This file is indexed.

/usr/include/pcl-1.7/pcl/registration/ndt.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2012, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#ifndef PCL_REGISTRATION_NDT_H_
#define PCL_REGISTRATION_NDT_H_

#include <pcl/registration/registration.h>
#include <pcl/filters/voxel_grid_covariance.h>

#include <unsupported/Eigen/NonLinearOptimization>

namespace pcl
{
  /** \brief A 3D Normal Distribution Transform registration implementation for point cloud data.
    * \note For more information please see
    * <b>Magnusson, M. (2009). The Three-Dimensional Normal-Distributions Transform —
    * an Efficient Representation for Registration, Surface Analysis, and Loop Detection.
    * PhD thesis, Orebro University. Orebro Studies in Technology 36.</b>,
    * <b>More, J., and Thuente, D. (1994). Line Search Algorithm with Guaranteed Sufficient Decrease
    * In ACM Transactions on Mathematical Software.</b> and
    * Sun, W. and Yuan, Y, (2006) Optimization Theory and Methods: Nonlinear Programming. 89-100
    * \note Math refactored by Todor Stoyanov.
    * \author Brian Okorn (Space and Naval Warfare Systems Center Pacific)
    */
  template<typename PointSource, typename PointTarget>
  class NormalDistributionsTransform : public Registration<PointSource, PointTarget>
  {
    protected:

      typedef typename Registration<PointSource, PointTarget>::PointCloudSource PointCloudSource;
      typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
      typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;

      typedef typename Registration<PointSource, PointTarget>::PointCloudTarget PointCloudTarget;
      typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
      typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;

      typedef PointIndices::Ptr PointIndicesPtr;
      typedef PointIndices::ConstPtr PointIndicesConstPtr;

      /** \brief Typename of searchable voxel grid containing mean and covariance. */
      typedef VoxelGridCovariance<PointTarget> TargetGrid;
      /** \brief Typename of pointer to searchable voxel grid. */
      typedef TargetGrid* TargetGridPtr;
      /** \brief Typename of const pointer to searchable voxel grid. */
      typedef const TargetGrid* TargetGridConstPtr;
      /** \brief Typename of const pointer to searchable voxel grid leaf. */
      typedef typename TargetGrid::LeafConstPtr TargetGridLeafConstPtr;


    public:

      typedef boost::shared_ptr< NormalDistributionsTransform<PointSource, PointTarget> > Ptr;
      typedef boost::shared_ptr< const NormalDistributionsTransform<PointSource, PointTarget> > ConstPtr;


      /** \brief Constructor.
        * Sets \ref outlier_ratio_ to 0.35, \ref step_size_ to 0.05 and \ref resolution_ to 1.0
        */
      NormalDistributionsTransform ();
      
      /** \brief Empty destructor */
      virtual ~NormalDistributionsTransform () {}

      /** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to).
        * \param[in] cloud the input point cloud target
        */
      inline void
      setInputTarget (const PointCloudTargetConstPtr &cloud)
      {
        Registration<PointSource, PointTarget>::setInputTarget (cloud);
        init ();
      }

      /** \brief Set/change the voxel grid resolution.
        * \param[in] resolution side length of voxels
        */
      inline void
      setResolution (float resolution)
      {
        // Prevents unnessary voxel initiations
        if (resolution_ != resolution)
        {
          resolution_ = resolution;
          if (input_)
            init ();
        }
      }

      /** \brief Get voxel grid resolution.
        * \return side length of voxels
        */
      inline float
      getResolution () const
      {
        return (resolution_);
      }

      /** \brief Get the newton line search maximum step length.
        * \return maximum step length
        */
      inline double
      getStepSize () const
      {
        return (step_size_);
      }

      /** \brief Set/change the newton line search maximum step length.
        * \param[in] step_size maximum step length
        */
      inline void
      setStepSize (double step_size)
      {
        step_size_ = step_size;
      }

      /** \brief Get the point cloud outlier ratio.
        * \return outlier ratio
        */
      inline double
      getOulierRatio () const
      {
        return (outlier_ratio_);
      }

      /** \brief Set/change the point cloud outlier ratio.
        * \param[in] outlier_ratio outlier ratio
        */
      inline void
      setOulierRatio (double outlier_ratio)
      {
        outlier_ratio_ = outlier_ratio;
      }

      /** \brief Get the registration alignment probability.
        * \return transformation probability
        */
      inline double
      getTransformationProbability () const
      {
        return (trans_probability_);
      }

      /** \brief Get the number of iterations required to calculate alignment.
        * \return final number of iterations
        */
      inline int
      getFinalNumIteration () const
      {
        return (nr_iterations_);
      }

      /** \brief Convert 6 element transformation vector to affine transformation.
        * \param[in] x transformation vector of the form [x, y, z, roll, pitch, yaw]
        * \param[out] trans affine transform corresponding to given transfomation vector
        */
      static void
      convertTransform (const Eigen::Matrix<double, 6, 1> &x, Eigen::Affine3f &trans)
      {
        trans = Eigen::Translation<float, 3>(float (x (0)), float (x (1)), float (x (2))) *
                Eigen::AngleAxis<float>(float (x (3)), Eigen::Vector3f::UnitX ()) *
                Eigen::AngleAxis<float>(float (x (4)), Eigen::Vector3f::UnitY ()) *
                Eigen::AngleAxis<float>(float (x (5)), Eigen::Vector3f::UnitZ ());
      }

      /** \brief Convert 6 element transformation vector to transformation matrix.
        * \param[in] x transformation vector of the form [x, y, z, roll, pitch, yaw]
        * \param[out] trans 4x4 transformation matrix corresponding to given transfomation vector
        */
      static void
      convertTransform (const Eigen::Matrix<double, 6, 1> &x, Eigen::Matrix4f &trans)
      {
        Eigen::Affine3f _affine;
        convertTransform (x, _affine);
        trans = _affine.matrix ();
      }

    protected:

      using Registration<PointSource, PointTarget>::reg_name_;
      using Registration<PointSource, PointTarget>::getClassName;
      using Registration<PointSource, PointTarget>::input_;
      using Registration<PointSource, PointTarget>::indices_;
      using Registration<PointSource, PointTarget>::target_;
      using Registration<PointSource, PointTarget>::nr_iterations_;
      using Registration<PointSource, PointTarget>::max_iterations_;
      using Registration<PointSource, PointTarget>::previous_transformation_;
      using Registration<PointSource, PointTarget>::final_transformation_;
      using Registration<PointSource, PointTarget>::transformation_;
      using Registration<PointSource, PointTarget>::transformation_epsilon_;
      using Registration<PointSource, PointTarget>::converged_;
      using Registration<PointSource, PointTarget>::corr_dist_threshold_;
      using Registration<PointSource, PointTarget>::inlier_threshold_;

      using Registration<PointSource, PointTarget>::update_visualizer_;

      /** \brief Estimate the transformation and returns the transformed source (input) as output.
        * \param[out] output the resultant input transfomed point cloud dataset
        */
      virtual void
      computeTransformation (PointCloudSource &output)
      {
        computeTransformation (output, Eigen::Matrix4f::Identity ());
      }

      /** \brief Estimate the transformation and returns the transformed source (input) as output.
        * \param[out] output the resultant input transfomed point cloud dataset
        * \param[in] guess the initial gross estimation of the transformation
        */
      virtual void
      computeTransformation (PointCloudSource &output, const Eigen::Matrix4f &guess);

      /** \brief Initiate covariance voxel structure. */
      void inline
      init ()
      {
        target_cells_.setLeafSize (resolution_, resolution_, resolution_);
        target_cells_.setInputCloud ( target_ );
        // Initiate voxel structure.
        target_cells_.filter (true);
      }

      /** \brief Compute derivatives of probability function w.r.t. the transformation vector.
        * \note Equation 6.10, 6.12 and 6.13 [Magnusson 2009].
        * \param[out] score_gradient the gradient vector of the probability function w.r.t. the transformation vector
        * \param[out] hessian the hessian matrix of the probability function w.r.t. the transformation vector
        * \param[in] trans_cloud transformed point cloud
        * \param[in] p the current transform vector
        * \param[in] compute_hessian flag to calculate hessian, unnessissary for step calculation.
        */
      double
      computeDerivatives (Eigen::Matrix<double, 6, 1> &score_gradient,
                          Eigen::Matrix<double, 6, 6> &hessian,
                          PointCloudSource &trans_cloud,
                          Eigen::Matrix<double, 6, 1> &p,
                          bool compute_hessian = true);

      /** \brief Compute individual point contirbutions to derivatives of probability function w.r.t. the transformation vector.
        * \note Equation 6.10, 6.12 and 6.13 [Magnusson 2009].
        * \param[in,out] score_gradient the gradient vector of the probability function w.r.t. the transformation vector
        * \param[in,out] hessian the hessian matrix of the probability function w.r.t. the transformation vector
        * \param[in] x_trans transformed point minus mean of occupied covariance voxel
        * \param[in] c_inv covariance of occupied covariance voxel
        * \param[in] compute_hessian flag to calculate hessian, unnessissary for step calculation.
        */
      double
      updateDerivatives (Eigen::Matrix<double, 6, 1> &score_gradient,
                         Eigen::Matrix<double, 6, 6> &hessian,
                         Eigen::Vector3d &x_trans, Eigen::Matrix3d &c_inv,
                         bool compute_hessian = true);

      /** \brief Precompute anglular components of derivatives.
        * \note Equation 6.19 and 6.21 [Magnusson 2009].
        * \param[in] p the current transform vector
        * \param[in] compute_hessian flag to calculate hessian, unnessissary for step calculation.
        */
      void
      computeAngleDerivatives (Eigen::Matrix<double, 6, 1> &p, bool compute_hessian = true);

      /** \brief Compute point derivatives.
        * \note Equation 6.18-21 [Magnusson 2009].
        * \param[in] x point from the input cloud
        * \param[in] compute_hessian flag to calculate hessian, unnessissary for step calculation.
        */
      void
      computePointDerivatives (Eigen::Vector3d &x, bool compute_hessian = true);

      /** \brief Compute hessian of probability function w.r.t. the transformation vector.
        * \note Equation 6.13 [Magnusson 2009].
        * \param[out] hessian the hessian matrix of the probability function w.r.t. the transformation vector
        * \param[in] trans_cloud transformed point cloud
        * \param[in] p the current transform vector
        */
      void
      computeHessian (Eigen::Matrix<double, 6, 6> &hessian,
                      PointCloudSource &trans_cloud,
                      Eigen::Matrix<double, 6, 1> &p);

      /** \brief Compute individual point contirbutions to hessian of probability function w.r.t. the transformation vector.
        * \note Equation 6.13 [Magnusson 2009].
        * \param[in,out] hessian the hessian matrix of the probability function w.r.t. the transformation vector
        * \param[in] x_trans transformed point minus mean of occupied covariance voxel
        * \param[in] c_inv covariance of occupied covariance voxel
        */
      void
      updateHessian (Eigen::Matrix<double, 6, 6> &hessian,
                     Eigen::Vector3d &x_trans, Eigen::Matrix3d &c_inv);

      /** \brief Compute line search step length and update transform and probability derivatives using More-Thuente method.
        * \note Search Algorithm [More, Thuente 1994]
        * \param[in] x initial transformation vector, \f$ x \f$ in Equation 1.3 (Moore, Thuente 1994) and \f$ \vec{p} \f$ in Algorithm 2 [Magnusson 2009]
        * \param[in] step_dir descent direction, \f$ p \f$ in Equation 1.3 (Moore, Thuente 1994) and \f$ \delta \vec{p} \f$ normalized in Algorithm 2 [Magnusson 2009]
        * \param[in] step_init initial step length estimate, \f$ \alpha_0 \f$ in Moore-Thuente (1994) and the noramal of \f$ \delta \vec{p} \f$ in Algorithm 2 [Magnusson 2009]
        * \param[in] step_max maximum step length, \f$ \alpha_max \f$ in Moore-Thuente (1994)
        * \param[in] step_min minimum step length, \f$ \alpha_min \f$ in Moore-Thuente (1994)
        * \param[out] score final score function value, \f$ f(x + \alpha p) \f$ in Equation 1.3 (Moore, Thuente 1994) and \f$ score \f$ in Algorithm 2 [Magnusson 2009]
        * \param[in,out] score_gradient gradient of score function w.r.t. transformation vector, \f$ f'(x + \alpha p) \f$ in Moore-Thuente (1994) and \f$ \vec{g} \f$ in Algorithm 2 [Magnusson 2009]
        * \param[out] hessian hessian of score function w.r.t. transformation vector, \f$ f''(x + \alpha p) \f$ in Moore-Thuente (1994) and \f$ H \f$ in Algorithm 2 [Magnusson 2009]
        * \param[in,out] trans_cloud transformed point cloud, \f$ X \f$ transformed by \f$ T(\vec{p},\vec{x}) \f$ in Algorithm 2 [Magnusson 2009]
        * \return final step length
        */
      double
      computeStepLengthMT (const Eigen::Matrix<double, 6, 1> &x,
                           Eigen::Matrix<double, 6, 1> &step_dir,
                           double step_init,
                           double step_max, double step_min,
                           double &score,
                           Eigen::Matrix<double, 6, 1> &score_gradient,
                           Eigen::Matrix<double, 6, 6> &hessian,
                           PointCloudSource &trans_cloud);

      /** \brief Update interval of possible step lengths for More-Thuente method, \f$ I \f$ in More-Thuente (1994)
        * \note Updating Algorithm until some value satifies \f$ \psi(\alpha_k) \leq 0 \f$ and \f$ \phi'(\alpha_k) \geq 0 \f$
        * and Modified Updating Algorithm from then on [More, Thuente 1994].
        * \param[in,out] a_l first endpoint of interval \f$ I \f$, \f$ \alpha_l \f$ in Moore-Thuente (1994)
        * \param[in,out] f_l value at first endpoint, \f$ f_l \f$ in Moore-Thuente (1994), \f$ \psi(\alpha_l) \f$ for Update Algorithm and \f$ \phi(\alpha_l) \f$ for Modified Update Algorithm
        * \param[in,out] g_l derivative at first endpoint, \f$ g_l \f$ in Moore-Thuente (1994), \f$ \psi'(\alpha_l) \f$ for Update Algorithm and \f$ \phi'(\alpha_l) \f$ for Modified Update Algorithm
        * \param[in,out] a_u second endpoint of interval \f$ I \f$, \f$ \alpha_u \f$ in Moore-Thuente (1994)
        * \param[in,out] f_u value at second endpoint, \f$ f_u \f$ in Moore-Thuente (1994), \f$ \psi(\alpha_u) \f$ for Update Algorithm and \f$ \phi(\alpha_u) \f$ for Modified Update Algorithm
        * \param[in,out] g_u derivative at second endpoint, \f$ g_u \f$ in Moore-Thuente (1994), \f$ \psi'(\alpha_u) \f$ for Update Algorithm and \f$ \phi'(\alpha_u) \f$ for Modified Update Algorithm
        * \param[in] a_t trial value, \f$ \alpha_t \f$ in Moore-Thuente (1994)
        * \param[in] f_t value at trial value, \f$ f_t \f$ in Moore-Thuente (1994), \f$ \psi(\alpha_t) \f$ for Update Algorithm and \f$ \phi(\alpha_t) \f$ for Modified Update Algorithm
        * \param[in] g_t derivative at trial value, \f$ g_t \f$ in Moore-Thuente (1994), \f$ \psi'(\alpha_t) \f$ for Update Algorithm and \f$ \phi'(\alpha_t) \f$ for Modified Update Algorithm
        * \return if interval converges
        */
      bool
      updateIntervalMT (double &a_l, double &f_l, double &g_l,
                        double &a_u, double &f_u, double &g_u,
                        double a_t, double f_t, double g_t);

      /** \brief Select new trial value for More-Thuente method.
        * \note Trial Value Selection [More, Thuente 1994], \f$ \psi(\alpha_k) \f$ is used for \f$ f_k \f$ and \f$ g_k \f$
        * until some value satifies the test \f$ \psi(\alpha_k) \leq 0 \f$ and \f$ \phi'(\alpha_k) \geq 0 \f$
        * then \f$ \phi(\alpha_k) \f$ is used from then on.
        * \note Interpolation Minimizer equations from Optimization Theory and Methods: Nonlinear Programming By Wenyu Sun, Ya-xiang Yuan (89-100).
        * \param[in] a_l first endpoint of interval \f$ I \f$, \f$ \alpha_l \f$ in Moore-Thuente (1994)
        * \param[in] f_l value at first endpoint, \f$ f_l \f$ in Moore-Thuente (1994)
        * \param[in] g_l derivative at first endpoint, \f$ g_l \f$ in Moore-Thuente (1994)
        * \param[in] a_u second endpoint of interval \f$ I \f$, \f$ \alpha_u \f$ in Moore-Thuente (1994)
        * \param[in] f_u value at second endpoint, \f$ f_u \f$ in Moore-Thuente (1994)
        * \param[in] g_u derivative at second endpoint, \f$ g_u \f$ in Moore-Thuente (1994)
        * \param[in] a_t previous trial value, \f$ \alpha_t \f$ in Moore-Thuente (1994)
        * \param[in] f_t value at previous trial value, \f$ f_t \f$ in Moore-Thuente (1994)
        * \param[in] g_t derivative at previous trial value, \f$ g_t \f$ in Moore-Thuente (1994)
        * \return new trial value
        */
      double
      trialValueSelectionMT (double a_l, double f_l, double g_l,
                             double a_u, double f_u, double g_u,
                             double a_t, double f_t, double g_t);

      /** \brief Auxilary function used to determin endpoints of More-Thuente interval.
        * \note \f$ \psi(\alpha) \f$ in Equation 1.6 (Moore, Thuente 1994)
        * \param[in] a the step length, \f$ \alpha \f$ in More-Thuente (1994)
        * \param[in] f_a function value at step length a, \f$ \phi(\alpha) \f$ in More-Thuente (1994)
        * \param[in] f_0 initial function value, \f$ \phi(0) \f$ in Moore-Thuente (1994)
        * \param[in] g_0 initial function gradiant, \f$ \phi'(0) \f$ in More-Thuente (1994)
        * \param[in] mu the step length, constant \f$ \mu \f$ in Equation 1.1 [More, Thuente 1994]
        * \return sufficent decrease value
        */
      inline double
      auxilaryFunction_PsiMT (double a, double f_a, double f_0, double g_0, double mu = 1.e-4)
      {
        return (f_a - f_0 - mu * g_0 * a);
      }

      /** \brief Auxilary function derivative used to determin endpoints of More-Thuente interval.
        * \note \f$ \psi'(\alpha) \f$, derivative of Equation 1.6 (Moore, Thuente 1994)
        * \param[in] g_a function gradient at step length a, \f$ \phi'(\alpha) \f$ in More-Thuente (1994)
        * \param[in] g_0 initial function gradiant, \f$ \phi'(0) \f$ in More-Thuente (1994)
        * \param[in] mu the step length, constant \f$ \mu \f$ in Equation 1.1 [More, Thuente 1994]
        * \return sufficent decrease derivative
        */
      inline double
      auxilaryFunction_dPsiMT (double g_a, double g_0, double mu = 1.e-4)
      {
        return (g_a - mu * g_0);
      }

      /** \brief The voxel grid generated from target cloud containing point means and covariances. */
      TargetGrid target_cells_;

      //double fitness_epsilon_;

      /** \brief The side length of voxels. */
      float resolution_;

      /** \brief The maximum step length. */
      double step_size_;

      /** \brief The ratio of outliers of points w.r.t. a normal distribution, Equation 6.7 [Magnusson 2009]. */
      double outlier_ratio_;

      /** \brief The normalization constants used fit the point distribution to a normal distribution, Equation 6.8 [Magnusson 2009]. */
      double gauss_d1_, gauss_d2_;

      /** \brief The probability score of the transform applied to the input cloud, Equation 6.9 and 6.10 [Magnusson 2009]. */
      double trans_probability_;

      /** \brief Precomputed Angular Gradient
        *
        * The precomputed angular derivatives for the jacobian of a transformation vector, Equation 6.19 [Magnusson 2009]. 
        */
      Eigen::Vector3d j_ang_a_, j_ang_b_, j_ang_c_, j_ang_d_, j_ang_e_, j_ang_f_, j_ang_g_, j_ang_h_;

      /** \brief Precomputed Angular Hessian
        *
        * The precomputed angular derivatives for the hessian of a transformation vector, Equation 6.19 [Magnusson 2009].
        */
      Eigen::Vector3d h_ang_a2_, h_ang_a3_,
                      h_ang_b2_, h_ang_b3_,
                      h_ang_c2_, h_ang_c3_,
                      h_ang_d1_, h_ang_d2_, h_ang_d3_,
                      h_ang_e1_, h_ang_e2_, h_ang_e3_,
                      h_ang_f1_, h_ang_f2_, h_ang_f3_;

      /** \brief The first order derivative of the transformation of a point w.r.t. the transform vector, \f$ J_E \f$ in Equation 6.18 [Magnusson 2009]. */
      Eigen::Matrix<double, 3, 6> point_gradient_;

      /** \brief The second order derivative of the transformation of a point w.r.t. the transform vector, \f$ H_E \f$ in Equation 6.20 [Magnusson 2009]. */
      Eigen::Matrix<double, 18, 6> point_hessian_;

    public:
      EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  };

}

#include <pcl/registration/impl/ndt.hpp>

#endif // PCL_REGISTRATION_NDT_H_