/usr/include/pcl-1.7/pcl/registration/distances.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_REGISTRATION_DISTANCES_H
#define PCL_REGISTRATION_DISTANCES_H
#include <pcl/registration/eigen.h>
#include <vector>
namespace pcl
{
namespace distances
{
/** \brief Compute the median value from a set of doubles
* \param[in] fvec the set of doubles
* \param[in] m the number of doubles in the set
*/
inline double
computeMedian (double *fvec, int m)
{
// Copy the values to vectors for faster sorting
std::vector<double> data (m);
memcpy (&data[0], fvec, sizeof (double) * m);
std::nth_element(data.begin(), data.begin() + (data.size () >> 1), data.end());
return (data[data.size () >> 1]);
}
/** \brief Use a Huber kernel to estimate the distance between two vectors
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
* \param[in] sigma the sigma value
*/
inline double
huber (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt, double sigma)
{
Eigen::Array4f diff = (p_tgt.array () - p_src.array ()).abs ();
double norm = 0.0;
for (int i = 0; i < 3; ++i)
{
if (diff[i] < sigma)
norm += diff[i] * diff[i];
else
norm += 2.0 * sigma * diff[i] - sigma * sigma;
}
return (norm);
}
/** \brief Use a Huber kernel to estimate the distance between two vectors
* \param[in] diff the norm difference between two vectors
* \param[in] sigma the sigma value
*/
inline double
huber (double diff, double sigma)
{
double norm = 0.0;
if (diff < sigma)
norm += diff * diff;
else
norm += 2.0 * sigma * diff - sigma * sigma;
return (norm);
}
/** \brief Use a Gedikli kernel to estimate the distance between two vectors
* (for more information, see
* \param[in] val the norm difference between two vectors
* \param[in] clipping the clipping value
* \param[in] slope the slope. Default: 4
*/
inline double
gedikli (double val, double clipping, double slope = 4)
{
return (1.0 / (1.0 + pow (fabs(val) / clipping, slope)));
}
/** \brief Compute the Manhattan distance between two eigen vectors.
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
*/
inline double
l1 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
{
return ((p_src.array () - p_tgt.array ()).abs ().sum ());
}
/** \brief Compute the Euclidean distance between two eigen vectors.
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
*/
inline double
l2 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
{
return ((p_src - p_tgt).norm ());
}
/** \brief Compute the squared Euclidean distance between two eigen vectors.
* \param[in] p_src the first eigen vector
* \param[in] p_tgt the second eigen vector
*/
inline double
l2Sqr (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt)
{
return ((p_src - p_tgt).squaredNorm ());
}
}
}
#endif
|