/usr/include/pcl-1.7/pcl/registration/registration.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_REGISTRATION_H_
#define PCL_REGISTRATION_H_
// PCL includes
#include <pcl/pcl_base.h>
#include <pcl/common/transforms.h>
#include <pcl/pcl_macros.h>
#include <pcl/search/kdtree.h>
#include <pcl/kdtree/kdtree_flann.h>
#include <pcl/registration/boost.h>
#include <pcl/registration/transformation_estimation.h>
#include <pcl/registration/correspondence_estimation.h>
#include <pcl/registration/correspondence_rejection.h>
namespace pcl
{
/** \brief @b Registration represents the base registration class for general purpose, ICP-like methods.
* \author Radu B. Rusu, Michael Dixon
* \ingroup registration
*/
template <typename PointSource, typename PointTarget, typename Scalar = float>
class Registration : public PCLBase<PointSource>
{
public:
typedef Eigen::Matrix<Scalar, 4, 4> Matrix4;
// using PCLBase<PointSource>::initCompute;
using PCLBase<PointSource>::deinitCompute;
using PCLBase<PointSource>::input_;
using PCLBase<PointSource>::indices_;
typedef boost::shared_ptr< Registration<PointSource, PointTarget, Scalar> > Ptr;
typedef boost::shared_ptr< const Registration<PointSource, PointTarget, Scalar> > ConstPtr;
typedef typename pcl::registration::CorrespondenceRejector::Ptr CorrespondenceRejectorPtr;
typedef pcl::search::KdTree<PointTarget> KdTree;
typedef typename pcl::search::KdTree<PointTarget>::Ptr KdTreePtr;
typedef pcl::search::KdTree<PointSource> KdTreeReciprocal;
typedef typename KdTree::Ptr KdTreeReciprocalPtr;
typedef pcl::PointCloud<PointSource> PointCloudSource;
typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
typedef pcl::PointCloud<PointTarget> PointCloudTarget;
typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
typedef typename KdTree::PointRepresentationConstPtr PointRepresentationConstPtr;
typedef typename pcl::registration::TransformationEstimation<PointSource, PointTarget, Scalar> TransformationEstimation;
typedef typename TransformationEstimation::Ptr TransformationEstimationPtr;
typedef typename TransformationEstimation::ConstPtr TransformationEstimationConstPtr;
typedef typename pcl::registration::CorrespondenceEstimationBase<PointSource, PointTarget, Scalar> CorrespondenceEstimation;
typedef typename CorrespondenceEstimation::Ptr CorrespondenceEstimationPtr;
typedef typename CorrespondenceEstimation::ConstPtr CorrespondenceEstimationConstPtr;
/** \brief Empty constructor. */
Registration ()
: reg_name_ ()
, tree_ (new KdTree)
, tree_reciprocal_ (new KdTreeReciprocal)
, nr_iterations_ (0)
, max_iterations_ (10)
, ransac_iterations_ (0)
, target_ ()
, final_transformation_ (Matrix4::Identity ())
, transformation_ (Matrix4::Identity ())
, previous_transformation_ (Matrix4::Identity ())
, transformation_epsilon_ (0.0)
, euclidean_fitness_epsilon_ (-std::numeric_limits<double>::max ())
, corr_dist_threshold_ (std::sqrt (std::numeric_limits<double>::max ()))
, inlier_threshold_ (0.05)
, converged_ (false)
, min_number_correspondences_ (3)
, correspondences_ (new Correspondences)
, transformation_estimation_ ()
, correspondence_estimation_ ()
, correspondence_rejectors_ ()
, target_cloud_updated_ (true)
, source_cloud_updated_ (true)
, force_no_recompute_ (false)
, force_no_recompute_reciprocal_ (false)
, update_visualizer_ (NULL)
, point_representation_ ()
{
}
/** \brief destructor. */
virtual ~Registration () {}
/** \brief Provide a pointer to the transformation estimation object.
* (e.g., SVD, point to plane etc.)
*
* \param[in] te is the pointer to the corresponding transformation estimation object
*
* Code example:
*
* \code
* TransformationEstimationPointToPlaneLLS<PointXYZ, PointXYZ>::Ptr trans_lls (new TransformationEstimationPointToPlaneLLS<PointXYZ, PointXYZ>);
* icp.setTransformationEstimation (trans_lls);
* // or...
* TransformationEstimationSVD<PointXYZ, PointXYZ>::Ptr trans_svd (new TransformationEstimationSVD<PointXYZ, PointXYZ>);
* icp.setTransformationEstimation (trans_svd);
* \endcode
*/
void
setTransformationEstimation (const TransformationEstimationPtr &te) { transformation_estimation_ = te; }
/** \brief Provide a pointer to the correspondence estimation object.
* (e.g., regular, reciprocal, normal shooting etc.)
*
* \param[in] ce is the pointer to the corresponding correspondence estimation object
*
* Code example:
*
* \code
* CorrespondenceEstimation<PointXYZ, PointXYZ>::Ptr ce (new CorrespondenceEstimation<PointXYZ, PointXYZ>);
* ce->setInputSource (source);
* ce->setInputTarget (target);
* icp.setCorrespondenceEstimation (ce);
* // or...
* CorrespondenceEstimationNormalShooting<PointNormal, PointNormal, PointNormal>::Ptr cens (new CorrespondenceEstimationNormalShooting<PointNormal, PointNormal>);
* ce->setInputSource (source);
* ce->setInputTarget (target);
* ce->setSourceNormals (source);
* ce->setTargetNormals (target);
* icp.setCorrespondenceEstimation (cens);
* \endcode
*/
void
setCorrespondenceEstimation (const CorrespondenceEstimationPtr &ce) { correspondence_estimation_ = ce; }
/** \brief Provide a pointer to the input source
* (e.g., the point cloud that we want to align to the target)
*
* \param[in] cloud the input point cloud source
*/
PCL_DEPRECATED ("[pcl::registration::Registration::setInputCloud] setInputCloud is deprecated. Please use setInputSource instead.")
void
setInputCloud (const PointCloudSourceConstPtr &cloud);
/** \brief Get a pointer to the input point cloud dataset target. */
PCL_DEPRECATED ("[pcl::registration::Registration::getInputCloud] getInputCloud is deprecated. Please use getInputSource instead.")
PointCloudSourceConstPtr const
getInputCloud ();
/** \brief Provide a pointer to the input source
* (e.g., the point cloud that we want to align to the target)
*
* \param[in] cloud the input point cloud source
*/
virtual void
setInputSource (const PointCloudSourceConstPtr &cloud)
{
source_cloud_updated_ = true;
PCLBase<PointSource>::setInputCloud (cloud);
}
/** \brief Get a pointer to the input point cloud dataset target. */
inline PointCloudSourceConstPtr const
getInputSource () { return (input_ ); }
/** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to)
* \param[in] cloud the input point cloud target
*/
virtual inline void
setInputTarget (const PointCloudTargetConstPtr &cloud);
/** \brief Get a pointer to the input point cloud dataset target. */
inline PointCloudTargetConstPtr const
getInputTarget () { return (target_ ); }
/** \brief Provide a pointer to the search object used to find correspondences in
* the target cloud.
* \param[in] tree a pointer to the spatial search object.
* \param[in] force_no_recompute If set to true, this tree will NEVER be
* recomputed, regardless of calls to setInputTarget. Only use if you are
* confident that the tree will be set correctly.
*/
inline void
setSearchMethodTarget (const KdTreePtr &tree,
bool force_no_recompute = false)
{
tree_ = tree;
if (force_no_recompute)
{
force_no_recompute_ = true;
}
// Since we just set a new tree, we need to check for updates
target_cloud_updated_ = true;
}
/** \brief Get a pointer to the search method used to find correspondences in the
* target cloud. */
inline KdTreePtr
getSearchMethodTarget () const
{
return (tree_);
}
/** \brief Provide a pointer to the search object used to find correspondences in
* the source cloud (usually used by reciprocal correspondence finding).
* \param[in] tree a pointer to the spatial search object.
* \param[in] force_no_recompute If set to true, this tree will NEVER be
* recomputed, regardless of calls to setInputSource. Only use if you are
* extremely confident that the tree will be set correctly.
*/
inline void
setSearchMethodSource (const KdTreeReciprocalPtr &tree,
bool force_no_recompute = false)
{
tree_reciprocal_ = tree;
if ( force_no_recompute )
{
force_no_recompute_reciprocal_ = true;
}
// Since we just set a new tree, we need to check for updates
source_cloud_updated_ = true;
}
/** \brief Get a pointer to the search method used to find correspondences in the
* source cloud. */
inline KdTreeReciprocalPtr
getSearchMethodSource () const
{
return (tree_reciprocal_);
}
/** \brief Get the final transformation matrix estimated by the registration method. */
inline Matrix4
getFinalTransformation () { return (final_transformation_); }
/** \brief Get the last incremental transformation matrix estimated by the registration method. */
inline Matrix4
getLastIncrementalTransformation () { return (transformation_); }
/** \brief Set the maximum number of iterations the internal optimization should run for.
* \param[in] nr_iterations the maximum number of iterations the internal optimization should run for
*/
inline void
setMaximumIterations (int nr_iterations) { max_iterations_ = nr_iterations; }
/** \brief Get the maximum number of iterations the internal optimization should run for, as set by the user. */
inline int
getMaximumIterations () { return (max_iterations_); }
/** \brief Set the number of iterations RANSAC should run for.
* \param[in] ransac_iterations is the number of iterations RANSAC should run for
*/
inline void
setRANSACIterations (int ransac_iterations) { ransac_iterations_ = ransac_iterations; }
/** \brief Get the number of iterations RANSAC should run for, as set by the user. */
inline double
getRANSACIterations () { return (ransac_iterations_); }
/** \brief Set the inlier distance threshold for the internal RANSAC outlier rejection loop.
*
* The method considers a point to be an inlier, if the distance between the target data index and the transformed
* source index is smaller than the given inlier distance threshold.
* The value is set by default to 0.05m.
* \param[in] inlier_threshold the inlier distance threshold for the internal RANSAC outlier rejection loop
*/
inline void
setRANSACOutlierRejectionThreshold (double inlier_threshold) { inlier_threshold_ = inlier_threshold; }
/** \brief Get the inlier distance threshold for the internal outlier rejection loop as set by the user. */
inline double
getRANSACOutlierRejectionThreshold () { return (inlier_threshold_); }
/** \brief Set the maximum distance threshold between two correspondent points in source <-> target. If the
* distance is larger than this threshold, the points will be ignored in the alignment process.
* \param[in] distance_threshold the maximum distance threshold between a point and its nearest neighbor
* correspondent in order to be considered in the alignment process
*/
inline void
setMaxCorrespondenceDistance (double distance_threshold) { corr_dist_threshold_ = distance_threshold; }
/** \brief Get the maximum distance threshold between two correspondent points in source <-> target. If the
* distance is larger than this threshold, the points will be ignored in the alignment process.
*/
inline double
getMaxCorrespondenceDistance () { return (corr_dist_threshold_); }
/** \brief Set the transformation epsilon (maximum allowable difference between two consecutive
* transformations) in order for an optimization to be considered as having converged to the final
* solution.
* \param[in] epsilon the transformation epsilon in order for an optimization to be considered as having
* converged to the final solution.
*/
inline void
setTransformationEpsilon (double epsilon) { transformation_epsilon_ = epsilon; }
/** \brief Get the transformation epsilon (maximum allowable difference between two consecutive
* transformations) as set by the user.
*/
inline double
getTransformationEpsilon () { return (transformation_epsilon_); }
/** \brief Set the maximum allowed Euclidean error between two consecutive steps in the ICP loop, before
* the algorithm is considered to have converged.
* The error is estimated as the sum of the differences between correspondences in an Euclidean sense,
* divided by the number of correspondences.
* \param[in] epsilon the maximum allowed distance error before the algorithm will be considered to have
* converged
*/
inline void
setEuclideanFitnessEpsilon (double epsilon) { euclidean_fitness_epsilon_ = epsilon; }
/** \brief Get the maximum allowed distance error before the algorithm will be considered to have converged,
* as set by the user. See \ref setEuclideanFitnessEpsilon
*/
inline double
getEuclideanFitnessEpsilon () { return (euclidean_fitness_epsilon_); }
/** \brief Provide a boost shared pointer to the PointRepresentation to be used when comparing points
* \param[in] point_representation the PointRepresentation to be used by the k-D tree
*/
inline void
setPointRepresentation (const PointRepresentationConstPtr &point_representation)
{
point_representation_ = point_representation;
}
/** \brief Register the user callback function which will be called from registration thread
* in order to update point cloud obtained after each iteration
* \param[in] visualizerCallback reference of the user callback function
*/
template<typename FunctionSignature> inline bool
registerVisualizationCallback (boost::function<FunctionSignature> &visualizerCallback)
{
if (visualizerCallback != NULL)
{
update_visualizer_ = visualizerCallback;
return (true);
}
else
return (false);
}
/** \brief Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
* \param[in] max_range maximum allowable distance between a point and its correspondence in the target
* (default: double::max)
*/
inline double
getFitnessScore (double max_range = std::numeric_limits<double>::max ());
/** \brief Obtain the Euclidean fitness score (e.g., sum of squared distances from the source to the target)
* from two sets of correspondence distances (distances between source and target points)
* \param[in] distances_a the first set of distances between correspondences
* \param[in] distances_b the second set of distances between correspondences
*/
inline double
getFitnessScore (const std::vector<float> &distances_a, const std::vector<float> &distances_b);
/** \brief Return the state of convergence after the last align run */
inline bool
hasConverged () { return (converged_); }
/** \brief Call the registration algorithm which estimates the transformation and returns the transformed source
* (input) as \a output.
* \param[out] output the resultant input transfomed point cloud dataset
*/
inline void
align (PointCloudSource &output);
/** \brief Call the registration algorithm which estimates the transformation and returns the transformed source
* (input) as \a output.
* \param[out] output the resultant input transfomed point cloud dataset
* \param[in] guess the initial gross estimation of the transformation
*/
inline void
align (PointCloudSource &output, const Matrix4& guess);
/** \brief Abstract class get name method. */
inline const std::string&
getClassName () const { return (reg_name_); }
/** \brief Internal computation initalization. */
bool
initCompute ();
/** \brief Internal computation when reciprocal lookup is needed */
bool
initComputeReciprocal ();
/** \brief Add a new correspondence rejector to the list
* \param[in] rejector the new correspondence rejector to concatenate
*
* Code example:
*
* \code
* CorrespondenceRejectorDistance rej;
* rej.setInputCloud<PointXYZ> (keypoints_src);
* rej.setInputTarget<PointXYZ> (keypoints_tgt);
* rej.setMaximumDistance (1);
* rej.setInputCorrespondences (all_correspondences);
*
* // or...
*
* \endcode
*/
inline void
addCorrespondenceRejector (const CorrespondenceRejectorPtr &rejector)
{
correspondence_rejectors_.push_back (rejector);
}
/** \brief Get the list of correspondence rejectors. */
inline std::vector<CorrespondenceRejectorPtr>
getCorrespondenceRejectors ()
{
return (correspondence_rejectors_);
}
/** \brief Remove the i-th correspondence rejector in the list
* \param[in] i the position of the correspondence rejector in the list to remove
*/
inline bool
removeCorrespondenceRejector (unsigned int i)
{
if (i >= correspondence_rejectors_.size ())
return (false);
correspondence_rejectors_.erase (correspondence_rejectors_.begin () + i);
return (true);
}
/** \brief Clear the list of correspondence rejectors. */
inline void
clearCorrespondenceRejectors ()
{
correspondence_rejectors_.clear ();
}
protected:
/** \brief The registration method name. */
std::string reg_name_;
/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
/** \brief A pointer to the spatial search object of the source. */
KdTreeReciprocalPtr tree_reciprocal_;
/** \brief The number of iterations the internal optimization ran for (used internally). */
int nr_iterations_;
/** \brief The maximum number of iterations the internal optimization should run for.
* The default value is 10.
*/
int max_iterations_;
/** \brief The number of iterations RANSAC should run for. */
int ransac_iterations_;
/** \brief The input point cloud dataset target. */
PointCloudTargetConstPtr target_;
/** \brief The final transformation matrix estimated by the registration method after N iterations. */
Matrix4 final_transformation_;
/** \brief The transformation matrix estimated by the registration method. */
Matrix4 transformation_;
/** \brief The previous transformation matrix estimated by the registration method (used internally). */
Matrix4 previous_transformation_;
/** \brief The maximum difference between two consecutive transformations in order to consider convergence
* (user defined).
*/
double transformation_epsilon_;
/** \brief The maximum allowed Euclidean error between two consecutive steps in the ICP loop, before the
* algorithm is considered to have converged. The error is estimated as the sum of the differences between
* correspondences in an Euclidean sense, divided by the number of correspondences.
*/
double euclidean_fitness_epsilon_;
/** \brief The maximum distance threshold between two correspondent points in source <-> target. If the
* distance is larger than this threshold, the points will be ignored in the alignement process.
*/
double corr_dist_threshold_;
/** \brief The inlier distance threshold for the internal RANSAC outlier rejection loop.
* The method considers a point to be an inlier, if the distance between the target data index and the transformed
* source index is smaller than the given inlier distance threshold. The default value is 0.05.
*/
double inlier_threshold_;
/** \brief Holds internal convergence state, given user parameters. */
bool converged_;
/** \brief The minimum number of correspondences that the algorithm needs before attempting to estimate the
* transformation. The default value is 3.
*/
int min_number_correspondences_;
/** \brief The set of correspondences determined at this ICP step. */
CorrespondencesPtr correspondences_;
/** \brief A TransformationEstimation object, used to calculate the 4x4 rigid transformation. */
TransformationEstimationPtr transformation_estimation_;
/** \brief A CorrespondenceEstimation object, used to estimate correspondences between the source and the target cloud. */
CorrespondenceEstimationPtr correspondence_estimation_;
/** \brief The list of correspondence rejectors to use. */
std::vector<CorrespondenceRejectorPtr> correspondence_rejectors_;
/** \brief Variable that stores whether we have a new target cloud, meaning we need to pre-process it again.
* This way, we avoid rebuilding the kd-tree for the target cloud every time the determineCorrespondences () method
* is called. */
bool target_cloud_updated_;
/** \brief Variable that stores whether we have a new source cloud, meaning we need to pre-process it again.
* This way, we avoid rebuilding the reciprocal kd-tree for the source cloud every time the determineCorrespondences () method
* is called. */
bool source_cloud_updated_;
/** \brief A flag which, if set, means the tree operating on the target cloud
* will never be recomputed*/
bool force_no_recompute_;
/** \brief A flag which, if set, means the tree operating on the source cloud
* will never be recomputed*/
bool force_no_recompute_reciprocal_;
/** \brief Callback function to update intermediate source point cloud position during it's registration
* to the target point cloud.
*/
boost::function<void(const pcl::PointCloud<PointSource> &cloud_src,
const std::vector<int> &indices_src,
const pcl::PointCloud<PointTarget> &cloud_tgt,
const std::vector<int> &indices_tgt)> update_visualizer_;
/** \brief Search for the closest nearest neighbor of a given point.
* \param cloud the point cloud dataset to use for nearest neighbor search
* \param index the index of the query point
* \param indices the resultant vector of indices representing the k-nearest neighbors
* \param distances the resultant distances from the query point to the k-nearest neighbors
*/
inline bool
searchForNeighbors (const PointCloudSource &cloud, int index,
std::vector<int> &indices, std::vector<float> &distances)
{
int k = tree_->nearestKSearch (cloud, index, 1, indices, distances);
if (k == 0)
return (false);
return (true);
}
/** \brief Abstract transformation computation method with initial guess */
virtual void
computeTransformation (PointCloudSource &output, const Matrix4& guess) = 0;
private:
/** \brief The point representation used (internal). */
PointRepresentationConstPtr point_representation_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
}
#include <pcl/registration/impl/registration.hpp>
#endif //#ifndef PCL_REGISTRATION_H_
|