This file is indexed.

/usr/include/pcl-1.7/pcl/keypoints/keypoint.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of Willow Garage, Inc. nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 */

#ifndef PCL_KEYPOINT_H_
#define PCL_KEYPOINT_H_

// PCL includes
#include <pcl/pcl_base.h>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <pcl/search/pcl_search.h>
#include <pcl/pcl_config.h>

namespace pcl
{
  /** \brief @b Keypoint represents the base class for key points.
    * \author Bastian Steder
    * \ingroup keypoints
    */
  template <typename PointInT, typename PointOutT>
  class Keypoint : public PCLBase<PointInT>
  {
    public:
      typedef boost::shared_ptr<Keypoint<PointInT, PointOutT> > Ptr;
      typedef boost::shared_ptr<const Keypoint<PointInT, PointOutT> > ConstPtr;

      using PCLBase<PointInT>::indices_;
      using PCLBase<PointInT>::input_;

      typedef PCLBase<PointInT> BaseClass;
      typedef typename pcl::search::Search<PointInT> KdTree;
      typedef typename pcl::search::Search<PointInT>::Ptr KdTreePtr;
      typedef pcl::PointCloud<PointInT> PointCloudIn;
      typedef typename PointCloudIn::Ptr PointCloudInPtr;
      typedef typename PointCloudIn::ConstPtr PointCloudInConstPtr;
      typedef pcl::PointCloud<PointOutT> PointCloudOut;
      typedef boost::function<int (int, double, std::vector<int> &, std::vector<float> &)> SearchMethod;
      typedef boost::function<int (const PointCloudIn &cloud, int index, double, std::vector<int> &, std::vector<float> &)> SearchMethodSurface;

    public:
      /** \brief Empty constructor. */
      Keypoint () : 
        BaseClass (), 
        name_ (),
        search_method_ (),
        search_method_surface_ (),
        surface_ (), 
        tree_ (), 
        search_parameter_ (0), 
        search_radius_ (0), 
        k_ (0) 
      {};
      
      /** \brief Empty destructor */
      virtual ~Keypoint () {}

      /** \brief Provide a pointer to the input dataset that we need to estimate features at every point for.
        * \param cloud the const boost shared pointer to a PointCloud message
        */
      virtual void
      setSearchSurface (const PointCloudInConstPtr &cloud) { surface_ = cloud; }

      /** \brief Get a pointer to the surface point cloud dataset. */
      inline PointCloudInConstPtr
      getSearchSurface () { return (surface_); }

      /** \brief Provide a pointer to the search object.
        * \param tree a pointer to the spatial search object.
        */
      inline void
      setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }

      /** \brief Get a pointer to the search method used. */
      inline KdTreePtr
      getSearchMethod () { return (tree_); }

      /** \brief Get the internal search parameter. */
      inline double
      getSearchParameter () { return (search_parameter_); }

      /** \brief Set the number of k nearest neighbors to use for the feature estimation.
        * \param k the number of k-nearest neighbors
        */
      inline void
      setKSearch (int k) { k_ = k; }

      /** \brief get the number of k nearest neighbors used for the feature estimation. */
      inline int
      getKSearch () { return (k_); }

      /** \brief Set the sphere radius that is to be used for determining the nearest neighbors used for the
       *         key point detection
        * \param radius the sphere radius used as the maximum distance to consider a point a neighbor
        */
      inline void
      setRadiusSearch (double radius) { search_radius_ = radius; }

      /** \brief Get the sphere radius used for determining the neighbors. */
      inline double
      getRadiusSearch () { return (search_radius_); }

      /** \brief \return the keypoints indices in the input cloud.
        * \note not all the daughter classes populate the keypoints indices so check emptiness before use.
        */
      pcl::PointIndicesConstPtr
      getKeypointsIndices () { return (keypoints_indices_); }

      /** \brief Base method for key point detection for all points given in <setInputCloud (), setIndices ()> using
        * the surface in setSearchSurface () and the spatial locator in setSearchMethod ()
        * \param output the resultant point cloud model dataset containing the estimated features
        */
      inline void
      compute (PointCloudOut &output);

      /** \brief Search for k-nearest neighbors using the spatial locator from \a setSearchmethod, and the given surface
        * from \a setSearchSurface.
        * \param index the index of the query point
        * \param parameter the search parameter (either k or radius)
        * \param indices the resultant vector of indices representing the k-nearest neighbors
        * \param distances the resultant vector of distances representing the distances from the query point to the
        * k-nearest neighbors
        */
      inline int
      searchForNeighbors (int index, double parameter, std::vector<int> &indices, std::vector<float> &distances) const
      {
        if (surface_ == input_)       // if the two surfaces are the same
          return (search_method_ (index, parameter, indices, distances));
        else
          return (search_method_surface_ (*input_, index, parameter, indices, distances));
      }

    protected:
      using PCLBase<PointInT>::deinitCompute;

      virtual bool
      initCompute ();

      /** \brief The key point detection method's name. */
      std::string name_;

      /** \brief The search method template for indices. */
      SearchMethod search_method_;

      /** \brief The search method template for points. */
      SearchMethodSurface search_method_surface_;

      /** \brief An input point cloud describing the surface that is to be used for nearest neighbors estimation. */
      PointCloudInConstPtr surface_;

      /** \brief A pointer to the spatial search object. */
      KdTreePtr tree_;

      /** \brief The actual search parameter (casted from either \a search_radius_ or \a k_). */
      double search_parameter_;

      /** \brief The nearest neighbors search radius for each point. */
      double search_radius_;

      /** \brief The number of K nearest neighbors to use for each point. */
      int k_;

      /** \brief Indices of the keypoints in the input cloud. */
      pcl::PointIndicesPtr keypoints_indices_;

      /** \brief Get a string representation of the name of this class. */
      inline const std::string&
      getClassName () const { return (name_); }

      /** \brief Abstract key point detection method. */
      virtual void
      detectKeypoints (PointCloudOut &output) = 0;
  };
}

#include <pcl/keypoints/impl/keypoint.hpp>

#endif  //#ifndef PCL_KEYPOINT_H_