/usr/include/pcl-1.7/pcl/registration/gicp.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_GICP_H_
#define PCL_GICP_H_
#include <pcl/registration/icp.h>
#include <pcl/registration/bfgs.h>
namespace pcl
{
/** \brief GeneralizedIterativeClosestPoint is an ICP variant that implements the
* generalized iterative closest point algorithm as described by Alex Segal et al. in
* http://www.stanford.edu/~avsegal/resources/papers/Generalized_ICP.pdf
* The approach is based on using anistropic cost functions to optimize the alignment
* after closest point assignments have been made.
* The original code uses GSL and ANN while in ours we use an eigen mapped BFGS and
* FLANN.
* \author Nizar Sallem
* \ingroup registration
*/
template <typename PointSource, typename PointTarget>
class GeneralizedIterativeClosestPoint : public IterativeClosestPoint<PointSource, PointTarget>
{
public:
using IterativeClosestPoint<PointSource, PointTarget>::reg_name_;
using IterativeClosestPoint<PointSource, PointTarget>::getClassName;
using IterativeClosestPoint<PointSource, PointTarget>::indices_;
using IterativeClosestPoint<PointSource, PointTarget>::target_;
using IterativeClosestPoint<PointSource, PointTarget>::input_;
using IterativeClosestPoint<PointSource, PointTarget>::tree_;
using IterativeClosestPoint<PointSource, PointTarget>::tree_reciprocal_;
using IterativeClosestPoint<PointSource, PointTarget>::nr_iterations_;
using IterativeClosestPoint<PointSource, PointTarget>::max_iterations_;
using IterativeClosestPoint<PointSource, PointTarget>::previous_transformation_;
using IterativeClosestPoint<PointSource, PointTarget>::final_transformation_;
using IterativeClosestPoint<PointSource, PointTarget>::transformation_;
using IterativeClosestPoint<PointSource, PointTarget>::transformation_epsilon_;
using IterativeClosestPoint<PointSource, PointTarget>::converged_;
using IterativeClosestPoint<PointSource, PointTarget>::corr_dist_threshold_;
using IterativeClosestPoint<PointSource, PointTarget>::inlier_threshold_;
using IterativeClosestPoint<PointSource, PointTarget>::min_number_correspondences_;
using IterativeClosestPoint<PointSource, PointTarget>::update_visualizer_;
typedef pcl::PointCloud<PointSource> PointCloudSource;
typedef typename PointCloudSource::Ptr PointCloudSourcePtr;
typedef typename PointCloudSource::ConstPtr PointCloudSourceConstPtr;
typedef pcl::PointCloud<PointTarget> PointCloudTarget;
typedef typename PointCloudTarget::Ptr PointCloudTargetPtr;
typedef typename PointCloudTarget::ConstPtr PointCloudTargetConstPtr;
typedef PointIndices::Ptr PointIndicesPtr;
typedef PointIndices::ConstPtr PointIndicesConstPtr;
typedef typename Registration<PointSource, PointTarget>::KdTree InputKdTree;
typedef typename Registration<PointSource, PointTarget>::KdTreePtr InputKdTreePtr;
typedef boost::shared_ptr< GeneralizedIterativeClosestPoint<PointSource, PointTarget> > Ptr;
typedef boost::shared_ptr< const GeneralizedIterativeClosestPoint<PointSource, PointTarget> > ConstPtr;
typedef Eigen::Matrix<double, 6, 1> Vector6d;
/** \brief Empty constructor. */
GeneralizedIterativeClosestPoint ()
: k_correspondences_(20)
, gicp_epsilon_(0.001)
, rotation_epsilon_(2e-3)
, input_covariances_(0)
, target_covariances_(0)
, mahalanobis_(0)
, max_inner_iterations_(20)
{
min_number_correspondences_ = 4;
reg_name_ = "GeneralizedIterativeClosestPoint";
max_iterations_ = 200;
transformation_epsilon_ = 5e-4;
corr_dist_threshold_ = 5.;
rigid_transformation_estimation_ =
boost::bind (&GeneralizedIterativeClosestPoint<PointSource, PointTarget>::estimateRigidTransformationBFGS,
this, _1, _2, _3, _4, _5);
}
/** \brief Provide a pointer to the input dataset
* \param cloud the const boost shared pointer to a PointCloud message
*/
PCL_DEPRECATED ("[pcl::registration::GeneralizedIterativeClosestPoint::setInputCloud] setInputCloud is deprecated. Please use setInputSource instead.")
void
setInputCloud (const PointCloudSourceConstPtr &cloud);
/** \brief Provide a pointer to the input dataset
* \param cloud the const boost shared pointer to a PointCloud message
*/
inline void
setInputSource (const PointCloudSourceConstPtr &cloud)
{
if (cloud->points.empty ())
{
PCL_ERROR ("[pcl::%s::setInputSource] Invalid or empty point cloud dataset given!\n", getClassName ().c_str ());
return;
}
PointCloudSource input = *cloud;
// Set all the point.data[3] values to 1 to aid the rigid transformation
for (size_t i = 0; i < input.size (); ++i)
input[i].data[3] = 1.0;
pcl::IterativeClosestPoint<PointSource, PointTarget>::setInputSource (cloud);
input_covariances_.clear ();
input_covariances_.reserve (input_->size ());
}
/** \brief Provide a pointer to the input target (e.g., the point cloud that we want to align the input source to)
* \param[in] target the input point cloud target
*/
inline void
setInputTarget (const PointCloudTargetConstPtr &target)
{
pcl::IterativeClosestPoint<PointSource, PointTarget>::setInputTarget(target);
target_covariances_.clear ();
target_covariances_.reserve (target_->size ());
}
/** \brief Estimate a rigid rotation transformation between a source and a target point cloud using an iterative
* non-linear Levenberg-Marquardt approach.
* \param[in] cloud_src the source point cloud dataset
* \param[in] indices_src the vector of indices describing the points of interest in \a cloud_src
* \param[in] cloud_tgt the target point cloud dataset
* \param[in] indices_tgt the vector of indices describing the correspondences of the interst points from \a indices_src
* \param[out] transformation_matrix the resultant transformation matrix
*/
void
estimateRigidTransformationBFGS (const PointCloudSource &cloud_src,
const std::vector<int> &indices_src,
const PointCloudTarget &cloud_tgt,
const std::vector<int> &indices_tgt,
Eigen::Matrix4f &transformation_matrix);
/** \brief \return Mahalanobis distance matrix for the given point index */
inline const Eigen::Matrix3d& mahalanobis(size_t index) const
{
assert(index < mahalanobis_.size());
return mahalanobis_[index];
}
/** \brief Computes rotation matrix derivative.
* rotation matrix is obtainded from rotation angles x[3], x[4] and x[5]
* \return d/d_rx, d/d_ry and d/d_rz respectively in g[3], g[4] and g[5]
* param x array representing 3D transformation
* param R rotation matrix
* param g gradient vector
*/
void
computeRDerivative(const Vector6d &x, const Eigen::Matrix3d &R, Vector6d &g) const;
/** \brief Set the rotation epsilon (maximum allowable difference between two
* consecutive rotations) in order for an optimization to be considered as having
* converged to the final solution.
* \param epsilon the rotation epsilon
*/
inline void
setRotationEpsilon (double epsilon) { rotation_epsilon_ = epsilon; }
/** \brief Get the rotation epsilon (maximum allowable difference between two
* consecutive rotations) as set by the user.
*/
inline double
getRotationEpsilon () { return (rotation_epsilon_); }
/** \brief Set the number of neighbors used when selecting a point neighbourhood
* to compute covariances.
* A higher value will bring more accurate covariance matrix but will make
* covariances computation slower.
* \param k the number of neighbors to use when computing covariances
*/
void
setCorrespondenceRandomness (int k) { k_correspondences_ = k; }
/** \brief Get the number of neighbors used when computing covariances as set by
* the user
*/
int
getCorrespondenceRandomness () { return (k_correspondences_); }
/** set maximum number of iterations at the optimization step
* \param[in] max maximum number of iterations for the optimizer
*/
void
setMaximumOptimizerIterations (int max) { max_inner_iterations_ = max; }
///\return maximum number of iterations at the optimization step
int
getMaximumOptimizerIterations () { return (max_inner_iterations_); }
protected:
/** \brief The number of neighbors used for covariances computation.
* default: 20
*/
int k_correspondences_;
/** \brief The epsilon constant for gicp paper; this is NOT the convergence
* tolerence
* default: 0.001
*/
double gicp_epsilon_;
/** The epsilon constant for rotation error. (In GICP the transformation epsilon
* is split in rotation part and translation part).
* default: 2e-3
*/
double rotation_epsilon_;
/** \brief base transformation */
Eigen::Matrix4f base_transformation_;
/** \brief Temporary pointer to the source dataset. */
const PointCloudSource *tmp_src_;
/** \brief Temporary pointer to the target dataset. */
const PointCloudTarget *tmp_tgt_;
/** \brief Temporary pointer to the source dataset indices. */
const std::vector<int> *tmp_idx_src_;
/** \brief Temporary pointer to the target dataset indices. */
const std::vector<int> *tmp_idx_tgt_;
/** \brief Input cloud points covariances. */
std::vector<Eigen::Matrix3d> input_covariances_;
/** \brief Target cloud points covariances. */
std::vector<Eigen::Matrix3d> target_covariances_;
/** \brief Mahalanobis matrices holder. */
std::vector<Eigen::Matrix3d> mahalanobis_;
/** \brief maximum number of optimizations */
int max_inner_iterations_;
/** \brief compute points covariances matrices according to the K nearest
* neighbors. K is set via setCorrespondenceRandomness() methode.
* \param cloud pointer to point cloud
* \param tree KD tree performer for nearest neighbors search
* \param[out] cloud_covariances covariances matrices for each point in the cloud
*/
template<typename PointT>
void computeCovariances(typename pcl::PointCloud<PointT>::ConstPtr cloud,
const typename pcl::search::KdTree<PointT>::Ptr tree,
std::vector<Eigen::Matrix3d>& cloud_covariances);
/** \return trace of mat1^t . mat2
* \param mat1 matrix of dimension nxm
* \param mat2 matrix of dimension nxp
*/
inline double
matricesInnerProd(const Eigen::MatrixXd& mat1, const Eigen::MatrixXd& mat2) const
{
double r = 0.;
size_t n = mat1.rows();
// tr(mat1^t.mat2)
for(size_t i = 0; i < n; i++)
for(size_t j = 0; j < n; j++)
r += mat1 (j, i) * mat2 (i,j);
return r;
}
/** \brief Rigid transformation computation method with initial guess.
* \param output the transformed input point cloud dataset using the rigid transformation found
* \param guess the initial guess of the transformation to compute
*/
void
computeTransformation (PointCloudSource &output, const Eigen::Matrix4f &guess);
/** \brief Search for the closest nearest neighbor of a given point.
* \param query the point to search a nearest neighbour for
* \param index vector of size 1 to store the index of the nearest neighbour found
* \param distance vector of size 1 to store the distance to nearest neighbour found
*/
inline bool
searchForNeighbors (const PointSource &query, std::vector<int>& index, std::vector<float>& distance)
{
int k = tree_->nearestKSearch (query, 1, index, distance);
if (k == 0)
return (false);
return (true);
}
/// \brief compute transformation matrix from transformation matrix
void applyState(Eigen::Matrix4f &t, const Vector6d& x) const;
/// \brief optimization functor structure
struct OptimizationFunctorWithIndices : public BFGSDummyFunctor<double,6>
{
OptimizationFunctorWithIndices (const GeneralizedIterativeClosestPoint* gicp)
: BFGSDummyFunctor<double,6> (), gicp_(gicp) {}
double operator() (const Vector6d& x);
void df(const Vector6d &x, Vector6d &df);
void fdf(const Vector6d &x, double &f, Vector6d &df);
const GeneralizedIterativeClosestPoint *gicp_;
};
boost::function<void(const pcl::PointCloud<PointSource> &cloud_src,
const std::vector<int> &src_indices,
const pcl::PointCloud<PointTarget> &cloud_tgt,
const std::vector<int> &tgt_indices,
Eigen::Matrix4f &transformation_matrix)> rigid_transformation_estimation_;
};
}
#include <pcl/registration/impl/gicp.hpp>
#endif //#ifndef PCL_GICP_H_
|