/usr/include/pcl-1.7/pcl/recognition/auxiliary.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef PCL_RECOGNITION_RANSAC_BASED_AUX_H_
#define PCL_RECOGNITION_RANSAC_BASED_AUX_H_
#include <cmath>
#include <cstdlib>
#include <pcl/common/eigen.h>
#include <pcl/point_types.h>
#define AUX_PI_FLOAT 3.14159265358979323846f
#define AUX_HALF_PI 1.57079632679489661923f
#define AUX_DEG_TO_RADIANS (3.14159265358979323846f/180.0f)
namespace pcl
{
namespace recognition
{
namespace aux
{
template<typename T> bool
compareOrderedPairs (const std::pair<T,T>& a, const std::pair<T,T>& b)
{
if ( a.first == b.first )
return static_cast<bool> (a.second < b.second);
return static_cast<bool> (a.first < b.first);
}
template<typename T> T
sqr (T a)
{
return (a*a);
}
template<typename T> T
clamp (T value, T min, T max)
{
if ( value < min )
return min;
else if ( value > max )
return max;
return value;
}
/** \brief Expands the destination bounding box 'dst' such that it contains 'src'. */
template<typename T> void
expandBoundingBox (T dst[6], const T src[6])
{
if ( src[0] < dst[0] ) dst[0] = src[0];
if ( src[2] < dst[2] ) dst[2] = src[2];
if ( src[4] < dst[4] ) dst[4] = src[4];
if ( src[1] > dst[1] ) dst[1] = src[1];
if ( src[3] > dst[3] ) dst[3] = src[3];
if ( src[5] > dst[5] ) dst[5] = src[5];
}
/** \brief Expands the bounding box 'bbox' such that it contains the point 'p'. */
template<typename T> void
expandBoundingBoxToContainPoint (T bbox[6], const T p[3])
{
if ( p[0] < bbox[0] ) bbox[0] = p[0];
else if ( p[0] > bbox[1] ) bbox[1] = p[0];
if ( p[1] < bbox[2] ) bbox[2] = p[1];
else if ( p[1] > bbox[3] ) bbox[3] = p[1];
if ( p[2] < bbox[4] ) bbox[4] = p[2];
else if ( p[2] > bbox[5] ) bbox[5] = p[2];
}
/** \brief v[0] = v[1] = v[2] = value */
template <typename T> void
set3 (T v[3], T value)
{
v[0] = v[1] = v[2] = value;
}
/** \brief dst = src */
template <typename T> void
copy3 (const T src[3], T dst[3])
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
}
/** \brief dst = src */
template <typename T> void
copy3 (const T src[3], pcl::PointXYZ& dst)
{
dst.x = src[0];
dst.y = src[1];
dst.z = src[2];
}
/** \brief a = -a */
template <typename T> void
flip3 (T a[3])
{
a[0] = -a[0];
a[1] = -a[1];
a[2] = -a[2];
}
/** \brief a = b */
template <typename T> bool
equal3 (const T a[3], const T b[3])
{
return (a[0] == b[0] && a[1] == b[1] && a[2] == b[2]);
}
/** \brief a += b */
template <typename T> void
add3 (T a[3], const T b[3])
{
a[0] += b[0];
a[1] += b[1];
a[2] += b[2];
}
/** \brief c = a + b */
template <typename T> void
sum3 (const T a[3], const T b[3], T c[3])
{
c[0] = a[0] + b[0];
c[1] = a[1] + b[1];
c[2] = a[2] + b[2];
}
/** \brief c = a - b */
template <typename T> void
diff3 (const T a[3], const T b[3], T c[3])
{
c[0] = a[0] - b[0];
c[1] = a[1] - b[1];
c[2] = a[2] - b[2];
}
template <typename T> void
cross3 (const T v1[3], const T v2[3], T out[3])
{
out[0] = v1[1]*v2[2] - v1[2]*v2[1];
out[1] = v1[2]*v2[0] - v1[0]*v2[2];
out[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
/** \brief Returns the length of v. */
template <typename T> T
length3 (const T v[3])
{
return (std::sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]));
}
/** \brief Returns the Euclidean distance between a and b. */
template <typename T> T
distance3 (const T a[3], const T b[3])
{
T l[3] = {a[0]-b[0], a[1]-b[1], a[2]-b[2]};
return (length3 (l));
}
/** \brief Returns the squared Euclidean distance between a and b. */
template <typename T> T
sqrDistance3 (const T a[3], const T b[3])
{
return (aux::sqr (a[0]-b[0]) + aux::sqr (a[1]-b[1]) + aux::sqr (a[2]-b[2]));
}
/** \brief Returns the dot product a*b */
template <typename T> T
dot3 (const T a[3], const T b[3])
{
return (a[0]*b[0] + a[1]*b[1] + a[2]*b[2]);
}
/** \brief Returns the dot product (x, y, z)*(u, v, w) = x*u + y*v + z*w */
template <typename T> T
dot3 (T x, T y, T z, T u, T v, T w)
{
return (x*u + y*v + z*w);
}
/** \brief v = scalar*v. */
template <typename T> void
mult3 (T* v, T scalar)
{
v[0] *= scalar;
v[1] *= scalar;
v[2] *= scalar;
}
/** \brief out = scalar*v. */
template <typename T> void
mult3 (const T* v, T scalar, T* out)
{
out[0] = v[0]*scalar;
out[1] = v[1]*scalar;
out[2] = v[2]*scalar;
}
/** \brief Normalize v */
template <typename T> void
normalize3 (T v[3])
{
T inv_len = (static_cast<T> (1.0))/aux::length3 (v);
v[0] *= inv_len;
v[1] *= inv_len;
v[2] *= inv_len;
}
/** \brief Returns the square length of v. */
template <typename T> T
sqrLength3 (const T v[3])
{
return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]);
}
/** Projects 'x' on the plane through 0 and with normal 'planeNormal' and saves the result in 'out'. */
template <typename T> void
projectOnPlane3 (const T x[3], const T planeNormal[3], T out[3])
{
T dot = aux::dot3 (planeNormal, x);
// Project 'x' on the plane normal
T nproj[3] = {-dot*planeNormal[0], -dot*planeNormal[1], -dot*planeNormal[2]};
aux::sum3 (x, nproj, out);
}
/** \brief Sets 'm' to the 3x3 identity matrix. */
template <typename T> void
identity3x3 (T m[9])
{
m[0] = m[4] = m[8] = 1.0;
m[1] = m[2] = m[3] = m[5] = m[6] = m[7] = 0.0;
}
/** \brief out = mat*v. 'm' is an 1D array of 9 elements treated as a 3x3 matrix (row major order). */
template <typename T> void
mult3x3(const T m[9], const T v[3], T out[3])
{
out[0] = v[0]*m[0] + v[1]*m[1] + v[2]*m[2];
out[1] = v[0]*m[3] + v[1]*m[4] + v[2]*m[5];
out[2] = v[0]*m[6] + v[1]*m[7] + v[2]*m[8];
}
/** Let x, y, z be the columns of the matrix a = [x|y|z]. The method computes out = a*m.
* Note that 'out' is a 1D array of 9 elements and the resulting matrix is stored in row
* major order, i.e., the first matrix row is (out[0] out[1] out[2]), the second
* (out[3] out[4] out[5]) and the third (out[6] out[7] out[8]). */
template <typename T> void
mult3x3 (const T x[3], const T y[3], const T z[3], const T m[3][3], T out[9])
{
out[0] = x[0]*m[0][0] + y[0]*m[1][0] + z[0]*m[2][0];
out[1] = x[0]*m[0][1] + y[0]*m[1][1] + z[0]*m[2][1];
out[2] = x[0]*m[0][2] + y[0]*m[1][2] + z[0]*m[2][2];
out[3] = x[1]*m[0][0] + y[1]*m[1][0] + z[1]*m[2][0];
out[4] = x[1]*m[0][1] + y[1]*m[1][1] + z[1]*m[2][1];
out[5] = x[1]*m[0][2] + y[1]*m[1][2] + z[1]*m[2][2];
out[6] = x[2]*m[0][0] + y[2]*m[1][0] + z[2]*m[2][0];
out[7] = x[2]*m[0][1] + y[2]*m[1][1] + z[2]*m[2][1];
out[8] = x[2]*m[0][2] + y[2]*m[1][2] + z[2]*m[2][2];
}
/** \brief The first 9 elements of 't' are treated as a 3x3 matrix (row major order) and the last 3 as a translation.
* First, 'p' is multiplied by that matrix and then translated. The result is saved in 'out'. */
template<class T> void
transform(const T t[12], const T p[3], T out[3])
{
out[0] = t[0]*p[0] + t[1]*p[1] + t[2]*p[2] + t[9];
out[1] = t[3]*p[0] + t[4]*p[1] + t[5]*p[2] + t[10];
out[2] = t[6]*p[0] + t[7]*p[1] + t[8]*p[2] + t[11];
}
/** \brief The first 9 elements of 't' are treated as a 3x3 matrix (row major order) and the last 3 as a translation.
* First, (x, y, z) is multiplied by that matrix and then translated. The result is saved in 'out'. */
template<class T> void
transform(const T t[12], T x, T y, T z, T out[3])
{
out[0] = t[0]*x + t[1]*y + t[2]*z + t[9];
out[1] = t[3]*x + t[4]*y + t[5]*z + t[10];
out[2] = t[6]*x + t[7]*y + t[8]*z + t[11];
}
/** \brief Compute out = (upper left 3x3 of mat)*p + last column of mat. */
template<class T> void
transform(const Eigen::Matrix<T,4,4>& mat, const pcl::PointXYZ& p, pcl::PointXYZ& out)
{
out.x = mat(0,0)*p.x + mat(0,1)*p.y + mat(0,2)*p.z + mat(0,3);
out.y = mat(1,0)*p.x + mat(1,1)*p.y + mat(1,2)*p.z + mat(1,3);
out.z = mat(2,0)*p.x + mat(2,1)*p.y + mat(2,2)*p.z + mat(2,3);
}
/** \brief The first 9 elements of 't' are treated as a 3x3 matrix (row major order) and the last 3 as a translation.
* First, 'p' is multiplied by that matrix and then translated. The result is saved in 'out'. */
template<class T> void
transform(const T t[12], const pcl::PointXYZ& p, T out[3])
{
out[0] = t[0]*p.x + t[1]*p.y + t[2]*p.z + t[9];
out[1] = t[3]*p.x + t[4]*p.y + t[5]*p.z + t[10];
out[2] = t[6]*p.x + t[7]*p.y + t[8]*p.z + t[11];
}
/** \brief Returns true if the points 'p1' and 'p2' are co-planar and false otherwise. The method assumes that 'n1'
* is a normal at 'p1' and 'n2' is a normal at 'p2'. 'max_angle' is the threshold used for the test. The bigger
* the value the larger the deviation between the normals can be which still leads to a positive test result. The
* angle has to be in radians. */
template<typename T> bool
pointsAreCoplanar (const T p1[3], const T n1[3], const T p2[3], const T n2[3], T max_angle)
{
// Compute the angle between 'n1' and 'n2' and compare it with 'max_angle'
if ( std::acos (aux::clamp (aux::dot3 (n1, n2), -1.0f, 1.0f)) > max_angle )
return (false);
T cl[3] = {p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]};
aux::normalize3 (cl);
// Compute the angle between 'cl' and 'n1'
T tmp_angle = std::acos (aux::clamp (aux::dot3 (n1, cl), -1.0f, 1.0f));
// 'tmp_angle' should not deviate too much from 90 degrees
if ( std::fabs (tmp_angle - AUX_HALF_PI) > max_angle )
return (false);
// All tests passed => the points are coplanar
return (true);
}
template<typename Scalar> void
array12ToMatrix4x4 (const Scalar src[12], Eigen::Matrix<Scalar, 4, 4>& dst)
{
dst(0,0) = src[0]; dst(0,1) = src[1]; dst(0,2) = src[2]; dst(0,3) = src[9];
dst(1,0) = src[3]; dst(1,1) = src[4]; dst(1,2) = src[5]; dst(1,3) = src[10];
dst(2,0) = src[6]; dst(2,1) = src[7]; dst(2,2) = src[8]; dst(2,3) = src[11];
dst(3,0) = dst(3,1) = dst(3,2) = 0.0; dst(3,3) = 1.0;
}
template<typename Scalar> void
matrix4x4ToArray12 (const Eigen::Matrix<Scalar, 4, 4>& src, Scalar dst[12])
{
dst[0] = src(0,0); dst[1] = src(0,1); dst[2] = src(0,2); dst[9] = src(0,3);
dst[3] = src(1,0); dst[4] = src(1,1); dst[5] = src(1,2); dst[10] = src(1,3);
dst[6] = src(2,0); dst[7] = src(2,1); dst[8] = src(2,2); dst[11] = src(2,3);
}
/** \brief The method copies the input array 'src' to the eigen matrix 'dst' in row major order.
* dst[0] = src(0,0); dst[1] = src(0,1); dst[2] = src(0,2);
* dst[3] = src(1,0); dst[4] = src(1,1); dst[5] = src(1,2);
* dst[6] = src(2,0); dst[7] = src(2,1); dst[8] = src(2,2);
* */
template <typename T> void
eigenMatrix3x3ToArray9RowMajor (const Eigen::Matrix<T,3,3>& src, T dst[9])
{
dst[0] = src(0,0); dst[1] = src(0,1); dst[2] = src(0,2);
dst[3] = src(1,0); dst[4] = src(1,1); dst[5] = src(1,2);
dst[6] = src(2,0); dst[7] = src(2,1); dst[8] = src(2,2);
}
/** \brief The method copies the input array 'src' to the eigen matrix 'dst' in row major order.
* dst(0,0) = src[0]; dst(0,1) = src[1]; dst(0,2) = src[2];
* dst(1,0) = src[3]; dst(1,1) = src[4]; dst(1,2) = src[5];
* dst(2,0) = src[6]; dst(2,1) = src[7]; dst(2,2) = src[8];
* */
template <typename T> void
toEigenMatrix3x3RowMajor (const T src[9], Eigen::Matrix<T,3,3>& dst)
{
dst(0,0) = src[0]; dst(0,1) = src[1]; dst(0,2) = src[2];
dst(1,0) = src[3]; dst(1,1) = src[4]; dst(1,2) = src[5];
dst(2,0) = src[6]; dst(2,1) = src[7]; dst(2,2) = src[8];
}
/** brief Computes a rotation matrix from the provided input vector 'axis_angle'. The direction of 'axis_angle' is the rotation axis
* and its magnitude is the angle of rotation about that axis. 'rotation_matrix' is the output rotation matrix saved in row major order. */
template <typename T> void
axisAngleToRotationMatrix (const T axis_angle[3], T rotation_matrix[9])
{
// Get the angle of rotation
T angle = aux::length3 (axis_angle);
if ( angle == 0.0 )
{
// Undefined rotation -> set to identity
aux::identity3x3 (rotation_matrix);
return;
}
// Normalize the input
T normalized_axis_angle[3];
aux::mult3 (axis_angle, static_cast<T> (1.0)/angle, normalized_axis_angle);
// The eigen objects
Eigen::Matrix<T,3,1> mat_axis(normalized_axis_angle);
Eigen::AngleAxis<T> eigen_angle_axis (angle, mat_axis);
// Save the output
aux::eigenMatrix3x3ToArray9RowMajor (eigen_angle_axis.toRotationMatrix (), rotation_matrix);
}
/** brief Extracts the angle-axis representation from 'rotation_matrix', i.e., computes a rotation 'axis' and an 'angle'
* of rotation about that axis from the provided input. The output 'angle' is in the range [0, pi] and 'axis' is normalized. */
template <typename T> void
rotationMatrixToAxisAngle (const T rotation_matrix[9], T axis[3], T& angle)
{
// The eigen objects
Eigen::AngleAxis<T> angle_axis;
Eigen::Matrix<T,3,3> rot_mat;
// Copy the input matrix to the eigen matrix in row major order
aux::toEigenMatrix3x3RowMajor (rotation_matrix, rot_mat);
// Do the computation
angle_axis.fromRotationMatrix (rot_mat);
// Save the result
axis[0] = angle_axis.axis () (0,0);
axis[1] = angle_axis.axis () (1,0);
axis[2] = angle_axis.axis () (2,0);
angle = angle_axis.angle ();
// Make sure that 'angle' is in the range [0, pi]
if ( angle > AUX_PI_FLOAT )
{
angle = 2.0f*AUX_PI_FLOAT - angle;
aux::flip3 (axis);
}
}
} // namespace aux
} // namespace recognition
} // namespace pcl
#endif // AUX_H_
|