/usr/include/pcl-1.7/pcl/features/cvfh.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_FEATURES_CVFH_H_
#define PCL_FEATURES_CVFH_H_
#include <pcl/features/feature.h>
#include <pcl/features/vfh.h>
#include <pcl/search/pcl_search.h>
#include <pcl/common/common.h>
namespace pcl
{
/** \brief CVFHEstimation estimates the Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given
* point cloud dataset containing XYZ data and normals, as presented in:
* - CAD-Model Recognition and 6 DOF Pose Estimation
* A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu, M. Vincze and G. Bradski
* ICCV 2011, 3D Representation and Recognition (3dRR11) workshop
* Barcelona, Spain, (2011)
*
* The suggested PointOutT is pcl::VFHSignature308.
*
* \author Aitor Aldoma
* \ingroup features
*/
template<typename PointInT, typename PointNT, typename PointOutT = pcl::VFHSignature308>
class CVFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
{
public:
typedef boost::shared_ptr<CVFHEstimation<PointInT, PointNT, PointOutT> > Ptr;
typedef boost::shared_ptr<const CVFHEstimation<PointInT, PointNT, PointOutT> > ConstPtr;
using Feature<PointInT, PointOutT>::feature_name_;
using Feature<PointInT, PointOutT>::getClassName;
using Feature<PointInT, PointOutT>::indices_;
using Feature<PointInT, PointOutT>::k_;
using Feature<PointInT, PointOutT>::search_radius_;
using Feature<PointInT, PointOutT>::surface_;
using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
typedef typename pcl::search::Search<PointNormal>::Ptr KdTreePtr;
typedef typename pcl::VFHEstimation<PointInT, PointNT, pcl::VFHSignature308> VFHEstimator;
/** \brief Empty constructor. */
CVFHEstimation () :
vpx_ (0), vpy_ (0), vpz_ (0),
leaf_size_ (0.005f),
normalize_bins_ (false),
curv_threshold_ (0.03f),
cluster_tolerance_ (leaf_size_ * 3),
eps_angle_threshold_ (0.125f),
min_points_ (50),
radius_normals_ (leaf_size_ * 3),
centroids_dominant_orientations_ (),
dominant_normals_ ()
{
search_radius_ = 0;
k_ = 1;
feature_name_ = "CVFHEstimation";
}
;
/** \brief Removes normals with high curvature caused by real edges or noisy data
* \param[in] cloud pointcloud to be filtered
* \param[in] indices_to_use the indices to use
* \param[out] indices_out the indices of the points with higher curvature than threshold
* \param[out] indices_in the indices of the remaining points after filtering
* \param[in] threshold threshold value for curvature
*/
void
filterNormalsWithHighCurvature (const pcl::PointCloud<PointNT> & cloud, std::vector<int> & indices_to_use, std::vector<int> &indices_out,
std::vector<int> &indices_in, float threshold);
/** \brief Set the viewpoint.
* \param[in] vpx the X coordinate of the viewpoint
* \param[in] vpy the Y coordinate of the viewpoint
* \param[in] vpz the Z coordinate of the viewpoint
*/
inline void
setViewPoint (float vpx, float vpy, float vpz)
{
vpx_ = vpx;
vpy_ = vpy;
vpz_ = vpz;
}
/** \brief Set the radius used to compute normals
* \param[in] radius_normals the radius
*/
inline void
setRadiusNormals (float radius_normals)
{
radius_normals_ = radius_normals;
}
/** \brief Get the viewpoint.
* \param[out] vpx the X coordinate of the viewpoint
* \param[out] vpy the Y coordinate of the viewpoint
* \param[out] vpz the Z coordinate of the viewpoint
*/
inline void
getViewPoint (float &vpx, float &vpy, float &vpz)
{
vpx = vpx_;
vpy = vpy_;
vpz = vpz_;
}
/** \brief Get the centroids used to compute different CVFH descriptors
* \param[out] centroids vector to hold the centroids
*/
inline void
getCentroidClusters (std::vector<Eigen::Vector3f> & centroids)
{
for (size_t i = 0; i < centroids_dominant_orientations_.size (); ++i)
centroids.push_back (centroids_dominant_orientations_[i]);
}
/** \brief Get the normal centroids used to compute different CVFH descriptors
* \param[out] centroids vector to hold the normal centroids
*/
inline void
getCentroidNormalClusters (std::vector<Eigen::Vector3f> & centroids)
{
for (size_t i = 0; i < dominant_normals_.size (); ++i)
centroids.push_back (dominant_normals_[i]);
}
/** \brief Sets max. Euclidean distance between points to be added to the cluster
* \param[in] d the maximum Euclidean distance
*/
inline void
setClusterTolerance (float d)
{
cluster_tolerance_ = d;
}
/** \brief Sets max. deviation of the normals between two points so they can be clustered together
* \param[in] d the maximum deviation
*/
inline void
setEPSAngleThreshold (float d)
{
eps_angle_threshold_ = d;
}
/** \brief Sets curvature threshold for removing normals
* \param[in] d the curvature threshold
*/
inline void
setCurvatureThreshold (float d)
{
curv_threshold_ = d;
}
/** \brief Set minimum amount of points for a cluster to be considered
* \param[in] min the minimum amount of points to be set
*/
inline void
setMinPoints (size_t min)
{
min_points_ = min;
}
/** \brief Sets wether if the CVFH signatures should be normalized or not
* \param[in] normalize true if normalization is required, false otherwise
*/
inline void
setNormalizeBins (bool normalize)
{
normalize_bins_ = normalize;
}
/** \brief Overloaded computed method from pcl::Feature.
* \param[out] output the resultant point cloud model dataset containing the estimated features
*/
void
compute (PointCloudOut &output);
private:
/** \brief Values describing the viewpoint ("pinhole" camera model assumed).
* By default, the viewpoint is set to 0,0,0.
*/
float vpx_, vpy_, vpz_;
/** \brief Size of the voxels after voxel gridding. IMPORTANT: Must match the voxel
* size of the training data or the normalize_bins_ flag must be set to true.
*/
float leaf_size_;
/** \brief Wether to normalize the signatures or not. Default: false. */
bool normalize_bins_;
/** \brief Curvature threshold for removing normals. */
float curv_threshold_;
/** \brief allowed Euclidean distance between points to be added to the cluster. */
float cluster_tolerance_;
/** \brief deviation of the normals between two points so they can be clustered together. */
float eps_angle_threshold_;
/** \brief Minimum amount of points in a clustered region to be considered stable for CVFH
* computation.
*/
size_t min_points_;
/** \brief Radius for the normals computation. */
float radius_normals_;
/** \brief Estimate the Clustered Viewpoint Feature Histograms (CVFH) descriptors at
* a set of points given by <setInputCloud (), setIndices ()> using the surface in
* setSearchSurface ()
*
* \param[out] output the resultant point cloud model dataset that contains the CVFH
* feature estimates
*/
void
computeFeature (PointCloudOut &output);
/** \brief Region growing method using Euclidean distances and neighbors normals to
* add points to a region.
* \param[in] cloud point cloud to split into regions
* \param[in] normals are the normals of cloud
* \param[in] tolerance is the allowed Euclidean distance between points to be added to
* the cluster
* \param[in] tree is the spatial search structure for nearest neighbour search
* \param[out] clusters vector of indices representing the clustered regions
* \param[in] eps_angle deviation of the normals between two points so they can be
* clustered together
* \param[in] min_pts_per_cluster minimum cluster size. (default: 1 point)
* \param[in] max_pts_per_cluster maximum cluster size. (default: all the points)
*/
void
extractEuclideanClustersSmooth (const pcl::PointCloud<pcl::PointNormal> &cloud,
const pcl::PointCloud<pcl::PointNormal> &normals, float tolerance,
const pcl::search::Search<pcl::PointNormal>::Ptr &tree,
std::vector<pcl::PointIndices> &clusters, double eps_angle,
unsigned int min_pts_per_cluster = 1,
unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());
protected:
/** \brief Centroids that were used to compute different CVFH descriptors */
std::vector<Eigen::Vector3f> centroids_dominant_orientations_;
/** \brief Normal centroids that were used to compute different CVFH descriptors */
std::vector<Eigen::Vector3f> dominant_normals_;
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/features/impl/cvfh.hpp>
#endif
#endif //#ifndef PCL_FEATURES_CVFH_H_
|