;
immutable t2 = b.front;
immutable avg = (t1 + t2) / 2;
if (t1 != 0)
{
result += t1 * log2(t1 / avg);
}
if (t2 != 0)
{
result += t2 * log2(t2 / avg);
}
if (result >= limit) break;
}
static if (!haveLen) enforce(b.empty);
return result / 2;
}
unittest
{
double[] p = [ 0.0, 0, 0, 1 ];
assert(jensenShannonDivergence(p, p) == 0);
double[] p1 = [ 0.25, 0.25, 0.25, 0.25 ];
assert(jensenShannonDivergence(p1, p1) == 0);
assert(approxEqual(jensenShannonDivergence(p1, p), 0.548795));
double[] p2 = [ 0.2, 0.2, 0.2, 0.4 ];
assert(approxEqual(jensenShannonDivergence(p1, p2), 0.0186218));
assert(approxEqual(jensenShannonDivergence(p2, p1), 0.0186218));
assert(approxEqual(jensenShannonDivergence(p2, p1, 0.005), 0.00602366));
}
// template tabulateFixed(alias fun, uint n,
// real maxError, real left, real right)
// {
// ReturnType!(fun) tabulateFixed(ParameterTypeTuple!(fun) arg)
// {
// alias ParameterTypeTuple!(fun)[0] num;
// static num[n] table;
// alias arg[0] x;
// enforce(left <= x && x < right);
// immutable i = cast(uint) (table.length
// * ((x - left) / (right - left)));
// assert(i < n);
// if (isnan(table[i])) {
// // initialize it
// auto x1 = left + i * (right - left) / n;
// auto x2 = left + (i + 1) * (right - left) / n;
// immutable y1 = fun(x1), y2 = fun(x2);
// immutable y = 2 * y1 * y2 / (y1 + y2);
// num wyda(num xx) { return fun(xx) - y; }
// auto bestX = findRoot(&wyda, x1, x2);
// table[i] = fun(bestX);
// immutable leftError = abs((table[i] - y1) / y1);
// enforce(leftError <= maxError, text(leftError, " > ", maxError));
// immutable rightError = abs((table[i] - y2) / y2);
// enforce(rightError <= maxError, text(rightError, " > ", maxError));
// }
// return table[i];
// }
// }
// unittest
// {
// enum epsilon = 0.01;
// alias tabulateFixed!(tanh, 700, epsilon, 0.2, 3) fasttanh;
// uint testSize = 100000;
// auto rnd = Random(unpredictableSeed);
// foreach (i; 0 .. testSize) {
// immutable x = uniform(rnd, 0.2F, 3.0F);
// immutable float y = fasttanh(x), w = tanh(x);
// immutable e = abs(y - w) / w;
// //writefln("%.20f", e);
// enforce(e <= epsilon, text("x = ", x, ", fasttanh(x) = ", y,
// ", tanh(x) = ", w, ", relerr = ", e));
// }
// }
/**
The so-called "all-lengths gap-weighted string kernel" computes a
similarity measure between $(D s) and $(D t) based on all of their
common subsequences of all lengths. Gapped subsequences are also
included.
To understand what $(D gapWeightedSimilarity(s, t, lambda)) computes,
consider first the case $(D lambda = 1) and the strings $(D s =
["Hello", "brave", "new", "world"]) and $(D t = ["Hello", "new",
"world"]). In that case, $(D gapWeightedSimilarity) counts the
following matches:
$(OL $(LI three matches of length 1, namely $(D "Hello"), $(D "new"),
and $(D "world");) $(LI three matches of length 2, namely ($(D
"Hello", "new")), ($(D "Hello", "world")), and ($(D "new", "world"));)
$(LI one match of length 3, namely ($(D "Hello", "new", "world")).))
The call $(D gapWeightedSimilarity(s, t, 1)) simply counts all of
these matches and adds them up, returning 7.
----
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, t, 1) == 7);
----
Note how the gaps in matching are simply ignored, for example ($(D
"Hello", "new")) is deemed as good a match as ($(D "new",
"world")). This may be too permissive for some applications. To
eliminate gapped matches entirely, use $(D lambda = 0):
----
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, t, 0) == 4);
----
The call above eliminated the gapped matches ($(D "Hello", "new")),
($(D "Hello", "world")), and ($(D "Hello", "new", "world")) from the
tally. That leaves only 4 matches.
The most interesting case is when gapped matches still participate in
the result, but not as strongly as ungapped matches. The result will
be a smooth, fine-grained similarity measure between the input
strings. This is where values of $(D lambda) between 0 and 1 enter
into play: gapped matches are $(I exponentially penalized with the
number of gaps) with base $(D lambda). This means that an ungapped
match adds 1 to the return value; a match with one gap in either
string adds $(D lambda) to the return value; ...; a match with a total
of $(D n) gaps in both strings adds $(D pow(lambda, n)) to the return
value. In the example above, we have 4 matches without gaps, 2 matches
with one gap, and 1 match with three gaps. The latter match is ($(D
"Hello", "world")), which has two gaps in the first string and one gap
in the second string, totaling to three gaps. Summing these up we get
$(D 4 + 2 * lambda + pow(lambda, 3)).
----
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, t, 0.5) == 4 + 0.5 * 2 + 0.125);
----
$(D gapWeightedSimilarity) is useful wherever a smooth similarity
measure between sequences allowing for approximate matches is
needed. The examples above are given with words, but any sequences
with elements comparable for equality are allowed, e.g. characters or
numbers. $(D gapWeightedSimilarity) uses a highly optimized dynamic
programming implementation that needs $(D 16 * min(s.length,
t.length)) extra bytes of memory and $(BIGOH s.length * t.length) time
to complete.
*/
F gapWeightedSimilarity(alias comp = "a == b", R1, R2, F)(R1 s, R2 t, F lambda)
if (isRandomAccessRange!(R1) && hasLength!(R1)
&& isRandomAccessRange!(R2) && hasLength!(R2))
{
if (s.length < t.length) return gapWeightedSimilarity(t, s, lambda);
if (!t.length) return 0;
immutable tl1 = t.length + 1;
auto dpvi = enforce(cast(F*) malloc(F.sizeof * 2 * t.length));
auto dpvi1 = dpvi + t.length;
scope(exit) free(dpvi < dpvi1 ? dpvi : dpvi1);
dpvi[0 .. t.length] = 0;
dpvi1[0] = 0;
immutable lambda2 = lambda * lambda;
F result = 0;
foreach (i; 0 .. s.length)
{
const si = s[i];
for (size_t j = 0;;)
{
F dpsij = void;
if (binaryFun!(comp)(si, t[j]))
{
dpsij = 1 + dpvi[j];
result += dpsij;
}
else
{
dpsij = 0;
}
immutable j1 = j + 1;
if (j1 == t.length) break;
dpvi1[j1] = dpsij + lambda * (dpvi1[j] + dpvi[j1])
- lambda2 * dpvi[j];
j = j1;
}
swap(dpvi, dpvi1);
}
return result;
}
unittest
{
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, t, 1) == 7);
assert(gapWeightedSimilarity(s, t, 0) == 4);
assert(gapWeightedSimilarity(s, t, 0.5) == 4 + 2 * 0.5 + 0.125);
}
/**
The similarity per $(D gapWeightedSimilarity) has an issue in that it
grows with the lengths of the two strings, even though the strings are
not actually very similar. For example, the range $(D ["Hello",
"world"]) is increasingly similar with the range $(D ["Hello",
"world", "world", "world",...]) as more instances of $(D "world") are
appended. To prevent that, $(D gapWeightedSimilarityNormalized)
computes a normalized version of the similarity that is computed as
$(D gapWeightedSimilarity(s, t, lambda) /
sqrt(gapWeightedSimilarity(s, t, lambda) * gapWeightedSimilarity(s, t,
lambda))). The function $(D gapWeightedSimilarityNormalized) (a
so-called normalized kernel) is bounded in $(D [0, 1]), reaches $(D 0)
only for ranges that don't match in any position, and $(D 1) only for
identical ranges.
Example:
----
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, s, 1) == 15);
assert(gapWeightedSimilarity(t, t, 1) == 7);
assert(gapWeightedSimilarity(s, t, 1) == 7);
assert(gapWeightedSimilarityNormalized(s, t, 1) == 7. / sqrt(15. * 7));
----
The optional parameters $(D sSelfSim) and $(D tSelfSim) are meant for
avoiding duplicate computation. Many applications may have already
computed $(D gapWeightedSimilarity(s, s, lambda)) and/or $(D
gapWeightedSimilarity(t, t, lambda)). In that case, they can be passed
as $(D sSelfSim) and $(D tSelfSim), respectively.
*/
Select!(isFloatingPoint!(F), F, double)
gapWeightedSimilarityNormalized
(alias comp = "a == b", R1, R2, F)(R1 s, R2 t, F lambda,
F sSelfSim = F.init, F tSelfSim = F.init)
if (isRandomAccessRange!(R1) && hasLength!(R1)
&& isRandomAccessRange!(R2) && hasLength!(R2))
{
static bool uncomputed(F n)
{
static if (isFloatingPoint!(F)) return isnan(n);
else return n == n.init;
}
if (uncomputed(sSelfSim))
sSelfSim = gapWeightedSimilarity!(comp)(s, s, lambda);
if (sSelfSim == 0) return 0;
if (uncomputed(tSelfSim))
tSelfSim = gapWeightedSimilarity!(comp)(t, t, lambda);
if (tSelfSim == 0) return 0;
return gapWeightedSimilarity!(comp)(s, t, lambda)
/ sqrt(cast(typeof(return)) sSelfSim * tSelfSim);
}
unittest
{
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, s, 1) == 15);
assert(gapWeightedSimilarity(t, t, 1) == 7);
assert(gapWeightedSimilarity(s, t, 1) == 7);
assert(approxEqual(gapWeightedSimilarityNormalized(s, t, 1),
7.0 / sqrt(15.0 * 7), 0.01));
}
/**
Similar to $(D gapWeightedSimilarity), just works in an incremental
manner by first revealing the matches of length 1, then gapped matches
of length 2, and so on. The memory requirement is $(BIGOH s.length *
t.length). The time complexity is $(BIGOH s.length * t.length) time
for computing each step. Continuing on the previous example:
----
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
auto simIter = gapWeightedSimilarityIncremental(s, t, 1);
assert(simIter.front == 3); // three 1-length matches
simIter.popFront();
assert(simIter.front == 3); // three 2-length matches
simIter.popFront();
assert(simIter.front == 1); // one 3-length match
simIter.popFront();
assert(simIter.empty); // no more match
----
The implementation is based on the pseudocode in Fig. 4 of the paper
$(WEB jmlr.csail.mit.edu/papers/volume6/rousu05a/rousu05a.pdf,
"Efficient Computation of Gapped Substring Kernels on Large Alphabets")
by Rousu et al., with additional algorithmic and systems-level
optimizations.
*/
struct GapWeightedSimilarityIncremental(Range, F = double)
if (isRandomAccessRange!(Range) && hasLength!(Range))
{
private:
Range s, t;
F currentValue = 0;
F * kl;
size_t gram = void;
F lambda = void, lambda2 = void;
public:
/**
Constructs an object given two ranges $(D s) and $(D t) and a penalty
$(D lambda). Constructor completes in $(BIGOH s.length * t.length)
time and computes all matches of length 1.
*/
this(Range s, Range t, F lambda) {
enforce(lambda > 0);
this.lambda = lambda;
this.lambda2 = lambda * lambda; // for efficiency only
size_t iMin = size_t.max, jMin = size_t.max,
iMax = 0, jMax = 0;
/* initialize */
Tuple!(size_t, size_t) * k0;
size_t k0len;
scope(exit) free(k0);
currentValue = 0;
foreach (i, si; s) {
foreach (j; 0 .. t.length) {
if (si != t[j]) continue;
k0 = cast(typeof(k0))
realloc(k0, ++k0len * (*k0).sizeof);
with (k0[k0len - 1]) {
field[0] = i;
field[1] = j;
}
// Maintain the minimum and maximum i and j
if (iMin > i) iMin = i;
if (iMax < i) iMax = i;
if (jMin > j) jMin = j;
if (jMax < j) jMax = j;
}
}
if (iMin > iMax) return;
assert(k0len);
currentValue = k0len;
// Chop strings down to the useful sizes
s = s[iMin .. iMax + 1];
t = t[jMin .. jMax + 1];
this.s = s;
this.t = t;
// Si = errnoEnforce(cast(F *) malloc(t.length * F.sizeof));
kl = errnoEnforce(cast(F *) malloc(s.length * t.length * F.sizeof));
kl[0 .. s.length * t.length] = 0;
foreach (pos; 0 .. k0len) {
with (k0[pos]) {
kl[(field[0] - iMin) * t.length + field[1] -jMin] = lambda2;
}
}
}
/**
Returns $(D this).
*/
ref GapWeightedSimilarityIncremental opSlice()
{
return this;
}
/**
Computes the match of the popFront length. Completes in $(BIGOH s.length *
t.length) time.
*/
void popFront() {
// This is a large source of optimization: if similarity at
// the gram-1 level was 0, then we can safely assume
// similarity at the gram level is 0 as well.
if (empty) return;
// Now attempt to match gapped substrings of length `gram'
++gram;
currentValue = 0;
auto Si = cast(F*) alloca(t.length * F.sizeof);
Si[0 .. t.length] = 0;
foreach (i; 0 .. s.length)
{
const si = s[i];
F Sij_1 = 0;
F Si_1j_1 = 0;
auto kli = kl + i * t.length;
for (size_t j = 0;;)
{
const klij = kli[j];
const Si_1j = Si[j];
const tmp = klij + lambda * (Si_1j + Sij_1) - lambda2 * Si_1j_1;
// now update kl and currentValue
if (si == t[j])
currentValue += kli[j] = lambda2 * Si_1j_1;
else
kli[j] = 0;
// commit to Si
Si[j] = tmp;
if (++j == t.length) break;
// get ready for the popFront step; virtually increment j,
// so essentially stuffj_1 <-- stuffj
Si_1j_1 = Si_1j;
Sij_1 = tmp;
}
}
currentValue /= pow(lambda, 2 * (gram + 1));
version (none)
{
Si_1[0 .. t.length] = 0;
kl[0 .. min(t.length, maxPerimeter + 1)] = 0;
foreach (i; 1 .. min(s.length, maxPerimeter + 1)) {
auto kli = kl + i * t.length;
assert(s.length > i);
const si = s[i];
auto kl_1i_1 = kl_1 + (i - 1) * t.length;
kli[0] = 0;
F lastS = 0;
foreach (j; 1 .. min(maxPerimeter - i + 1, t.length)) {
immutable j_1 = j - 1;
immutable tmp = kl_1i_1[j_1]
+ lambda * (Si_1[j] + lastS)
- lambda2 * Si_1[j_1];
kl_1i_1[j_1] = float.nan;
Si_1[j_1] = lastS;
lastS = tmp;
if (si == t[j]) {
currentValue += kli[j] = lambda2 * lastS;
} else {
kli[j] = 0;
}
}
Si_1[t.length - 1] = lastS;
}
currentValue /= pow(lambda, 2 * (gram + 1));
// get ready for the popFront computation
swap(kl, kl_1);
}
}
/**
Returns the gapped similarity at the current match length (initially
1, grows with each call to $(D popFront)).
*/
@property F front() { return currentValue; }
/**
Returns whether there are more matches.
*/
@property bool empty() {
if (currentValue) return false;
if (kl) {
free(kl);
kl = null;
}
return true;
}
}
/**
Ditto
*/
GapWeightedSimilarityIncremental!(R, F) gapWeightedSimilarityIncremental(R, F)
(R r1, R r2, F penalty)
{
return typeof(return)(r1, r2, penalty);
}
unittest
{
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
auto simIter = gapWeightedSimilarityIncremental(s, t, 1.0);
//foreach (e; simIter) writeln(e);
assert(simIter.front == 3); // three 1-length matches
simIter.popFront();
assert(simIter.front == 3, text(simIter.front)); // three 2-length matches
simIter.popFront();
assert(simIter.front == 1); // one 3-length matches
simIter.popFront();
assert(simIter.empty); // no more match
s = ["Hello"];
t = ["bye"];
simIter = gapWeightedSimilarityIncremental(s, t, 0.5);
assert(simIter.empty);
s = ["Hello"];
t = ["Hello"];
simIter = gapWeightedSimilarityIncremental(s, t, 0.5);
assert(simIter.front == 1); // one match
simIter.popFront();
assert(simIter.empty);
s = ["Hello", "world"];
t = ["Hello"];
simIter = gapWeightedSimilarityIncremental(s, t, 0.5);
assert(simIter.front == 1); // one match
simIter.popFront();
assert(simIter.empty);
s = ["Hello", "world"];
t = ["Hello", "yah", "world"];
simIter = gapWeightedSimilarityIncremental(s, t, 0.5);
assert(simIter.front == 2); // two 1-gram matches
simIter.popFront();
assert(simIter.front == 0.5, text(simIter.front)); // one 2-gram match, 1 gap
}
unittest
{
GapWeightedSimilarityIncremental!(string[]) sim =
GapWeightedSimilarityIncremental!(string[])(
["nyuk", "I", "have", "no", "chocolate", "giba"],
["wyda", "I", "have", "I", "have", "have", "I", "have", "hehe"],
0.5);
double[] witness = [ 7.0, 4.03125, 0, 0 ];
foreach (e; sim)
{
//writeln(e);
assert(e == witness.front);
witness.popFront();
}
witness = [ 3.0, 1.3125, 0.25 ];
sim = GapWeightedSimilarityIncremental!(string[])(
["I", "have", "no", "chocolate"],
["I", "have", "some", "chocolate"],
0.5);
foreach (e; sim)
{
//writeln(e);
assert(e == witness.front);
witness.popFront();
}
assert(witness.empty);
}
/**
Computes the greatest common divisor of $(D a) and $(D b) by using
Euler's algorithm.
*/
T gcd(T)(T a, T b) {
static if (is(T == const) || is(T == immutable)) {
return gcd!(Unqual!T)(a, b);
} else {
static if (T.min < 0) {
enforce(a >= 0 && b >=0);
}
while (b) {
auto t = b;
b = a % b;
a = t;
}
return a;
}
}
unittest {
assert(gcd(2 * 5 * 7 * 7, 5 * 7 * 11) == 5 * 7);
const int a = 5 * 13 * 23 * 23, b = 13 * 59;
assert(gcd(a, b) == 13);
}
/*
* Copyright (C) 2004-2009 by Digital Mars, www.digitalmars.com
* Written by Andrei Alexandrescu, www.erdani.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* o The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* o Altered source versions must be plainly marked as such, and must not
* be misrepresented as being the original software.
* o This notice may not be removed or altered from any source
* distribution.
*/
/+
/**
Primes generator
*/
struct Primes(UIntType)
{
private UIntType[] found = [ 2 ];
UIntType front() { return found[$ - 1]; }
void popFront()
{
outer:
for (UIntType candidate = front + 1 + (front != 2); ; candidate += 2)
{
UIntType stop = cast(uint) sqrt(cast(double) candidate);
foreach (e; found)
{
if (e > stop) break;
if (candidate % e == 0) continue outer;
}
// found!
found ~= candidate;
break;
}
}
enum bool empty = false;
}
unittest
{
foreach (e; take(10, Primes!(uint)())) writeln(e);
}
+/
// This is to make tweaking the speed/size vs. accuracy tradeoff easy,
// though floats seem accurate enough for all practical purposes, since
// they pass the "approxEqual(inverseFft(fft(arr)), arr)" test even for
// size 2 ^^ 22.
private alias float lookup_t;
/**A class for performing fast Fourier transforms of power of two sizes.
* This class encapsulates a large amount of state that is reusable when
* performing multiple FFTs of sizes smaller than or equal to that specified
* in the constructor. This results in substantial speedups when performing
* multiple FFTs with a known maximum size. However,
* a free function API is provided for convenience if you need to perform a
* one-off FFT.
*
* References:
* $(WEB en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm)
*/
final class Fft {
private:
immutable lookup_t[][] negSinLookup;
void enforceSize(R)(R range) const {
enforce(range.length <= size, text(
"FFT size mismatch. Expected ", size, ", got ", range.length));
}
void fftImpl(Ret, R)(Stride!R range, Ret buf) const
in {
assert(range.length >= 4);
assert(isPowerOfTwo(range.length));
} body {
auto recurseRange = range;
recurseRange.doubleSteps();
if(buf.length > 4) {
fftImpl(recurseRange, buf[0..$ / 2]);
recurseRange.popHalf();
fftImpl(recurseRange, buf[$ / 2..$]);
} else {
// Do this here instead of in another recursion to save on
// recursion overhead.
slowFourier2(recurseRange, buf[0..$ / 2]);
recurseRange.popHalf();
slowFourier2(recurseRange, buf[$ / 2..$]);
}
butterfly(buf);
}
// This algorithm works by performing the even and odd parts of our FFT
// using the "two for the price of one" method mentioned at
// http://www.engineeringproductivitytools.com/stuff/T0001/PT10.HTM#Head521
// by making the odd terms into the imaginary components of our new FFT,
// and then using symmetry to recombine them.
void fftImplPureReal(Ret, R)(R range, Ret buf) const
in {
assert(range.length >= 4);
assert(isPowerOfTwo(range.length));
} body {
alias ElementType!R E;
// Converts odd indices of range to the imaginary components of
// a range half the size. The even indices become the real components.
static if(isArray!R && isFloatingPoint!E) {
// Then the memory layout of complex numbers provides a dirt
// cheap way to convert. This is a common case, so take advantage.
auto oddsImag = cast(Complex!E[]) range;
} else {
// General case: Use a higher order range. We can assume
// source.length is even because it has to be a power of 2.
static struct OddToImaginary {
R source;
alias Complex!(CommonType!(E, typeof(buf[0].re))) C;
@property {
C front() {
return C(source[0], source[1]);
}
C back() {
immutable n = source.length;
return C(source[n - 2], source[n - 1]);
}
typeof(this) save() {
return typeof(this)(source.save);
}
bool empty() {
return source.empty;
}
size_t length() {
return source.length / 2;
}
}
void popFront() {
source.popFront();
source.popFront();
}
void popBack() {
source.popBack();
source.popBack();
}
C opIndex(size_t index) {
return C(source[index * 2], source[index * 2 + 1]);
}
typeof(this) opSlice(size_t lower, size_t upper) {
return typeof(this)(source[lower * 2..upper * 2]);
}
}
auto oddsImag = OddToImaginary(range);
}
fft(oddsImag, buf[0..$ / 2]);
auto evenFft = buf[0..$ / 2];
auto oddFft = buf[$ / 2..$];
immutable halfN = evenFft.length;
oddFft[0].re = buf[0].im;
oddFft[0].im = 0;
evenFft[0].im = 0;
// evenFft[0].re is already right b/c it's aliased with buf[0].re.
foreach(k; 1..halfN / 2 + 1) {
immutable bufk = buf[k];
immutable bufnk = buf[buf.length / 2 - k];
evenFft[k].re = 0.5 * (bufk.re + bufnk.re);
evenFft[halfN - k].re = evenFft[k].re;
evenFft[k].im = 0.5 * (bufk.im - bufnk.im);
evenFft[halfN - k].im = -evenFft[k].im;
oddFft[k].re = 0.5 * (bufk.im + bufnk.im);
oddFft[halfN - k].re = oddFft[k].re;
oddFft[k].im = 0.5 * (bufnk.re - bufk.re);
oddFft[halfN - k].im = -oddFft[k].im;
}
butterfly(buf);
}
void butterfly(R)(R buf) const
in {
assert(isPowerOfTwo(buf.length));
} body {
immutable n = buf.length;
immutable localLookup = negSinLookup[bsf(n)];
assert(localLookup.length == n);
immutable cosMask = n - 1;
immutable cosAdd = n / 4 * 3;
lookup_t negSinFromLookup(size_t index) pure nothrow {
return localLookup[index];
}
lookup_t cosFromLookup(size_t index) pure nothrow {
// cos is just -sin shifted by PI * 3 / 2.
return localLookup[(index + cosAdd) & cosMask];
}
immutable halfLen = n / 2;
// This loop is unrolled and the two iterations are interleaved
// relative to the textbook FFT to increase ILP. This gives roughly 5%
// speedups on DMD.
for(size_t k = 0; k < halfLen; k += 2) {
immutable cosTwiddle1 = cosFromLookup(k);
immutable sinTwiddle1 = negSinFromLookup(k);
immutable cosTwiddle2 = cosFromLookup(k + 1);
immutable sinTwiddle2 = negSinFromLookup(k + 1);
immutable realLower1 = buf[k].re;
immutable imagLower1 = buf[k].im;
immutable realLower2 = buf[k + 1].re;
immutable imagLower2 = buf[k + 1].im;
immutable upperIndex1 = k + halfLen;
immutable upperIndex2 = upperIndex1 + 1;
immutable realUpper1 = buf[upperIndex1].re;
immutable imagUpper1 = buf[upperIndex1].im;
immutable realUpper2 = buf[upperIndex2].re;
immutable imagUpper2 = buf[upperIndex2].im;
immutable realAdd1 = cosTwiddle1 * realUpper1
- sinTwiddle1 * imagUpper1;
immutable imagAdd1 = sinTwiddle1 * realUpper1
+ cosTwiddle1 * imagUpper1;
immutable realAdd2 = cosTwiddle2 * realUpper2
- sinTwiddle2 * imagUpper2;
immutable imagAdd2 = sinTwiddle2 * realUpper2
+ cosTwiddle2 * imagUpper2;
buf[k].re += realAdd1;
buf[k].im += imagAdd1;
buf[k + 1].re += realAdd2;
buf[k + 1].im += imagAdd2;
buf[upperIndex1].re = realLower1 - realAdd1;
buf[upperIndex1].im = imagLower1 - imagAdd1;
buf[upperIndex2].re = realLower2 - realAdd2;
buf[upperIndex2].im = imagLower2 - imagAdd2;
}
}
// This constructor is used within this module for allocating the
// buffer space elsewhere besides the GC heap. It's definitely **NOT**
// part of the public API and definitely **IS** subject to change.
//
// Also, this is unsafe because the memSpace buffer will be cast
// to immutable.
public this(lookup_t[] memSpace) { // Public b/c of bug 4636.
immutable size = memSpace.length / 2;
/* Create a lookup table of all negative sine values at a resolution of
* size and all smaller power of two resolutions. This may seem
* inefficient, but having all the lookups be next to each other in
* memory at every level of iteration is a huge win performance-wise.
*/
if(size == 0) {
return;
}
enforce(isPowerOfTwo(size),
"Can only do FFTs on ranges with a size that is a power of two.");
auto table = new lookup_t[][bsf(size) + 1];
table[$ - 1] = memSpace[$ - size..$];
memSpace = memSpace[0..size];
auto lastRow = table[$ - 1];
lastRow[0] = 0; // -sin(0) == 0.
foreach(ptrdiff_t i; 1..size) {
// The hard coded cases are for improved accuracy and to prevent
// annoying non-zeroness when stuff should be zero.
if(i == size / 4) {
lastRow[i] = -1; // -sin(pi / 2) == -1.
} else if(i == size / 2) {
lastRow[i] = 0; // -sin(pi) == 0.
} else if(i == size * 3 / 4) {
lastRow[i] = 1; // -sin(pi * 3 / 2) == 1
} else {
lastRow[i] = -sin(i * 2.0L * PI / size);
}
}
// Fill in all the other rows with strided versions.
foreach(i; 1..table.length - 1) {
immutable strideLength = size / (2 ^^ i);
auto strided = Stride!(lookup_t[])(lastRow, strideLength);
table[i] = memSpace[$ - strided.length..$];
memSpace = memSpace[0..$ - strided.length];
size_t copyIndex;
foreach(elem; strided) {
table[i][copyIndex++] = elem;
}
}
negSinLookup = cast(immutable) table;
}
public:
/**Create an $(D Fft) object for computing fast Fourier transforms of
* power of two sizes of $(D size) or smaller. $(D size) must be a
* power of two.
*/
this(size_t size) {
// Allocate all twiddle factor buffers in one contiguous block so that,
// when one is done being used, the next one is next in cache.
auto memSpace = uninitializedArray!(lookup_t[])(2 * size);
this(memSpace);
}
@property size_t size() const {
return (negSinLookup is null) ? 0 : negSinLookup[$ - 1].length;
}
/**Compute the Fourier transform of range using the $(BIGOH N log N)
* Cooley-Tukey Algorithm. $(D range) must be a random-access range with
* slicing and a length equal to $(D size) as provided at the construction of
* this object. The contents of range can be either numeric types,
* which will be interpreted as pure real values, or complex types with
* properties or members $(D .re) and $(D .im) that can be read.
*
* Note: Pure real FFTs are automatically detected and the relevant
* optimizations are performed.
*
* Returns: An array of complex numbers representing the transformed data in
* the frequency domain.
*
* Conventions: The exponent is negative and the factor is one,
* i.e., output[j] := sum[ exp(-2 PI i j k / N) input[k] ].
*/
Complex!F[] fft(F = double, R)(R range) const
if(isFloatingPoint!F && isRandomAccessRange!R) {
enforceSize(range);
Complex!F[] ret;
if(range.length == 0) {
return ret;
}
// Don't waste time initializing the memory for ret.
ret = uninitializedArray!(Complex!F[])(range.length);
fft(range, ret);
return ret;
}
/**Same as the overload, but allows for the results to be stored in a user-
* provided buffer. The buffer must be of the same length as range, must be
* a random-access range, must have slicing, and must contain elements that are
* complex-like. This means that they must have a .re and a .im member or
* property that can be both read and written and are floating point numbers.
*/
void fft(Ret, R)(R range, Ret buf) const
if(isRandomAccessRange!Ret && isComplexLike!(ElementType!Ret) && hasSlicing!Ret) {
enforce(buf.length == range.length);
enforceSize(range);
if(range.length == 0) {
return;
} else if(range.length == 1) {
buf[0] = range[0];
return;
} else if(range.length == 2) {
slowFourier2(range, buf);
return;
} else {
alias ElementType!R E;
static if(is(E : real)) {
return fftImplPureReal(range, buf);
} else {
static if(is(R : Stride!R)) {
return fftImpl(range, buf);
} else {
return fftImpl(Stride!R(range, 1), buf);
}
}
}
}
/**Computes the inverse Fourier transform of a range. The range must be a
* random access range with slicing, have a length equal to the size
* provided at construction of this object, and contain elements that are
* either of type std.complex.Complex or have essentially
* the same compile-time interface.
*
* Returns: The time-domain signal.
*
* Conventions: The exponent is positive and the factor is 1/N, i.e.,
* output[j] := (1 / N) sum[ exp(+2 PI i j k / N) input[k] ].
*/
Complex!F[] inverseFft(F = double, R)(R range) const
if(isRandomAccessRange!R && isComplexLike!(ElementType!R) && isFloatingPoint!F) {
enforceSize(range);
Complex!F[] ret;
if(range.length == 0) {
return ret;
}
// Don't waste time initializing the memory for ret.
ret = uninitializedArray!(Complex!F[])(range.length);
inverseFft(range, ret);
return ret;
}
/**Inverse FFT that allows a user-supplied buffer to be provided. The buffer
* must be a random access range with slicing, and its elements
* must be some complex-like type.
*/
void inverseFft(Ret, R)(R range, Ret buf) const
if(isRandomAccessRange!Ret && isComplexLike!(ElementType!Ret) && hasSlicing!Ret) {
enforceSize(range);
auto swapped = map!swapRealImag(range);
fft(swapped, buf);
immutable lenNeg1 = 1.0 / buf.length;
foreach(ref elem; buf) {
auto temp = elem.re * lenNeg1;
elem.re = elem.im * lenNeg1;
elem.im = temp;
}
}
}
// This mixin creates an Fft object in the scope it's mixed into such that all
// memory owned by the object is deterministically destroyed at the end of that
// scope.
private enum string MakeLocalFft = q{
auto lookupBuf = (cast(lookup_t*) malloc(range.length * 2 * lookup_t.sizeof))
[0..2 * range.length];
if(!lookupBuf.ptr) {
throw new OutOfMemoryError(__FILE__, __LINE__);
}
scope(exit) free(cast(void*) lookupBuf.ptr);
auto fftObj = scoped!Fft(lookupBuf);
};
/**Convenience functions that create an $(D Fft) object, run the FFT or inverse
* FFT and return the result. Useful for one-off FFTs.
*
* Note: In addition to convenience, these functions are slightly more
* efficient than manually creating an Fft object for a single use,
* as the Fft object is deterministically destroyed before these
* functions return.
*/
Complex!F[] fft(F = double, R)(R range) {
mixin(MakeLocalFft);
return fftObj.fft!(F, R)(range);
}
/// ditto
void fft(Ret, R)(R range, Ret buf) {
mixin(MakeLocalFft);
return fftObj.fft!(Ret, R)(range, buf);
}
/// ditto
Complex!F[] inverseFft(F = double, R)(R range) {
mixin(MakeLocalFft);
return fftObj.inverseFft!(F, R)(range);
}
/// ditto
void inverseFft(Ret, R)(R range, Ret buf) {
mixin(MakeLocalFft);
return fftObj.inverseFft!(Ret, R)(range, buf);
}
unittest {
// Test values from R and Octave.
auto arr = [1,2,3,4,5,6,7,8];
auto fft1 = fft(arr);
assert(approxEqual(map!"a.re"(fft1),
[36.0, -4, -4, -4, -4, -4, -4, -4]));
assert(approxEqual(map!"a.im"(fft1),
[0, 9.6568, 4, 1.6568, 0, -1.6568, -4, -9.6568]));
auto fft1Retro = fft(retro(arr));
assert(approxEqual(map!"a.re"(fft1Retro),
[36.0, 4, 4, 4, 4, 4, 4, 4]));
assert(approxEqual(map!"a.im"(fft1Retro),
[0, -9.6568, -4, -1.6568, 0, 1.6568, 4, 9.6568]));
auto fft1Float = fft(to!(float[])(arr));
assert(approxEqual(map!"a.re"(fft1), map!"a.re"(fft1Float)));
assert(approxEqual(map!"a.im"(fft1), map!"a.im"(fft1Float)));
alias Complex!float C;
auto arr2 = [C(1,2), C(3,4), C(5,6), C(7,8), C(9,10),
C(11,12), C(13,14), C(15,16)];
auto fft2 = fft(arr2);
assert(approxEqual(map!"a.re"(fft2),
[64.0, -27.3137, -16, -11.3137, -8, -4.6862, 0, 11.3137]));
assert(approxEqual(map!"a.im"(fft2),
[72, 11.3137, 0, -4.686, -8, -11.3137, -16, -27.3137]));
auto inv1 = inverseFft(fft1);
assert(approxEqual(map!"a.re"(inv1), arr));
assert(reduce!max(map!"a.im"(inv1)) < 1e-10);
auto inv2 = inverseFft(fft2);
assert(approxEqual(map!"a.re"(inv2), map!"a.re"(arr2)));
assert(approxEqual(map!"a.im"(inv2), map!"a.im"(arr2)));
// FFTs of size 0, 1 and 2 are handled as special cases. Test them here.
ushort[] empty;
assert(fft(empty) == null);
assert(inverseFft(fft(empty)) == null);
real[] oneElem = [4.5L];
auto oneFft = fft(oneElem);
assert(oneFft.length == 1);
assert(oneFft[0].re == 4.5L);
assert(oneFft[0].im == 0);
auto oneInv = inverseFft(oneFft);
assert(oneInv.length == 1);
assert(approxEqual(oneInv[0].re, 4.5));
assert(approxEqual(oneInv[0].im, 0));
long[2] twoElems = [8, 4];
auto twoFft = fft(twoElems[]);
assert(twoFft.length == 2);
assert(approxEqual(twoFft[0].re, 12));
assert(approxEqual(twoFft[0].im, 0));
assert(approxEqual(twoFft[1].re, 4));
assert(approxEqual(twoFft[1].im, 0));
auto twoInv = inverseFft(twoFft);
assert(approxEqual(twoInv[0].re, 8));
assert(approxEqual(twoInv[0].im, 0));
assert(approxEqual(twoInv[1].re, 4));
assert(approxEqual(twoInv[1].im, 0));
}
// Swaps the real and imaginary parts of a complex number. This is useful
// for inverse FFTs.
C swapRealImag(C)(C input) {
return C(input.im, input.re);
}
private:
// The reasons I couldn't use std.algorithm were b/c its stride length isn't
// modifiable on the fly and because range has grown some performance hacks
// for powers of 2.
struct Stride(R) {
Unqual!R range;
size_t _nSteps;
size_t _length;
alias ElementType!(R) E;
this(R range, size_t nStepsIn) {
this.range = range;
_nSteps = nStepsIn;
_length = (range.length + _nSteps - 1) / nSteps;
}
size_t length() const @property {
return _length;
}
typeof(this) save() @property {
auto ret = this;
ret.range = ret.range.save;
return ret;
}
E opIndex(size_t index) {
return range[index * _nSteps];
}
E front() @property {
return range[0];
}
void popFront() {
if(range.length >= _nSteps) {
range = range[_nSteps..range.length];
_length--;
} else {
range = range[0..0];
_length = 0;
}
}
// Pops half the range's stride.
void popHalf() {
range = range[_nSteps / 2..range.length];
}
bool empty() const @property {
return length == 0;
}
size_t nSteps() const @property {
return _nSteps;
}
void doubleSteps() {
_nSteps *= 2;
_length /= 2;
}
size_t nSteps(size_t newVal) @property {
_nSteps = newVal;
// Using >> bsf(nSteps) is a few cycles faster than / nSteps.
_length = (range.length + _nSteps - 1) >> bsf(nSteps);
return newVal;
}
}
// Hard-coded base case for FFT of size 2. This is actually a TON faster than
// using a generic slow DFT. This seems to be the best base case. (Size 1
// can be coded inline as buf[0] = range[0]).
void slowFourier2(Ret, R)(R range, Ret buf) {
assert(range.length == 2);
assert(buf.length == 2);
buf[0] = range[0] + range[1];
buf[1] = range[0] - range[1];
}
// Hard-coded base case for FFT of size 4. Doesn't work as well as the size
// 2 case.
void slowFourier4(Ret, R)(R range, Ret buf) {
alias ElementType!Ret C;
assert(range.length == 4);
assert(buf.length == 4);
buf[0] = range[0] + range[1] + range[2] + range[3];
buf[1] = range[0] - range[1] * C(0, 1) - range[2] + range[3] * C(0, 1);
buf[2] = range[0] - range[1] + range[2] - range[3];
buf[3] = range[0] + range[1] * C(0, 1) - range[2] - range[3] * C(0, 1);
}
bool isPowerOfTwo(size_t num) {
return bsr(num) == bsf(num);
}
size_t roundDownToPowerOf2(size_t num) {
return num & (1 << bsr(num));
}
unittest {
assert(roundDownToPowerOf2(7) == 4);
assert(roundDownToPowerOf2(4) == 4);
}
template isComplexLike(T) {
enum bool isComplexLike = is(typeof(T.init.re)) &&
is(typeof(T.init.im));
}
unittest {
static assert(isComplexLike!(Complex!double));
static assert(!isComplexLike!(uint));
}
|