This file is indexed.

/usr/include/pcl-1.7/pcl/registration/distances.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */
#ifndef PCL_REGISTRATION_DISTANCES_H
#define PCL_REGISTRATION_DISTANCES_H

#include <pcl/registration/eigen.h>
#include <vector>

namespace pcl
{
  namespace distances
  {

    /** \brief Compute the median value from a set of doubles
      * \param[in] fvec the set of doubles
      * \param[in] m the number of doubles in the set
      */
    inline double 
    computeMedian (double *fvec, int m)
    {
      // Copy the values to vectors for faster sorting
      std::vector<double> data (m);
      memcpy (&data[0], fvec, sizeof (double) * m);
      
      std::nth_element(data.begin(), data.begin() + (data.size () >> 1), data.end());
      return (data[data.size () >> 1]);
    }

    /** \brief Use a Huber kernel to estimate the distance between two vectors
      * \param[in] p_src the first eigen vector
      * \param[in] p_tgt the second eigen vector
      * \param[in] sigma the sigma value
      */
    inline double
    huber (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt, double sigma) 
    {
      Eigen::Array4f diff = (p_tgt.array () - p_src.array ()).abs ();
      double norm = 0.0;
      for (int i = 0; i < 3; ++i)
      {
        if (diff[i] < sigma)
          norm += diff[i] * diff[i];
        else
          norm += 2.0 * sigma * diff[i] - sigma * sigma;
      }
      return (norm);
    }

    /** \brief Use a Huber kernel to estimate the distance between two vectors
      * \param[in] diff the norm difference between two vectors
      * \param[in] sigma the sigma value
      */
    inline double
    huber (double diff, double sigma) 
    {
      double norm = 0.0;
      if (diff < sigma)
        norm += diff * diff;
      else
        norm += 2.0 * sigma * diff - sigma * sigma;
      return (norm);
    }

    /** \brief Use a Gedikli kernel to estimate the distance between two vectors
      * (for more information, see 
      * \param[in] val the norm difference between two vectors
      * \param[in] clipping the clipping value
      * \param[in] slope the slope. Default: 4
      */
    inline double
    gedikli (double val, double clipping, double slope = 4) 
    {
      return (1.0 / (1.0 + pow (fabs(val) / clipping, slope)));
    }

    /** \brief Compute the Manhattan distance between two eigen vectors.
      * \param[in] p_src the first eigen vector
      * \param[in] p_tgt the second eigen vector
      */
    inline double
    l1 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
    {
      return ((p_src.array () - p_tgt.array ()).abs ().sum ());
    }

    /** \brief Compute the Euclidean distance between two eigen vectors.
      * \param[in] p_src the first eigen vector
      * \param[in] p_tgt the second eigen vector
      */
    inline double
    l2 (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
    {
      return ((p_src - p_tgt).norm ());
    }

    /** \brief Compute the squared Euclidean distance between two eigen vectors.
      * \param[in] p_src the first eigen vector
      * \param[in] p_tgt the second eigen vector
      */
    inline double
    l2Sqr (const Eigen::Vector4f &p_src, const Eigen::Vector4f &p_tgt) 
    {
      return ((p_src - p_tgt).squaredNorm ());
    }
  }
}

#endif