/usr/include/pcl-1.7/pcl/common/pca.h is in libpcl-dev 1.7.2-14build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | /*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#ifndef PCL_PCA_H
#define PCL_PCA_H
#include <pcl/pcl_base.h>
#include <pcl/pcl_macros.h>
namespace pcl
{
/** Principal Component analysis (PCA) class.\n
* Principal components are extracted by singular values decomposition on the
* covariance matrix of the centered input cloud. Available data after pca computation
* are the mean of the input data, the eigenvalues (in descending order) and
* corresponding eigenvectors.\n
* Other methods allow projection in the eigenspace, reconstruction from eigenspace and
* update of the eigenspace with a new datum (according Matej Artec, Matjaz Jogan and
* Ales Leonardis: "Incremental PCA for On-line Visual Learning and Recognition").
*
* \author Nizar Sallem
* \ingroup common
*/
template <typename PointT>
class PCA : public pcl::PCLBase <PointT>
{
public:
typedef pcl::PCLBase <PointT> Base;
typedef typename Base::PointCloud PointCloud;
typedef typename Base::PointCloudPtr PointCloudPtr;
typedef typename Base::PointCloudConstPtr PointCloudConstPtr;
typedef typename Base::PointIndicesPtr PointIndicesPtr;
typedef typename Base::PointIndicesConstPtr PointIndicesConstPtr;
using Base::input_;
using Base::indices_;
using Base::initCompute;
using Base::setInputCloud;
/** Updating method flag */
enum FLAG
{
/** keep the new basis vectors if possible */
increase,
/** preserve subspace dimension */
preserve
};
/** \brief Default Constructor
* \param basis_only flag to compute only the PCA basis
*/
PCA (bool basis_only = false)
: Base ()
, compute_done_ (false)
, basis_only_ (basis_only)
, eigenvectors_ ()
, coefficients_ ()
, mean_ ()
, eigenvalues_ ()
{}
/** \brief Constructor with direct computation
* X input m*n matrix (ie n vectors of R(m))
* basis_only flag to compute only the PCA basis
*/
PCL_DEPRECATED ("Use PCA (bool basis_only); setInputCloud (X.makeShared ()); instead")
PCA (const pcl::PointCloud<PointT>& X, bool basis_only = false);
/** Copy Constructor
* \param[in] pca PCA object
*/
PCA (PCA const & pca)
: Base (pca)
, compute_done_ (pca.compute_done_)
, basis_only_ (pca.basis_only_)
, eigenvectors_ (pca.eigenvectors_)
, coefficients_ (pca.coefficients_)
, mean_ (pca.mean_)
, eigenvalues_ (pca.eigenvalues_)
{}
/** Assignment operator
* \param[in] pca PCA object
*/
inline PCA&
operator= (PCA const & pca)
{
eigenvectors_ = pca.eigenvectors;
coefficients_ = pca.coefficients;
eigenvalues_ = pca.eigenvalues;
mean_ = pca.mean;
return (*this);
}
/** \brief Provide a pointer to the input dataset
* \param cloud the const boost shared pointer to a PointCloud message
*/
inline void
setInputCloud (const PointCloudConstPtr &cloud)
{
Base::setInputCloud (cloud);
compute_done_ = false;
}
/** \brief Mean accessor
* \throw InitFailedException
*/
inline Eigen::Vector4f&
getMean ()
{
if (!compute_done_)
initCompute ();
if (!compute_done_)
PCL_THROW_EXCEPTION (InitFailedException,
"[pcl::PCA::getMean] PCA initCompute failed");
return (mean_);
}
/** Eigen Vectors accessor
* \throw InitFailedException
*/
inline Eigen::Matrix3f&
getEigenVectors ()
{
if (!compute_done_)
initCompute ();
if (!compute_done_)
PCL_THROW_EXCEPTION (InitFailedException,
"[pcl::PCA::getEigenVectors] PCA initCompute failed");
return (eigenvectors_);
}
/** Eigen Values accessor
* \throw InitFailedException
*/
inline Eigen::Vector3f&
getEigenValues ()
{
if (!compute_done_)
initCompute ();
if (!compute_done_)
PCL_THROW_EXCEPTION (InitFailedException,
"[pcl::PCA::getEigenVectors] PCA getEigenValues failed");
return (eigenvalues_);
}
/** Coefficients accessor
* \throw InitFailedException
*/
inline Eigen::MatrixXf&
getCoefficients ()
{
if (!compute_done_)
initCompute ();
if (!compute_done_)
PCL_THROW_EXCEPTION (InitFailedException,
"[pcl::PCA::getEigenVectors] PCA getCoefficients failed");
return (coefficients_);
}
/** update PCA with a new point
* \param[in] input input point
* \param[in] flag update flag
* \throw InitFailedException
*/
inline void
update (const PointT& input, FLAG flag = preserve);
/** Project point on the eigenspace.
* \param[in] input point from original dataset
* \param[out] projection the point in eigen vectors space
* \throw InitFailedException
*/
inline void
project (const PointT& input, PointT& projection);
/** Project cloud on the eigenspace.
* \param[in] input cloud from original dataset
* \param[out] projection the cloud in eigen vectors space
* \throw InitFailedException
*/
inline void
project (const PointCloud& input, PointCloud& projection);
/** Reconstruct point from its projection
* \param[in] projection point from eigenvector space
* \param[out] input reconstructed point
* \throw InitFailedException
*/
inline void
reconstruct (const PointT& projection, PointT& input);
/** Reconstruct cloud from its projection
* \param[in] projection cloud from eigenvector space
* \param[out] input reconstructed cloud
* \throw InitFailedException
*/
inline void
reconstruct (const PointCloud& projection, PointCloud& input);
private:
inline bool
initCompute ();
bool compute_done_;
bool basis_only_;
Eigen::Matrix3f eigenvectors_;
Eigen::MatrixXf coefficients_;
Eigen::Vector4f mean_;
Eigen::Vector3f eigenvalues_;
}; // class PCA
} // namespace pcl
#include <pcl/common/impl/pca.hpp>
#endif // PCL_PCA_H
|