This file is indexed.

/usr/include/ossim/base/ossimQuaternion.h is in libossim-dev 1.8.16-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#ifndef ossimQuaternion_HEADER
#define ossimQuaternion_HEADER 1
#include <ossim/base/ossimConstants.h>
#include <ossim/base/ossimCommon.h>
#include <ossim/base/ossimColumnVector3d.h>
#include <ossim/base/ossimDpt3d.h>
class ossimMatrix4x4;
namespace ossim
{


/** A quaternion class. It can be used to represent an orientation in 3D space.*/
class OSSIM_DLL Quaternion
{

    public:

        typedef ossim_float64 value_type;

        value_type  theVector[4];    // a four-vector

        inline Quaternion()
        {
           theVector[0]=0.0; theVector[1]=0.0; theVector[2]=0.0; theVector[3]=1.0;
        }

        inline Quaternion( value_type x, value_type y, value_type z, value_type w )
        {
            theVector[0]=x;
            theVector[1]=y;
            theVector[2]=z;
            theVector[3]=w;
        }

/*         inline Quaternion( const Vec4f& v ) */
/*         { */
/*             theVector[0]=v.x(); */
/*             theVector[1]=v.y(); */
/*             theVector[2]=v.z(); */
/*             theVector[3]=v.w(); */
/*         } */

/*         inline Quaternion( const Vec4d& v ) */
/*         { */
/*             theVector[0]=v.x(); */
/*             theVector[1]=v.y(); */
/*             theVector[2]=v.z(); */
/*             theVector[3]=v.w(); */
/*         } */

        inline Quaternion(ossim_float64 angle, const ossimDpt3d& axis)
        {
            makeRotate(angle,axis);
        }
        inline Quaternion(ossim_float64 angle, const ossimColumnVector3d& axis)
        {
            makeRotate(angle,axis);
        }
/*         inline Quaternion( value_type angle, const Vec3d& axis) */
/*         { */
/*             makeRotate(angle,axis); */
/*         } */

/*         inline Quaternion( value_type angle1, const Vec3f& axis1,  */
/*                            value_type angle2, const Vec3f& axis2, */
/*                            value_type angle3, const Vec3f& axis3) */
/*         { */
/*             makeRotate(angle1,axis1,angle2,axis2,angle3,axis3); */
/*         } */

/*         inline Quaternion( value_type angle1, const Vec3d& axis1,  */
/*                      value_type angle2, const Vec3d& axis2, */
/*                      value_type angle3, const Vec3d& axis3) */
/*         { */
/*             makeRotate(angle1,axis1,angle2,axis2,angle3,axis3); */
/*         } */

        inline Quaternion& operator = (const Quaternion& v)
           {
              theVector[0]=v.theVector[0];
              theVector[1]=v.theVector[1];
              theVector[2]=v.theVector[2];
              theVector[3]=v.theVector[3];
              return *this;
           }

        inline bool operator == (const Quaternion& v) const { return theVector[0]==v.theVector[0] && theVector[1]==v.theVector[1] && theVector[2]==v.theVector[2] && theVector[3]==v.theVector[3]; }

        inline bool operator != (const Quaternion& v) const { return theVector[0]!=v.theVector[0] || theVector[1]!=v.theVector[1] || theVector[2]!=v.theVector[2] || theVector[3]!=v.theVector[3]; }

        inline bool operator <  (const Quaternion& v) const
        {
            if (theVector[0]<v.theVector[0]) return true;
            else if (theVector[0]>v.theVector[0]) return false;
            else if (theVector[1]<v.theVector[1]) return true;
            else if (theVector[1]>v.theVector[1]) return false;
            else if (theVector[2]<v.theVector[2]) return true;
            else if (theVector[2]>v.theVector[2]) return false;
            else return (theVector[3]<v.theVector[3]);
        }


        inline void set(value_type x, value_type y, value_type z, value_type w)
        {
            theVector[0]=x;
            theVector[1]=y;
            theVector[2]=z;
            theVector[3]=w;
        }
        
        void set(const ossimMatrix4x4& matrix);

        void get(ossimMatrix4x4& matrix) const;
        

        inline value_type & operator [] (int i) { return theVector[i]; }
        inline value_type   operator [] (int i) const { return theVector[i]; }

        inline value_type & x() { return theVector[0]; }
        inline value_type & y() { return theVector[1]; }
        inline value_type & z() { return theVector[2]; }
        inline value_type & w() { return theVector[3]; }

        inline value_type x() const { return theVector[0]; }
        inline value_type y() const { return theVector[1]; }
        inline value_type z() const { return theVector[2]; }
        inline value_type w() const { return theVector[3]; }

        /** return true if the Quaternion represents a zero rotation, and therefore can be ignored in computations.*/
        bool zeroRotation() const { return theVector[0]==0.0 && theVector[1]==0.0 && theVector[2]==0.0 && theVector[3]==1.0; } 


         /* ------------------------------------------------------------- 
                   BASIC ARITHMETIC METHODS            
        Implemented in terms of Vec4s.  Some Vec4 operators, e.g.
        operator* are not appropriate for quaternions (as
        mathematical objects) so they are implemented differently.
        Also define methods for conjugate and the multiplicative inverse.            
        ------------------------------------------------------------- */
        /// Multiply by scalar 
        inline const Quaternion operator * (value_type rhs) const
        {
            return Quaternion(theVector[0]*rhs, theVector[1]*rhs, theVector[2]*rhs, theVector[3]*rhs);
        }

        /// Unary multiply by scalar 
        inline Quaternion& operator *= (value_type rhs)
        {
            theVector[0]*=rhs;
            theVector[1]*=rhs;
            theVector[2]*=rhs;
            theVector[3]*=rhs;
            return *this;        // enable nesting
        }

        /// Binary multiply 
        inline const Quaternion operator*(const Quaternion& rhs) const
        {
            return Quaternion( rhs.theVector[3]*theVector[0] + rhs.theVector[0]*theVector[3] + rhs.theVector[1]*theVector[2] - rhs.theVector[2]*theVector[1],
                 rhs.theVector[3]*theVector[1] - rhs.theVector[0]*theVector[2] + rhs.theVector[1]*theVector[3] + rhs.theVector[2]*theVector[0],
                 rhs.theVector[3]*theVector[2] + rhs.theVector[0]*theVector[1] - rhs.theVector[1]*theVector[0] + rhs.theVector[2]*theVector[3],
                 rhs.theVector[3]*theVector[3] - rhs.theVector[0]*theVector[0] - rhs.theVector[1]*theVector[1] - rhs.theVector[2]*theVector[2] );
        }

        /// Unary multiply 
        inline Quaternion& operator*=(const Quaternion& rhs)
        {
            value_type x = rhs.theVector[3]*theVector[0] + rhs.theVector[0]*theVector[3] + rhs.theVector[1]*theVector[2] - rhs.theVector[2]*theVector[1];
            value_type y = rhs.theVector[3]*theVector[1] - rhs.theVector[0]*theVector[2] + rhs.theVector[1]*theVector[3] + rhs.theVector[2]*theVector[0];
            value_type z = rhs.theVector[3]*theVector[2] + rhs.theVector[0]*theVector[1] - rhs.theVector[1]*theVector[0] + rhs.theVector[2]*theVector[3];
            theVector[3]   = rhs.theVector[3]*theVector[3] - rhs.theVector[0]*theVector[0] - rhs.theVector[1]*theVector[1] - rhs.theVector[2]*theVector[2];

            theVector[2] = z;
            theVector[1] = y;
            theVector[0] = x;

            return (*this);            // enable nesting
        }

        /// Divide by scalar 
        inline Quaternion operator / (value_type rhs) const
        {
            value_type div = 1.0/rhs;
            return Quaternion(theVector[0]*div, theVector[1]*div, theVector[2]*div, theVector[3]*div);
        }

        /// Unary divide by scalar 
        inline Quaternion& operator /= (value_type rhs)
        {
            value_type div = 1.0/rhs;
            theVector[0]*=div;
            theVector[1]*=div;
            theVector[2]*=div;
            theVector[3]*=div;
            return *this;
        }

        /// Binary divide 
        inline const Quaternion operator/(const Quaternion& denom) const
        {
            return ( (*this) * denom.inverse() );
        }

        /// Unary divide 
        inline Quaternion& operator/=(const Quaternion& denom)
        {
            (*this) = (*this) * denom.inverse();
            return (*this);            // enable nesting
        }

        /// Binary addition 
        inline const Quaternion operator + (const Quaternion& rhs) const
        {
            return Quaternion(theVector[0]+rhs.theVector[0], theVector[1]+rhs.theVector[1],
                theVector[2]+rhs.theVector[2], theVector[3]+rhs.theVector[3]);
        }

        /// Unary addition
        inline Quaternion& operator += (const Quaternion& rhs)
        {
            theVector[0] += rhs.theVector[0];
            theVector[1] += rhs.theVector[1];
            theVector[2] += rhs.theVector[2];
            theVector[3] += rhs.theVector[3];
            return *this;            // enable nesting
        }

        /// Binary subtraction 
        inline const Quaternion operator - (const Quaternion& rhs) const
        {
            return Quaternion(theVector[0]-rhs.theVector[0], theVector[1]-rhs.theVector[1],
                theVector[2]-rhs.theVector[2], theVector[3]-rhs.theVector[3] );
        }

        /// Unary subtraction 
        inline Quaternion& operator -= (const Quaternion& rhs)
        {
            theVector[0]-=rhs.theVector[0];
            theVector[1]-=rhs.theVector[1];
            theVector[2]-=rhs.theVector[2];
            theVector[3]-=rhs.theVector[3];
            return *this;            // enable nesting
        }

        /** Negation operator - returns the negative of the quaternion.
        Basically just calls operator - () on the Vec4 */
        inline const Quaternion operator - () const
        {
            return Quaternion (-theVector[0], -theVector[1], -theVector[2], -theVector[3]);
        }

        /// Length of the quaternion = sqrt( vec . vec )
        value_type length() const
        {
           return std::sqrt( theVector[0]*theVector[0] + theVector[1]*theVector[1] + theVector[2]*theVector[2] + theVector[3]*theVector[3]);
        }

        /// Length of the quaternion = vec . vec
        value_type length2() const
        {
            return theVector[0]*theVector[0] + theVector[1]*theVector[1] + theVector[2]*theVector[2] + theVector[3]*theVector[3];
        }

        /// Conjugate 
        inline Quaternion conj () const
        { 
             return Quaternion( -theVector[0], -theVector[1], -theVector[2], theVector[3] );
        }

        /// Multiplicative inverse method: q^(-1) = q^*/(q.q^*)
        inline const Quaternion inverse () const
        {
             return conj() / length2();
         }

      /* -------------------------------------------------------- 
               METHODS RELATED TO ROTATIONS
        Set a quaternion which will perform a rotation of an
        angle around the axis given by the vector (x,y,z).
        Should be written to also accept an angle and a Vec3?

        Define Spherical Linear interpolation method also

        Not inlined - see the Quat.cpp file for implementation
        -------------------------------------------------------- */
        void makeRotate( value_type  angle, 
                         value_type  x, value_type  y, value_type  z );
        void makeRotate ( value_type  angle, const ossimColumnVector3d& vec )
        { makeRotate(angle, vec[0], vec[1], vec[2]);}
        void makeRotate ( value_type  angle, const ossimDpt3d& vec )
        { makeRotate(angle, vec.x, vec.y, vec.z);}

        void makeRotate ( value_type  angle1, const ossimColumnVector3d& axis1, 
                          value_type  angle2, const ossimColumnVector3d& axis2,
                          value_type  angle3, const ossimColumnVector3d& axis3);
        void makeRotate ( value_type  angle1, const ossimDpt3d& axis1, 
                          value_type  angle2, const ossimDpt3d& axis2,
                          value_type  angle3, const ossimDpt3d& axis3);

        /** Make a rotation Quaternion which will rotate vec1 to vec2.
            Generally take a dot product to get the angle between these
            and then use a cross product to get the rotation axis
            Watch out for the two special cases when the vectors
            are co-incident or opposite in direction.*/
        void makeRotate( const ossimColumnVector3d& vec1, const ossimColumnVector3d& vec2 );
        /** Make a rotation Quaternion which will rotate vec1 to vec2.
            Generally take a dot product to get the angle between these
            and then use a cross product to get the rotation axis
            Watch out for the two special cases of when the vectors
            are co-incident or opposite in direction.*/
        void makeRotate( const ossimDpt3d& vec1, const ossimDpt3d& vec2 );
    
/*         void makeRotate_original( const Vec3d& vec1, const Vec3d& vec2 ); */

        /**
         * Return the angle and vector components represented by the quaternion.
         * Angle returned is in degrees.
         */
        void getRotate ( value_type & angle, value_type & x, value_type & y, value_type & z ) const;

        /**
         * Return the angle and vector components represented by the quaternion.
         * Angle returned is in degrees.
         */
        void getRotate ( value_type& angle, ossimDpt3d& vec ) const
        { getRotate(angle, vec.x, vec.y, vec.z);}


        /** Spherical Linear Interpolation.
        As it goes from 0 to 1, the Quaternion object goes from "from" to "to". */
        void slerp   ( value_type  t, const Quaternion& from, const Quaternion& to);
        /** Rotate a vector by this quaternion.*/
        ossimDpt3d operator* (const ossimDpt3d& v) const
        {
            // nVidia SDK implementation
            ossimDpt3d uv, uuv; 
            ossimDpt3d qvec(theVector[0], theVector[1], theVector[2]);
            uv = qvec ^ v;
            uuv = qvec ^ uv; 
            uv *= ( 2.0f * theVector[3] ); 
            uuv *= 2.0f; 
            return v + uv + uuv;
        }
        friend ossimDpt3d operator *(  const ossimDpt3d& lhs,  const ossim::Quaternion& rhs)
        {
           ossimDpt3d uv, uuv; 
           ossimDpt3d qvec(rhs.theVector[0], rhs.theVector[1], rhs.theVector[2]);
           uv = qvec ^ lhs;
           uuv = qvec ^ uv; 
           uv *= ( 2.0f * rhs.theVector[3] ); 
           uuv *= 2.0f;
           
           return lhs + uv + uuv;
        }
    
};    // end of class prototype

}    // end of namespace

#endif