/usr/include/pcl-1.7/pcl/registration/bfgs.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 | #ifndef PCL_FOR_EIGEN_BFGS_H
#define PCL_FOR_EIGEN_BFGS_H
#if defined __GNUC__
# pragma GCC system_header
#endif
#include <pcl/registration/eigen.h>
namespace Eigen
{
template< typename _Scalar >
class PolynomialSolver<_Scalar,2> : public PolynomialSolverBase<_Scalar,2>
{
public:
typedef PolynomialSolverBase<_Scalar,2> PS_Base;
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
public:
virtual ~PolynomialSolver () {}
template< typename OtherPolynomial >
inline PolynomialSolver( const OtherPolynomial& poly, bool& hasRealRoot )
{
compute( poly, hasRealRoot );
}
/** Computes the complex roots of a new polynomial. */
template< typename OtherPolynomial >
void compute( const OtherPolynomial& poly, bool& hasRealRoot)
{
const Scalar ZERO(0);
Scalar a2(2 * poly[2]);
assert( ZERO != poly[poly.size()-1] );
Scalar discriminant ((poly[1] * poly[1]) - (4 * poly[0] * poly[2]));
if (ZERO < discriminant)
{
Scalar discriminant_root (std::sqrt (discriminant));
m_roots[0] = (-poly[1] - discriminant_root) / (a2) ;
m_roots[1] = (-poly[1] + discriminant_root) / (a2) ;
hasRealRoot = true;
}
else {
if (ZERO == discriminant)
{
m_roots.resize (1);
m_roots[0] = -poly[1] / a2;
hasRealRoot = true;
}
else
{
Scalar discriminant_root (std::sqrt (-discriminant));
m_roots[0] = RootType (-poly[1] / a2, -discriminant_root / a2);
m_roots[1] = RootType (-poly[1] / a2, discriminant_root / a2);
hasRealRoot = false;
}
}
}
template< typename OtherPolynomial >
void compute( const OtherPolynomial& poly)
{
bool hasRealRoot;
compute(poly, hasRealRoot);
}
protected:
using PS_Base::m_roots;
};
}
template<typename _Scalar, int NX=Eigen::Dynamic>
struct BFGSDummyFunctor
{
typedef _Scalar Scalar;
enum { InputsAtCompileTime = NX };
typedef Eigen::Matrix<Scalar,InputsAtCompileTime,1> VectorType;
const int m_inputs;
BFGSDummyFunctor() : m_inputs(InputsAtCompileTime) {}
BFGSDummyFunctor(int inputs) : m_inputs(inputs) {}
virtual ~BFGSDummyFunctor() {}
int inputs() const { return m_inputs; }
virtual double operator() (const VectorType &x) = 0;
virtual void df(const VectorType &x, VectorType &df) = 0;
virtual void fdf(const VectorType &x, Scalar &f, VectorType &df) = 0;
};
namespace BFGSSpace {
enum Status {
NegativeGradientEpsilon = -3,
NotStarted = -2,
Running = -1,
Success = 0,
NoProgress = 1
};
}
/**
* BFGS stands for Broyden–Fletcher–Goldfarb–Shanno (BFGS) method for solving
* unconstrained nonlinear optimization problems.
* For further details please visit: http://en.wikipedia.org/wiki/BFGS_method
* The method provided here is almost similar to the one provided by GSL.
* It reproduces Fletcher's original algorithm in Practical Methods of Optimization
* algorithms : 2.6.2 and 2.6.4 and uses the same politics in GSL with cubic
* interpolation whenever it is possible else falls to quadratic interpolation for
* alpha parameter.
*/
template<typename FunctorType>
class BFGS
{
public:
typedef typename FunctorType::Scalar Scalar;
typedef typename FunctorType::VectorType FVectorType;
BFGS(FunctorType &_functor)
: pnorm(0), g0norm(0), iter(-1), functor(_functor) { }
typedef Eigen::DenseIndex Index;
struct Parameters {
Parameters()
: max_iters(400)
, bracket_iters(100)
, section_iters(100)
, rho(0.01)
, sigma(0.01)
, tau1(9)
, tau2(0.05)
, tau3(0.5)
, step_size(1)
, order(3) {}
Index max_iters; // maximum number of function evaluation
Index bracket_iters;
Index section_iters;
Scalar rho;
Scalar sigma;
Scalar tau1;
Scalar tau2;
Scalar tau3;
Scalar step_size;
Index order;
};
BFGSSpace::Status minimize(FVectorType &x);
BFGSSpace::Status minimizeInit(FVectorType &x);
BFGSSpace::Status minimizeOneStep(FVectorType &x);
BFGSSpace::Status testGradient(Scalar epsilon);
void resetParameters(void) { parameters = Parameters(); }
Parameters parameters;
Scalar f;
FVectorType gradient;
private:
BFGS& operator=(const BFGS&);
BFGSSpace::Status lineSearch (Scalar rho, Scalar sigma,
Scalar tau1, Scalar tau2, Scalar tau3,
int order, Scalar alpha1, Scalar &alpha_new);
Scalar interpolate (Scalar a, Scalar fa, Scalar fpa,
Scalar b, Scalar fb, Scalar fpb, Scalar xmin, Scalar xmax,
int order);
void checkExtremum (const Eigen::Matrix<Scalar, 4, 1>& coefficients, Scalar x, Scalar& xmin, Scalar& fmin);
void moveTo (Scalar alpha);
Scalar slope ();
Scalar applyF (Scalar alpha);
Scalar applyDF (Scalar alpha);
void applyFDF (Scalar alpha, Scalar &f, Scalar &df);
void updatePosition (Scalar alpha, FVectorType& x, Scalar& f, FVectorType& g);
void changeDirection ();
Scalar delta_f, fp0;
FVectorType x0, dx0, dg0, g0, dx, p;
Scalar pnorm, g0norm;
Scalar f_alpha;
Scalar df_alpha;
FVectorType x_alpha;
FVectorType g_alpha;
// cache "keys"
Scalar f_cache_key;
Scalar df_cache_key;
Scalar x_cache_key;
Scalar g_cache_key;
Index iter;
FunctorType &functor;
};
template<typename FunctorType> void
BFGS<FunctorType>::checkExtremum(const Eigen::Matrix<Scalar, 4, 1>& coefficients, Scalar x, Scalar& xmin, Scalar& fmin)
{
Scalar y = Eigen::poly_eval(coefficients, x);
if(y < fmin) { xmin = x; fmin = y; }
}
template<typename FunctorType> void
BFGS<FunctorType>::moveTo(Scalar alpha)
{
x_alpha = x0 + alpha * p;
x_cache_key = alpha;
}
template<typename FunctorType> typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::slope()
{
return (g_alpha.dot (p));
}
template<typename FunctorType> typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::applyF(Scalar alpha)
{
if (alpha == f_cache_key) return f_alpha;
moveTo (alpha);
f_alpha = functor (x_alpha);
f_cache_key = alpha;
return (f_alpha);
}
template<typename FunctorType> typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::applyDF(Scalar alpha)
{
if (alpha == df_cache_key) return df_alpha;
moveTo (alpha);
if(alpha != g_cache_key)
{
functor.df (x_alpha, g_alpha);
g_cache_key = alpha;
}
df_alpha = slope ();
df_cache_key = alpha;
return (df_alpha);
}
template<typename FunctorType> void
BFGS<FunctorType>::applyFDF(Scalar alpha, Scalar& f, Scalar& df)
{
if(alpha == f_cache_key && alpha == df_cache_key)
{
f = f_alpha;
df = df_alpha;
return;
}
if(alpha == f_cache_key || alpha == df_cache_key)
{
f = applyF (alpha);
df = applyDF (alpha);
return;
}
moveTo (alpha);
functor.fdf (x_alpha, f_alpha, g_alpha);
f_cache_key = alpha;
g_cache_key = alpha;
df_alpha = slope ();
df_cache_key = alpha;
f = f_alpha;
df = df_alpha;
}
template<typename FunctorType> void
BFGS<FunctorType>::updatePosition (Scalar alpha, FVectorType &x, Scalar &f, FVectorType &g)
{
{
Scalar f_alpha, df_alpha;
applyFDF (alpha, f_alpha, df_alpha);
} ;
f = f_alpha;
x = x_alpha;
g = g_alpha;
}
template<typename FunctorType> void
BFGS<FunctorType>::changeDirection ()
{
x_alpha = x0;
x_cache_key = 0.0;
f_cache_key = 0.0;
g_alpha = g0;
g_cache_key = 0.0;
df_alpha = slope ();
df_cache_key = 0.0;
}
template<typename FunctorType> BFGSSpace::Status
BFGS<FunctorType>::minimize(FVectorType &x)
{
BFGSSpace::Status status = minimizeInit(x);
do {
status = minimizeOneStep(x);
iter++;
} while (status==BFGSSpace::Success && iter < parameters.max_iters);
return status;
}
template<typename FunctorType> BFGSSpace::Status
BFGS<FunctorType>::minimizeInit(FVectorType &x)
{
iter = 0;
delta_f = 0;
dx.setZero ();
functor.fdf(x, f, gradient);
x0 = x;
g0 = gradient;
g0norm = g0.norm ();
p = gradient * -1/g0norm;
pnorm = p.norm ();
fp0 = -g0norm;
{
x_alpha = x0; x_cache_key = 0;
f_alpha = f; f_cache_key = 0;
g_alpha = g0; g_cache_key = 0;
df_alpha = slope (); df_cache_key = 0;
}
return BFGSSpace::NotStarted;
}
template<typename FunctorType> BFGSSpace::Status
BFGS<FunctorType>::minimizeOneStep(FVectorType &x)
{
Scalar alpha = 0.0, alpha1;
Scalar f0 = f;
if (pnorm == 0.0 || g0norm == 0.0 || fp0 == 0)
{
dx.setZero ();
return BFGSSpace::NoProgress;
}
if (delta_f < 0)
{
Scalar del = std::max (-delta_f, 10 * std::numeric_limits<Scalar>::epsilon() * fabs(f0));
alpha1 = std::min (1.0, 2.0 * del / (-fp0));
}
else
alpha1 = fabs(parameters.step_size);
BFGSSpace::Status status = lineSearch(parameters.rho, parameters.sigma,
parameters.tau1, parameters.tau2, parameters.tau3,
parameters.order, alpha1, alpha);
if(status != BFGSSpace::Success)
return status;
updatePosition(alpha, x, f, gradient);
delta_f = f - f0;
/* Choose a new direction for the next step */
{
/* This is the BFGS update: */
/* p' = g1 - A dx - B dg */
/* A = - (1+ dg.dg/dx.dg) B + dg.g/dx.dg */
/* B = dx.g/dx.dg */
Scalar dxg, dgg, dxdg, dgnorm, A, B;
/* dx0 = x - x0 */
dx0 = x - x0;
dx = dx0; /* keep a copy */
/* dg0 = g - g0 */
dg0 = gradient - g0;
dxg = dx0.dot (gradient);
dgg = dg0.dot (gradient);
dxdg = dx0.dot (dg0);
dgnorm = dg0.norm ();
if (dxdg != 0)
{
B = dxg / dxdg;
A = -(1.0 + dgnorm * dgnorm / dxdg) * B + dgg / dxdg;
}
else
{
B = 0;
A = 0;
}
p = -A * dx0;
p+= gradient;
p+= -B * dg0 ;
}
g0 = gradient;
x0 = x;
g0norm = g0.norm ();
pnorm = p.norm ();
Scalar dir = ((p.dot (gradient)) > 0) ? -1.0 : 1.0;
p*= dir / pnorm;
pnorm = p.norm ();
fp0 = p.dot (g0);
changeDirection();
return BFGSSpace::Success;
}
template<typename FunctorType> typename BFGSSpace::Status
BFGS<FunctorType>::testGradient(Scalar epsilon)
{
if(epsilon < 0)
return BFGSSpace::NegativeGradientEpsilon;
else
{
if(gradient.norm () < epsilon)
return BFGSSpace::Success;
else
return BFGSSpace::Running;
}
}
template<typename FunctorType> typename BFGS<FunctorType>::Scalar
BFGS<FunctorType>::interpolate (Scalar a, Scalar fa, Scalar fpa,
Scalar b, Scalar fb, Scalar fpb,
Scalar xmin, Scalar xmax,
int order)
{
/* Map [a,b] to [0,1] */
Scalar y, alpha, ymin, ymax, fmin;
ymin = (xmin - a) / (b - a);
ymax = (xmax - a) / (b - a);
// Ensure ymin <= ymax
if (ymin > ymax) { Scalar tmp = ymin; ymin = ymax; ymax = tmp; };
if (order > 2 && !(fpb != fpb) && fpb != std::numeric_limits<Scalar>::infinity ())
{
fpa = fpa * (b - a);
fpb = fpb * (b - a);
Scalar eta = 3 * (fb - fa) - 2 * fpa - fpb;
Scalar xi = fpa + fpb - 2 * (fb - fa);
Scalar c0 = fa, c1 = fpa, c2 = eta, c3 = xi;
Scalar y0, y1;
Eigen::Matrix<Scalar, 4, 1> coefficients;
coefficients << c0, c1, c2, c3;
y = ymin;
// Evaluate the cubic polyinomial at ymin;
fmin = Eigen::poly_eval (coefficients, ymin);
checkExtremum (coefficients, ymax, y, fmin);
{
// Solve quadratic polynomial for the derivate
Eigen::Matrix<Scalar, 3, 1> coefficients2;
coefficients2 << c1, 2 * c2, 3 * c3;
bool real_roots;
Eigen::PolynomialSolver<Scalar, 2> solver (coefficients2, real_roots);
if(real_roots)
{
if ((solver.roots ()).size () == 2) /* found 2 roots */
{
y0 = std::real (solver.roots () [0]);
y1 = std::real (solver.roots () [1]);
if(y0 > y1) { Scalar tmp (y0); y0 = y1; y1 = tmp; }
if (y0 > ymin && y0 < ymax)
checkExtremum (coefficients, y0, y, fmin);
if (y1 > ymin && y1 < ymax)
checkExtremum (coefficients, y1, y, fmin);
}
else if ((solver.roots ()).size () == 1) /* found 1 root */
{
y0 = std::real (solver.roots () [0]);
if (y0 > ymin && y0 < ymax)
checkExtremum (coefficients, y0, y, fmin);
}
}
}
}
else
{
fpa = fpa * (b - a);
Scalar fl = fa + ymin*(fpa + ymin*(fb - fa -fpa));
Scalar fh = fa + ymax*(fpa + ymax*(fb - fa -fpa));
Scalar c = 2 * (fb - fa - fpa); /* curvature */
y = ymin; fmin = fl;
if (fh < fmin) { y = ymax; fmin = fh; }
if (c > a) /* positive curvature required for a minimum */
{
Scalar z = -fpa / c; /* location of minimum */
if (z > ymin && z < ymax) {
Scalar f = fa + z*(fpa + z*(fb - fa -fpa));
if (f < fmin) { y = z; fmin = f; };
}
}
}
alpha = a + y * (b - a);
return alpha;
}
template<typename FunctorType> BFGSSpace::Status
BFGS<FunctorType>::lineSearch(Scalar rho, Scalar sigma,
Scalar tau1, Scalar tau2, Scalar tau3,
int order, Scalar alpha1, Scalar &alpha_new)
{
Scalar f0, fp0, falpha, falpha_prev, fpalpha, fpalpha_prev, delta, alpha_next;
Scalar alpha = alpha1, alpha_prev = 0.0;
Scalar a, b, fa, fb, fpa, fpb;
Index i = 0;
applyFDF (0.0, f0, fp0);
falpha_prev = f0;
fpalpha_prev = fp0;
/* Avoid uninitialized variables morning */
a = 0.0; b = alpha;
fa = f0; fb = 0.0;
fpa = fp0; fpb = 0.0;
/* Begin bracketing */
while (i++ < parameters.bracket_iters)
{
falpha = applyF (alpha);
if (falpha > f0 + alpha * rho * fp0 || falpha >= falpha_prev)
{
a = alpha_prev; fa = falpha_prev; fpa = fpalpha_prev;
b = alpha; fb = falpha; fpb = std::numeric_limits<Scalar>::quiet_NaN ();
break;
}
fpalpha = applyDF (alpha);
/* Fletcher's sigma test */
if (fabs (fpalpha) <= -sigma * fp0)
{
alpha_new = alpha;
return BFGSSpace::Success;
}
if (fpalpha >= 0)
{
a = alpha; fa = falpha; fpa = fpalpha;
b = alpha_prev; fb = falpha_prev; fpb = fpalpha_prev;
break; /* goto sectioning */
}
delta = alpha - alpha_prev;
{
Scalar lower = alpha + delta;
Scalar upper = alpha + tau1 * delta;
alpha_next = interpolate (alpha_prev, falpha_prev, fpalpha_prev,
alpha, falpha, fpalpha, lower, upper, order);
}
alpha_prev = alpha;
falpha_prev = falpha;
fpalpha_prev = fpalpha;
alpha = alpha_next;
}
/* Sectioning of bracket [a,b] */
while (i++ < parameters.section_iters)
{
delta = b - a;
{
Scalar lower = a + tau2 * delta;
Scalar upper = b - tau3 * delta;
alpha = interpolate (a, fa, fpa, b, fb, fpb, lower, upper, order);
}
falpha = applyF (alpha);
if ((a-alpha)*fpa <= std::numeric_limits<Scalar>::epsilon ()) {
/* roundoff prevents progress */
return BFGSSpace::NoProgress;
};
if (falpha > f0 + rho * alpha * fp0 || falpha >= fa)
{
/* a_next = a; */
b = alpha; fb = falpha; fpb = std::numeric_limits<Scalar>::quiet_NaN ();
}
else
{
fpalpha = applyDF (alpha);
if (fabs(fpalpha) <= -sigma * fp0)
{
alpha_new = alpha;
return BFGSSpace::Success; /* terminate */
}
if ( ((b-a) >= 0 && fpalpha >= 0) || ((b-a) <=0 && fpalpha <= 0))
{
b = a; fb = fa; fpb = fpa;
a = alpha; fa = falpha; fpa = fpalpha;
}
else
{
a = alpha; fa = falpha; fpa = fpalpha;
}
}
}
return BFGSSpace::Success;
}
#endif // PCL_FOR_EIGEN_BFGS_H
|