This file is indexed.

/usr/include/pcl-1.7/pcl/common/pca.h is in libpcl-dev 1.7.2-14build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
 * Software License Agreement (BSD License)
 *
 *  Point Cloud Library (PCL) - www.pointclouds.org
 *  Copyright (c) 2010-2011, Willow Garage, Inc.
 *
 *  All rights reserved.
 *
 *  Redistribution and use in source and binary forms, with or without
 *  modification, are permitted provided that the following conditions
 *  are met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.
 *   * Neither the name of the copyright holder(s) nor the names of its
 *     contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 *  POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 */

#ifndef PCL_PCA_H
#define PCL_PCA_H

#include <pcl/pcl_base.h>
#include <pcl/pcl_macros.h>

namespace pcl 
{
  /** Principal Component analysis (PCA) class.\n
    *  Principal components are extracted by singular values decomposition on the 
    * covariance matrix of the centered input cloud. Available data after pca computation 
    * are the mean of the input data, the eigenvalues (in descending order) and 
    * corresponding eigenvectors.\n
    * Other methods allow projection in the eigenspace, reconstruction from eigenspace and 
    *  update of the eigenspace with a new datum (according Matej Artec, Matjaz Jogan and 
    * Ales Leonardis: "Incremental PCA for On-line Visual Learning and Recognition").
    *
    * \author Nizar Sallem
    * \ingroup common
    */
  template <typename PointT>
  class PCA : public pcl::PCLBase <PointT>
  {
    public:
      typedef pcl::PCLBase <PointT> Base;
      typedef typename Base::PointCloud PointCloud;
      typedef typename Base::PointCloudPtr PointCloudPtr;
      typedef typename Base::PointCloudConstPtr PointCloudConstPtr;
      typedef typename Base::PointIndicesPtr PointIndicesPtr;
      typedef typename Base::PointIndicesConstPtr PointIndicesConstPtr;

      using Base::input_;
      using Base::indices_;
      using Base::initCompute;
      using Base::setInputCloud;

      /** Updating method flag */
      enum FLAG 
      {
        /** keep the new basis vectors if possible */
        increase, 
        /** preserve subspace dimension */
        preserve
      };
    
      /** \brief Default Constructor
        * \param basis_only flag to compute only the PCA basis
        */
      PCA (bool basis_only = false)
        : Base ()
        , compute_done_ (false)
        , basis_only_ (basis_only) 
        , eigenvectors_ ()
        , coefficients_ ()
        , mean_ ()
        , eigenvalues_  ()
      {}
      
      /** \brief Constructor with direct computation
        * X input m*n matrix (ie n vectors of R(m))
        * basis_only flag to compute only the PCA basis
        */
      PCL_DEPRECATED ("Use PCA (bool basis_only); setInputCloud (X.makeShared ()); instead")
      PCA (const pcl::PointCloud<PointT>& X, bool basis_only = false);

      /** Copy Constructor
        * \param[in] pca PCA object
        */
      PCA (PCA const & pca) 
        : Base (pca)
        , compute_done_ (pca.compute_done_)
        , basis_only_ (pca.basis_only_) 
        , eigenvectors_ (pca.eigenvectors_)
        , coefficients_ (pca.coefficients_)
        , mean_ (pca.mean_)
        , eigenvalues_  (pca.eigenvalues_)
      {}

      /** Assignment operator
        * \param[in] pca PCA object
        */
      inline PCA& 
      operator= (PCA const & pca) 
      {
        eigenvectors_ = pca.eigenvectors;
        coefficients_ = pca.coefficients;
        eigenvalues_  = pca.eigenvalues;
        mean_         = pca.mean;
        return (*this);
      }
      
      /** \brief Provide a pointer to the input dataset
        * \param cloud the const boost shared pointer to a PointCloud message
        */
      inline void 
      setInputCloud (const PointCloudConstPtr &cloud) 
      { 
        Base::setInputCloud (cloud);
        compute_done_ = false;
      }

      /** \brief Mean accessor
        * \throw InitFailedException
        */
      inline Eigen::Vector4f& 
      getMean () 
      {
        if (!compute_done_)
          initCompute ();
        if (!compute_done_)
          PCL_THROW_EXCEPTION (InitFailedException, 
                               "[pcl::PCA::getMean] PCA initCompute failed");
        return (mean_);
      }

      /** Eigen Vectors accessor
        * \throw InitFailedException
        */
      inline Eigen::Matrix3f& 
      getEigenVectors () 
      {
        if (!compute_done_)
          initCompute ();
        if (!compute_done_)
          PCL_THROW_EXCEPTION (InitFailedException, 
                               "[pcl::PCA::getEigenVectors] PCA initCompute failed");
        return (eigenvectors_);
      }
      
      /** Eigen Values accessor
        * \throw InitFailedException
        */
      inline Eigen::Vector3f& 
      getEigenValues ()
      {
        if (!compute_done_)
          initCompute ();
        if (!compute_done_)
          PCL_THROW_EXCEPTION (InitFailedException, 
                               "[pcl::PCA::getEigenVectors] PCA getEigenValues failed");
        return (eigenvalues_);
      }
      
      /** Coefficients accessor
        * \throw InitFailedException
        */
      inline Eigen::MatrixXf& 
      getCoefficients () 
      {
        if (!compute_done_)
          initCompute ();
        if (!compute_done_)
          PCL_THROW_EXCEPTION (InitFailedException, 
                               "[pcl::PCA::getEigenVectors] PCA getCoefficients failed");
        return (coefficients_);
      }
            
      /** update PCA with a new point
        * \param[in] input input point 
        * \param[in] flag update flag
        * \throw InitFailedException
        */
      inline void 
      update (const PointT& input, FLAG flag = preserve);
      
      /** Project point on the eigenspace.
        * \param[in] input point from original dataset
        * \param[out] projection the point in eigen vectors space
        * \throw InitFailedException
        */
      inline void 
      project (const PointT& input, PointT& projection);

      /** Project cloud on the eigenspace.
        * \param[in] input cloud from original dataset
        * \param[out] projection the cloud in eigen vectors space
        * \throw InitFailedException
        */
      inline void
      project (const PointCloud& input, PointCloud& projection);
      
      /** Reconstruct point from its projection
        * \param[in] projection point from eigenvector space
        * \param[out] input reconstructed point
        * \throw InitFailedException
        */
      inline void 
      reconstruct (const PointT& projection, PointT& input);

      /** Reconstruct cloud from its projection
        * \param[in] projection cloud from eigenvector space
        * \param[out] input reconstructed cloud
        * \throw InitFailedException
        */
      inline void
      reconstruct (const PointCloud& projection, PointCloud& input);

    private:
      inline bool
      initCompute ();

      bool compute_done_;
      bool basis_only_;
      Eigen::Matrix3f eigenvectors_;
      Eigen::MatrixXf coefficients_;
      Eigen::Vector4f mean_;
      Eigen::Vector3f eigenvalues_;
  }; // class PCA
} // namespace pcl

#include <pcl/common/impl/pca.hpp>

#endif // PCL_PCA_H