/usr/include/pcl-1.7/pcl/features/vfh.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_FEATURES_VFH_H_
#define PCL_FEATURES_VFH_H_
#include <pcl/point_types.h>
#include <pcl/features/feature.h>
namespace pcl
{
/** \brief VFHEstimation estimates the <b>Viewpoint Feature Histogram (VFH)</b> descriptor for a given point cloud
* dataset containing points and normals. The default VFH implementation uses 45 binning subdivisions for each of
* the three extended FPFH values, plus another 45 binning subdivisions for the distances between each point and
* the centroid and 128 binning subdivisions for the viewpoint component, which results in a
* 308-byte array of float values. These are stored in a pcl::VFHSignature308 point type.
* A major difference between the PFH/FPFH descriptors and VFH, is that for a given point cloud dataset, only a
* single VFH descriptor will be estimated (vfhs->points.size() should be 1), while the resultant PFH/FPFH data
* will have the same number of entries as the number of points in the cloud.
*
* \note If you use this code in any academic work, please cite:
*
* - R.B. Rusu, G. Bradski, R. Thibaux, J. Hsu.
* Fast 3D Recognition and Pose Using the Viewpoint Feature Histogram.
* In Proceedings of International Conference on Intelligent Robots and Systems (IROS)
* Taipei, Taiwan, October 18-22 2010.
*
* \note The code is stateful as we do not expect this class to be multicore parallelized. Please look at
* \ref FPFHEstimationOMP for an example of a parallel implementation of the FPFH (Fast Point Feature Histogram).
* \author Radu B. Rusu
* \ingroup features
*/
template<typename PointInT, typename PointNT, typename PointOutT = pcl::VFHSignature308>
class VFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
{
public:
using Feature<PointInT, PointOutT>::feature_name_;
using Feature<PointInT, PointOutT>::getClassName;
using Feature<PointInT, PointOutT>::indices_;
using Feature<PointInT, PointOutT>::k_;
using Feature<PointInT, PointOutT>::search_radius_;
using Feature<PointInT, PointOutT>::input_;
using Feature<PointInT, PointOutT>::surface_;
using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
typedef typename boost::shared_ptr<VFHEstimation<PointInT, PointNT, PointOutT> > Ptr;
typedef typename boost::shared_ptr<const VFHEstimation<PointInT, PointNT, PointOutT> > ConstPtr;
/** \brief Empty constructor. */
VFHEstimation () :
nr_bins_f1_ (45), nr_bins_f2_ (45), nr_bins_f3_ (45), nr_bins_f4_ (45), nr_bins_vp_ (128),
vpx_ (0), vpy_ (0), vpz_ (0),
hist_f1_ (), hist_f2_ (), hist_f3_ (), hist_f4_ (), hist_vp_ (),
normal_to_use_ (), centroid_to_use_ (), use_given_normal_ (false), use_given_centroid_ (false),
normalize_bins_ (true), normalize_distances_ (false), size_component_ (false),
d_pi_ (1.0f / (2.0f * static_cast<float> (M_PI)))
{
hist_f1_.setZero (nr_bins_f1_);
hist_f2_.setZero (nr_bins_f2_);
hist_f3_.setZero (nr_bins_f3_);
hist_f4_.setZero (nr_bins_f4_);
search_radius_ = 0;
k_ = 0;
feature_name_ = "VFHEstimation";
}
/** \brief Estimate the SPFH (Simple Point Feature Histograms) signatures of the angular
* (f1, f2, f3) and distance (f4) features for a given point from its neighborhood
* \param[in] centroid_p the centroid point
* \param[in] centroid_n the centroid normal
* \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
* \param[in] normals the dataset containing the surface normals at each point in \a cloud
* \param[in] indices the k-neighborhood point indices in the dataset
*/
void
computePointSPFHSignature (const Eigen::Vector4f ¢roid_p, const Eigen::Vector4f ¢roid_n,
const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
const std::vector<int> &indices);
/** \brief Set the viewpoint.
* \param[in] vpx the X coordinate of the viewpoint
* \param[in] vpy the Y coordinate of the viewpoint
* \param[in] vpz the Z coordinate of the viewpoint
*/
inline void
setViewPoint (float vpx, float vpy, float vpz)
{
vpx_ = vpx;
vpy_ = vpy;
vpz_ = vpz;
}
/** \brief Get the viewpoint. */
inline void
getViewPoint (float &vpx, float &vpy, float &vpz)
{
vpx = vpx_;
vpy = vpy_;
vpz = vpz_;
}
/** \brief Set use_given_normal_
* \param[in] use Set to true if you want to use the normal passed to setNormalUse(normal)
*/
inline void
setUseGivenNormal (bool use)
{
use_given_normal_ = use;
}
/** \brief Set the normal to use
* \param[in] normal Sets the normal to be used in the VFH computation. It is is used
* to build the Darboux Coordinate system.
*/
inline void
setNormalToUse (const Eigen::Vector3f &normal)
{
normal_to_use_ = Eigen::Vector4f (normal[0], normal[1], normal[2], 0);
}
/** \brief Set use_given_centroid_
* \param[in] use Set to true if you want to use the centroid passed through setCentroidToUse(centroid)
*/
inline void
setUseGivenCentroid (bool use)
{
use_given_centroid_ = use;
}
/** \brief Set centroid_to_use_
* \param[in] centroid Centroid to be used in the VFH computation. It is used to compute the distances
* from all points to this centroid.
*/
inline void
setCentroidToUse (const Eigen::Vector3f ¢roid)
{
centroid_to_use_ = Eigen::Vector4f (centroid[0], centroid[1], centroid[2], 0);
}
/** \brief set normalize_bins_
* \param[in] normalize If true, the VFH bins are normalized using the total number of points
*/
inline void
setNormalizeBins (bool normalize)
{
normalize_bins_ = normalize;
}
/** \brief set normalize_distances_
* \param[in] normalize If true, the 4th component of VFH (shape distribution component) get normalized
* by the maximum size between the centroid and the point cloud
*/
inline void
setNormalizeDistance (bool normalize)
{
normalize_distances_ = normalize;
}
/** \brief set size_component_
* \param[in] fill_size True if the 4th component of VFH (shape distribution component) needs to be filled.
* Otherwise, it is set to zero.
*/
inline void
setFillSizeComponent (bool fill_size)
{
size_component_ = fill_size;
}
/** \brief Overloaded computed method from pcl::Feature.
* \param[out] output the resultant point cloud model dataset containing the estimated features
*/
void
compute (PointCloudOut &output);
private:
/** \brief The number of subdivisions for each feature interval. */
int nr_bins_f1_, nr_bins_f2_, nr_bins_f3_, nr_bins_f4_, nr_bins_vp_;
/** \brief Values describing the viewpoint ("pinhole" camera model assumed). For per point viewpoints, inherit
* from VFHEstimation and provide your own computeFeature (). By default, the viewpoint is set to 0,0,0.
*/
float vpx_, vpy_, vpz_;
/** \brief Estimate the Viewpoint Feature Histograms (VFH) descriptors at a set of points given by
* <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in
* setSearchMethod ()
* \param[out] output the resultant point cloud model dataset that contains the VFH feature estimates
*/
void
computeFeature (PointCloudOut &output);
protected:
/** \brief This method should get called before starting the actual computation. */
bool
initCompute ();
/** \brief Placeholder for the f1 histogram. */
Eigen::VectorXf hist_f1_;
/** \brief Placeholder for the f2 histogram. */
Eigen::VectorXf hist_f2_;
/** \brief Placeholder for the f3 histogram. */
Eigen::VectorXf hist_f3_;
/** \brief Placeholder for the f4 histogram. */
Eigen::VectorXf hist_f4_;
/** \brief Placeholder for the vp histogram. */
Eigen::VectorXf hist_vp_;
/** \brief Normal to be used to computed VFH. Default, the average normal of the whole point cloud */
Eigen::Vector4f normal_to_use_;
/** \brief Centroid to be used to computed VFH. Default, the centroid of the whole point cloud */
Eigen::Vector4f centroid_to_use_;
// VFH configuration parameters because CVFH instantiates it. See constructor for default values.
/** \brief Use the normal_to_use_ */
bool use_given_normal_;
/** \brief Use the centroid_to_use_ */
bool use_given_centroid_;
/** \brief Normalize bins by the number the total number of points. */
bool normalize_bins_;
/** \brief Normalize the shape distribution component of VFH */
bool normalize_distances_;
/** \brief Activate or deactivate the size component of VFH */
bool size_component_;
private:
/** \brief Float constant = 1.0 / (2.0 * M_PI) */
float d_pi_;
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/features/impl/vfh.hpp>
#endif
#endif //#ifndef PCL_FEATURES_VFH_H_
|