This file is indexed.

/usr/include/pcl-1.7/pcl/features/cvfh.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *  Copyright (c) 2012-, Open Perception, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 *
 */

#ifndef PCL_FEATURES_CVFH_H_
#define PCL_FEATURES_CVFH_H_

#include <pcl/features/feature.h>
#include <pcl/features/vfh.h>
#include <pcl/search/pcl_search.h>
#include <pcl/common/common.h>

namespace pcl
{
  /** \brief CVFHEstimation estimates the Clustered Viewpoint Feature Histogram (CVFH) descriptor for a given 
    * point cloud dataset containing XYZ data and normals, as presented in: 
    *   - CAD-Model Recognition and 6 DOF Pose Estimation
    *     A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu, M. Vincze and G. Bradski
    *     ICCV 2011, 3D Representation and Recognition (3dRR11) workshop
    *     Barcelona, Spain, (2011) 
    *
    * The suggested PointOutT is pcl::VFHSignature308.
    *
    * \author Aitor Aldoma
    * \ingroup features
    */
  template<typename PointInT, typename PointNT, typename PointOutT = pcl::VFHSignature308>
  class CVFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
  {
    public:
      typedef boost::shared_ptr<CVFHEstimation<PointInT, PointNT, PointOutT> > Ptr;
      typedef boost::shared_ptr<const CVFHEstimation<PointInT, PointNT, PointOutT> > ConstPtr;

      using Feature<PointInT, PointOutT>::feature_name_;
      using Feature<PointInT, PointOutT>::getClassName;
      using Feature<PointInT, PointOutT>::indices_;
      using Feature<PointInT, PointOutT>::k_;
      using Feature<PointInT, PointOutT>::search_radius_;
      using Feature<PointInT, PointOutT>::surface_;
      using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;

      typedef typename Feature<PointInT, PointOutT>::PointCloudOut PointCloudOut;
      typedef typename pcl::search::Search<PointNormal>::Ptr KdTreePtr;
      typedef typename pcl::VFHEstimation<PointInT, PointNT, pcl::VFHSignature308> VFHEstimator;

      /** \brief Empty constructor. */
      CVFHEstimation () :
        vpx_ (0), vpy_ (0), vpz_ (0), 
        leaf_size_ (0.005f), 
        normalize_bins_ (false),
        curv_threshold_ (0.03f), 
        cluster_tolerance_ (leaf_size_ * 3), 
        eps_angle_threshold_ (0.125f), 
        min_points_ (50),
        radius_normals_ (leaf_size_ * 3),
        centroids_dominant_orientations_ (),
        dominant_normals_ ()
      {
        search_radius_ = 0;
        k_ = 1;
        feature_name_ = "CVFHEstimation";
      }
      ;

      /** \brief Removes normals with high curvature caused by real edges or noisy data
        * \param[in] cloud pointcloud to be filtered
        * \param[in] indices_to_use the indices to use
        * \param[out] indices_out the indices of the points with higher curvature than threshold
        * \param[out] indices_in the indices of the remaining points after filtering
        * \param[in] threshold threshold value for curvature
        */
      void
      filterNormalsWithHighCurvature (const pcl::PointCloud<PointNT> & cloud, std::vector<int> & indices_to_use, std::vector<int> &indices_out,
                                      std::vector<int> &indices_in, float threshold);

      /** \brief Set the viewpoint.
        * \param[in] vpx the X coordinate of the viewpoint
        * \param[in] vpy the Y coordinate of the viewpoint
        * \param[in] vpz the Z coordinate of the viewpoint
        */
      inline void
      setViewPoint (float vpx, float vpy, float vpz)
      {
        vpx_ = vpx;
        vpy_ = vpy;
        vpz_ = vpz;
      }

      /** \brief Set the radius used to compute normals
        * \param[in] radius_normals the radius
        */
      inline void
      setRadiusNormals (float radius_normals)
      {
        radius_normals_ = radius_normals;
      }

      /** \brief Get the viewpoint. 
        * \param[out] vpx the X coordinate of the viewpoint
        * \param[out] vpy the Y coordinate of the viewpoint
        * \param[out] vpz the Z coordinate of the viewpoint
        */
      inline void
      getViewPoint (float &vpx, float &vpy, float &vpz)
      {
        vpx = vpx_;
        vpy = vpy_;
        vpz = vpz_;
      }

      /** \brief Get the centroids used to compute different CVFH descriptors
        * \param[out] centroids vector to hold the centroids
        */
      inline void
      getCentroidClusters (std::vector<Eigen::Vector3f> & centroids)
      {
        for (size_t i = 0; i < centroids_dominant_orientations_.size (); ++i)
          centroids.push_back (centroids_dominant_orientations_[i]);
      }

      /** \brief Get the normal centroids used to compute different CVFH descriptors
        * \param[out] centroids vector to hold the normal centroids
        */
      inline void
      getCentroidNormalClusters (std::vector<Eigen::Vector3f> & centroids)
      {
        for (size_t i = 0; i < dominant_normals_.size (); ++i)
          centroids.push_back (dominant_normals_[i]);
      }

      /** \brief Sets max. Euclidean distance between points to be added to the cluster 
        * \param[in] d the maximum Euclidean distance 
        */

      inline void
      setClusterTolerance (float d)
      {
        cluster_tolerance_ = d;
      }

      /** \brief Sets max. deviation of the normals between two points so they can be clustered together
        * \param[in] d the maximum deviation 
        */
      inline void
      setEPSAngleThreshold (float d)
      {
        eps_angle_threshold_ = d;
      }

      /** \brief Sets curvature threshold for removing normals
        * \param[in] d the curvature threshold 
        */
      inline void
      setCurvatureThreshold (float d)
      {
        curv_threshold_ = d;
      }

      /** \brief Set minimum amount of points for a cluster to be considered
        * \param[in] min the minimum amount of points to be set 
        */
      inline void
      setMinPoints (size_t min)
      {
        min_points_ = min;
      }

      /** \brief Sets wether if the CVFH signatures should be normalized or not
        * \param[in] normalize true if normalization is required, false otherwise 
        */
      inline void
      setNormalizeBins (bool normalize)
      {
        normalize_bins_ = normalize;
      }

      /** \brief Overloaded computed method from pcl::Feature.
        * \param[out] output the resultant point cloud model dataset containing the estimated features
        */
      void
      compute (PointCloudOut &output);

    private:
      /** \brief Values describing the viewpoint ("pinhole" camera model assumed). 
        * By default, the viewpoint is set to 0,0,0.
        */
      float vpx_, vpy_, vpz_;

      /** \brief Size of the voxels after voxel gridding. IMPORTANT: Must match the voxel 
        * size of the training data or the normalize_bins_ flag must be set to true.
        */
      float leaf_size_;

      /** \brief Wether to normalize the signatures or not. Default: false. */
      bool normalize_bins_;

      /** \brief Curvature threshold for removing normals. */
      float curv_threshold_;

      /** \brief allowed Euclidean distance between points to be added to the cluster. */
      float cluster_tolerance_;

      /** \brief deviation of the normals between two points so they can be clustered together. */
      float eps_angle_threshold_;

      /** \brief Minimum amount of points in a clustered region to be considered stable for CVFH
        * computation.
        */
      size_t min_points_;

      /** \brief Radius for the normals computation. */
      float radius_normals_;

      /** \brief Estimate the Clustered Viewpoint Feature Histograms (CVFH) descriptors at 
        * a set of points given by <setInputCloud (), setIndices ()> using the surface in
        * setSearchSurface ()
        *
        * \param[out] output the resultant point cloud model dataset that contains the CVFH
        * feature estimates
        */
      void
      computeFeature (PointCloudOut &output);

      /** \brief Region growing method using Euclidean distances and neighbors normals to 
        * add points to a region.
        * \param[in] cloud point cloud to split into regions
        * \param[in] normals are the normals of cloud
        * \param[in] tolerance is the allowed Euclidean distance between points to be added to
        * the cluster
        * \param[in] tree is the spatial search structure for nearest neighbour search
        * \param[out] clusters vector of indices representing the clustered regions
        * \param[in] eps_angle deviation of the normals between two points so they can be
        * clustered together
        * \param[in] min_pts_per_cluster minimum cluster size. (default: 1 point)
        * \param[in] max_pts_per_cluster maximum cluster size. (default: all the points)
        */
      void
      extractEuclideanClustersSmooth (const pcl::PointCloud<pcl::PointNormal> &cloud,
                                      const pcl::PointCloud<pcl::PointNormal> &normals, float tolerance,
                                      const pcl::search::Search<pcl::PointNormal>::Ptr &tree,
                                      std::vector<pcl::PointIndices> &clusters, double eps_angle,
                                      unsigned int min_pts_per_cluster = 1,
                                      unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());

    protected:
      /** \brief Centroids that were used to compute different CVFH descriptors */
      std::vector<Eigen::Vector3f> centroids_dominant_orientations_;
      /** \brief Normal centroids that were used to compute different CVFH descriptors */
      std::vector<Eigen::Vector3f> dominant_normals_;
  };
}

#ifdef PCL_NO_PRECOMPILE
#include <pcl/features/impl/cvfh.hpp>
#endif

#endif  //#ifndef PCL_FEATURES_CVFH_H_