This file is indexed.

/usr/include/ossim/base/ossimPolynom.h is in libossim-dev 1.8.16-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
///////////////////////////////////////////////////////////////////////////////
// ossimPolynom.h
// Author: Frederic Claudel Meraka/CSIR, 2005
///////////////////////////////////////////////////////////////////////////////
//
//TODO : check if automatically removing small monoms is actually viable
//
//TBD : normalization for Least Mean Square fit
//TBD : copy constructor for different DIM
//TBD : LOW PRIORITY redo serialization so that doesn't have to use strings (streams only)

#ifndef ossimPolynom_HEADER
#define ossimPolynom_HEADER

#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <iostream>
#include <iomanip>

#include <ossim/base/ossimConstants.h>
#include <ossim/base/ossimString.h>
#include <ossim/matrix/newmat.h>
#include <ossim/matrix/newmatap.h>

/**
 * template class for multivariate polynom algebra
 *
 * T   : the storage type, constraints: must have 0 (zero) as value, support ops fabs + - * /
 * DIM : the dimension of the input space, integer (>=1, default : 1)
 *
 * stores a set of monoms, a monom is (exponent tuples + coefficient)
 * requires a precion (epsilon) for comparisons
 * note: monoms absolute values below epsilon are removed from the map
 */
template < class T, int DIM = 1 >
class  ossimPolynom
{
public:
   /**
    * inner types
    */
   typedef std::vector< int > EXP_TUPLE; //! type to store exponent tuples
   typedef std::vector< T >   VAR_TUPLE; //! type to store multivariate input

   struct EXP_TUPLE_LESSTHAN //! inner functor for sorting exponent tuples
   {
      //warning both EXP_TUPLE should have same dimension (not necessarily DIM)
      bool operator()(const EXP_TUPLE& o1, const EXP_TUPLE& o2)const
      {
         for(unsigned int i=0;i<o1.size();++i)
         {
            if (o1[i]<o2[i])
            {
               return true;
            } else if (o1[i]>o2[i])
            {
               return false;
            }
         }
         return false;
      }
   };

   typedef std::map< EXP_TUPLE, T , EXP_TUPLE_LESSTHAN > MONOM_MAP; //! for storing polynom

   typedef std::set< EXP_TUPLE, EXP_TUPLE_LESSTHAN >     EXPT_SET; //! for storing set of exponent tuples

   /** 
    * construction : 
    * 
    */
    //TBD : by default, adapt epsilon to template type T
   ossimPolynom(const T& epsilon = 0) //! must supply epsilon value, default 0
      : theEpsilon(epsilon)
   {}

   ossimPolynom(const ossimPolynom& p) : 
      theMonoms(p.getMonoms()),
      theEpsilon(p.getEpsilon())
   {}

   ~ossimPolynom()
   {}

   const ossimPolynom& operator=(const ossimPolynom< T, DIM >& pt)
   {
      if (this != &pt)
      {
         theEpsilon = pt.getEpsilon();
         theMonoms  = pt.getMonoms();
      }
      return *this;
   }

   void setMonom(const EXP_TUPLE& m, const T& v)
   {
      if (isNegligible(v))
      {
         theMonoms.erase(m); //TBC TBD: what happens if m is not in the map?
      } else {
         theMonoms[m] = v;
      }
   }

   void setMonom(const int mexp[DIM], const T& v)
   {
      EXP_TUPLE mexpV(mexp,mexp+DIM);
      if (isNegligible(v))
      {
         theMonoms.erase(mexpV); //TBC TBD: what happens if m is not in the map?
      } else {
         theMonoms[mexpV] = v;
      }
   }


   inline void delMonom(const EXP_TUPLE& m)
   {
      theMonoms.erase(m); //TBC TBD: what happens if m is not in the map?
   }

   T getCoeff(const EXP_TUPLE& m)const
   {
      typename MONOM_MAP::const_iterator it = theMonoms.find(m);
      if (it != theMonoms.end())
      {
         return it->second;
      } else {
         return 0;
      }
   }

   void nullify()  //set to 0
   {
      theMonoms.clear();
   }

   inline bool isNull()const
   {
      return (theMonoms.size() == 0);
   }
  
   inline const MONOM_MAP& getMonoms()const 
   {
      return theMonoms;
   }

   inline const T& getEpsilon()const  //! no setEpsilon beacause might erase monoms
   {
      return theEpsilon;
   }

   /**
    * comparison operators
    * -don't compare theEpsilon values
    * -use my own epsilon in comparisons (not the compared to's epsilon)
    */
   bool operator==(const ossimPolynom& pt)const
   {
      if (getMonoms().size() != pt.getMonoms().size()) return false;

      // loop on my monoms
      typename MONOM_MAP::const_iterator it;
      for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         if ( !isNegligible(it->second - pt.getCoeff(it->first)) ) return false;
      }
      return true; //same number of identical monoms
   }

   bool operator!=(const ossimPolynom& pt)const
   {
      return !operator==(pt);
   }

   inline bool isNegligible(const T& v)const //! can v be considered as zero?
   {
      return ( fabs(v) <= theEpsilon );
   }   

   /** 
    * orders
    */
   int getOrder(int d)const //! returns maximum order of monoms for a specific dimension (d starts at 0)
   {
      if ((d>=DIM) || (d<0)) return -1; //error = no dimension

      // loop on monoms
      int order = -1; //for null polynom
      int corder;
      typename MONOM_MAP::const_iterator it;
      for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         corder = (it->first)[d];
         if ( corder > order ) order = corder;
      }
      return order;
   }

   int getTotalOrder()const //! returns maximum order of monoms
   {
      int order = -1; //for null polynom
      int sorder;
      typename MONOM_MAP::const_iterator it;
      for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         sorder = 0;
         for (int d=0;d<DIM;++d) sorder+=(it->first)[d];
         if ( sorder > order ) order = sorder;
      }
      return order;
   }

   /**
    * evaluation : needs DIM values as input
    */
   T eval(const VAR_TUPLE& v)const
   {
      T ev = 0;
      //loop on monoms. TBD optimize powers using map order
      typename MONOM_MAP::const_iterator it;
      int p;
      for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         //compute powers
         T mv = it->second;
         for(int d=0;d<DIM;++d)
         {
            p = (it->first)[d];
            if (p != 0)
            {
               mv *= std::pow( v[d], p );
            }
         }
         //add momom value
         ev += mv;
      }
      return ev;
   }

   /** 
    * partial differentiation polynom
    */
   void pdiff(int pdim, ossimPolynom& result)const
   {
      result.nullify();
      int ord;
      //loop on monoms
      for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         ord = it->first[pdim];
         if (ord>=1)
         {
            EXP_TUPLE expDiff(it->first);
            expDiff[pdim] -= 1;
            result.setMonom(expDiff, it->second * ord);
         }
      }
   }

   /**
    * operations with scalar
    */
   const ossimPolynom& operator*=(const T& k)
   {
      //loop on monoms
      for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         it->second *= k;
      }
      discardNullMonoms();
   }

   /**
    * arithmetic operators
    */
   ossimPolynom operator+(const ossimPolynom& p)const
   {
      ossimPolynom< T , DIM > sum(*this);
      return (sum+=p);
   }
   ossimPolynom operator-(const ossimPolynom& p)const
   {
      ossimPolynom< T , DIM > diff(*this);
      return (diff-=p);
   }

   const ossimPolynom& operator+=(const ossimPolynom& p)
   {
      typename MONOM_MAP::const_iterator it;
      //loop on p monoms
      for ( it = p.getMonoms().begin(); it != p.getMonoms().end() ; ++it )
      {
         setMonom( it->first, getCoeff(it->first) + it->second );
      }
      return *this;
   }

   const ossimPolynom& operator-=(const ossimPolynom& p)
   {
      typename MONOM_MAP::const_iterator it;
      //loop on p monoms
      for ( it = p.getMonoms().begin(); it != p.getMonoms().end() ; ++it )
      {
         setMonom( it->first, getCoeff(it->first) - it->second );
      }
      return *this;
   }

   /**
    * product operator : use epsilon from left side
    */
   ossimPolynom operator*(const ossimPolynom& p)const
   {
      //do a stupid multiplication (sum all monom pairs)      
      ossimPolynom< T , DIM > prod(getEpsilon());
      T coeff;
      //loop on p monoms
      for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {      
         for ( typename MONOM_MAP::const_iterator pit = p.getMonoms().begin(); pit != p.getMonoms().end() ; ++pit )
         {
            coeff = it->second * pit->second;
            if (coeff!=0)
            {
               EXP_TUPLE prodExp(it->first);
               addExpTuple(prodExp, pit->first);
               prod.addMonomQuick(prodExp, coeff);
            }
         }
      }
      //scan for null monoms and discard
      prod.discardNullMonoms();
      return prod;
   }

   const ossimPolynom& operator*=(const ossimPolynom& p)
   {
      return operator=( this->operator*(p) );
   }

   static void addExpTuple(EXP_TUPLE& m1, const EXP_TUPLE& m2)
   {
      for(int i=0;i<DIM;++i) {
         m1[i] += m2[i];
      }
   }
   
   /**
    * I/O
    * 
    * stream serialization format :
    *  [ k1 (e1_1,e1_2,...,e1_DIM) ; k2 (e2_1,e2_2,..,e2_DIM) ; kN (eN_1,...eN_DIM)]
    *
    * N is the number of monoms
    * ei_j is exponent for dimension j and monom i
    *
    * order is not important
    * all monoms should have the same dimension : DIM
    * you should add eps=xxxx at the beginning, separated by semi-colon ; (by default epsilon is 0)
    *
    * examples:
    *  [ ] is the null polynom, [ eps=1.0e-5 ] too
    *  [ 1.0 (0) 3.5 (1) ] is polynom 1.0 + 3.5*x, with epsilon = 0
    *  [ eps=1.0E-12 ;  2.0 (1,1,0) ; -1.0 (0,0,1) ] is polynom 2*x*y-z, with epsilon=10^-12
    */
   
   std::ostream& print(std::ostream& os)const
   {
      static const char* monom_sep = " ; ";
      static const char* no_sep    = "";

      const char* use_sep = no_sep;

      os<<"[";
      os<<std::setprecision(16); //16 for double, TBD TBC: adapt to epsilon
      os<<std::setiosflags(std::ios_base::scientific);
      //output epsilon if not null
      if (getEpsilon() > 0)
      {         
         os<<use_sep<<"eps="<<getEpsilon();
         use_sep=monom_sep;
      }
      //loop on monoms
      for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
      {
         os<<use_sep<<it->second<<"(";
         for(int d=0 ; d<DIM ; ++d)
         {
            if (d>0)
            {
               os<<",";
            }
            os<<(it->first)[d];
         }
         os<<")";
         use_sep=monom_sep;
      }
      os<<"]";
      return os;
   }
 
   std::ostream& 
   printNice(std::ostream& os, const char symbols[DIM]) //!classic representation (bad accuracy, for display only)
   {
      if (getMonoms().size() == 0)
      {
         os<<"0"; //zero
      } else {
         os<<std::setiosflags(std::ios_base::fixed);
         os<<std::setprecision(14); //14 for double, TBD TBC: adapt to epsilon
         //loop on monoms (map order)
         for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
         {
            T coeff = it->second;
            if (coeff>0)
            {
               os<<"+";
            }
            os<<coeff;
            for(int d=0;d<DIM;++d) 
            {
               int ord=(it->first)[d];
               if (ord>0)
               {
                  os<<""<<symbols[d];
                  if (ord != 1)
                  {
                     os<<ord;
                  }
               }
            }
         }
      }
      return os;
   }

   std::istream& import(std::istream& is) //! note that it can only import for the template type T and dimesnion DIM
   {
      nullify();

      //extract data in brackets [ ]
      //swallow bracket
      ossimString tempString;
      char tempChar;
      is.get(tempChar);
      if (!is) 
      {
         std::cerr<<"ossimPolynom::import ERROR, cannot read left bracket ["<<std::endl;
         return is;
      }
      if (tempChar != '[')
      {
         std::cerr<<"ossimPolynom::import ERROR, missing left bracket ["<<std::endl;
         return is;
      }
      const int BUFSIZE=32768;  //should be enough fro most apps (TBC TBD : allow loops if not enough)
      char buffer[BUFSIZE];
      is.getline(buffer, BUFSIZE, ']');
      if (!is)
      {
         std::cerr<<"ossimPolynom::import ERROR, cannot read after left bracket ["<<std::endl;
         return is;
      }     
      if (is.gcount() >= BUFSIZE-1)
      {
         std::cerr<<"ossimPolynom::import ERROR, cannot find right bracket ] after "<<BUFSIZE-1<<"characters"<<std::endl;
         return is;
      }
      tempString = buffer; //no more brackets

      //split string using semicolons
      std::vector< ossimString > subparts = tempString.explode(";");
      //loop on subparts
      for (typename std::vector< ossimString >::const_iterator it=subparts.begin() ; it!=subparts.end() ; ++it )
      {
         ossimString sp = it->trim();
         //check for epsilon
         ossimString aft_eps=sp.after("eps=");
         if (aft_eps.size()>0)
         {
            //get epsilon value
            aft_eps.trim();
            theEpsilon = static_cast< T >(aft_eps.toDouble());
         } else {
            //no epsilon : must be a monom
            ossimString scalpart=sp.before("(");
            if (scalpart.size() < sp.size())
            {
              T coeff = static_cast< T >(scalpart.toDouble());
              ossimString expopart = ((sp.before(")")).after("(")).trim();
              if (expopart.size() == 0)
              {
                 std::cerr<<"ossimPolynom::import ERROR, cannot find ) in monom or empty monom"<<std::endl;
                 return is;
              }
              std::vector< ossimString > vexpo = expopart.explode(",");
              if (vexpo.size() != DIM)
              {
                 std::cerr<<"ossimPolynom::import ERROR, bad number of exponents in monom (need "<<DIM<<"): "<<vexpo.size()<<std::endl;
                 return is;
              }
              //store all exponents
              EXP_TUPLE expt(DIM);
              int d;
              std::vector< ossimString >::const_iterator eit;
              for (eit=vexpo.begin() , d=0 ; eit != vexpo.end() ; ++eit, ++d )
              {
                 expt[d] = eit->toInt(); //TBD : could check that value is integer, but how?
              }
              //add new monom (if duplicate...error)
              if (getMonoms().find(expt) != getMonoms().end())
              {
                 std::cerr<<"ossimPolynom::import ERROR, duplicate exponent tuple in polynom"<<std::endl;
                 return is;
              }
              theMonoms[expt] = coeff;

            } else {
               std::cerr<<"ossimPolynom::import ERROR, cannot find left parenthesis ( in monom "<<std::endl;
               return is;
            }
         }
      }

      return is;
   }
/**
 * constructs simple exponent tuples set for using LMSfit
 * need order for each dimension
 */
 EXPT_SET builExpSet(const EXP_TUPLE& orders)const
 {
    EXPT_SET eset;
    if (orders.size() != DIM)
    {
       std::cerr<<"ossimPolynom::import ERROR bad dimension for parameter, need "<<DIM<<" elements"<<std::endl;
       return eset;
    }
    //initialise variable exponent tuple
    EXP_TUPLE et(DIM);
    for(int d=0;d<DIM;++d) et[d]=0;
    while (et[0] <= orders[0])
    {
      //add tuple to set
      eset.insert(et);

      //increment tuple within bounds
      et[DIM-1]++;
      for(int d=DIM-1 ; d>=0 ; --d)
      {
         if ((et[d] > orders[d]) && (d>0))
         {
            et[d] = 0;
            et[d-1]++;
         }
      }
    }
    return eset;
 }

 /** 
  * concatenate exponents (at the right) to existing tuple set, for a given maximum total order
  * eg: with eset={(0,1),(0,0)} , 
  * then addExpTuple(2,1,eset) = {(0,1,0,0),(0,1,0,1),(0,1,1,0), (0,0,0,0),(0,0,0,1),(0,0,1,0)}
  */
 void addExpTupleRight(int newdim, int totalOrder, EXPT_SET& eset )const
 {
    EXPT_SET newset;
    // add a copy off eset for each order with the specific last dim
    for(int o=0; o<=totalOrder ; ++o)
    {
       EXPT_SET extset; //extended set
       if (eset.size()==0)
       {
          EXP_TUPLE tu(1);
          tu[0]=o;
          extset.insert(tu);
       } else {
          //we have to construct a new set from eset, extending dimension
          // cause: stored tuples cannot be compared at different dimensions
          for(typename EXPT_SET::iterator sit = eset.begin(); sit != eset.end(); ++sit)
          {
             EXP_TUPLE tu(*sit);
             tu.push_back(o);
             extset.insert(tu);
          }
       }
       //recursively add remaining dimensions
       if (newdim>1)
       {
          addExpTupleRight(newdim-1, totalOrder-o, extset); //only dimension decreases
       }
       //add full set for the specific order
       newset.insert(extset.begin(), extset.end());
    }
    eset=newset; //overwrite
 }

/**
 * fits the polynom to the observations using Least Mean Squares
 * returns true on success (can fail if not enough observations)
 *  + also updates rms error(root mean square)
 * NOTES: inputs must have same size and must be ordered the same way
 *        use builExpSet() to construct classic polynoms 
 * TODO: add weights to observations
 */
bool
LMSfit(const EXPT_SET&                expset,
       const std::vector< VAR_TUPLE > obs_input,
       const std::vector< T >         obs_output,
       T*                             prms = NULL)
{
   //init
   nullify();

   //check size
   int nobs = (int)obs_input.size();
   if (nobs != (int)obs_output.size())
   {
      std::cerr<<"ossimPolynom::LMSfit ERROR observation input/output must have the same size"<<std::endl;
      return false;
   }
   if (nobs<=0)
   {
      std::cerr<<"ossimPolynom::LMSfit ERROR observation count is zero"<<std::endl;
      return false;
   }
   int ncoeff = (int)expset.size();  
   if (ncoeff<=0)
   {
      std::cerr<<"ossimPolynom::LMSfit ERROR exponent count is zero"<<std::endl;
      return false;
   }
   
   //construct LMS linear system (using OSSIM matrices)
   // M.k = v
   // M : monom matrix
   // k : polynbm coefficients
   // v : output_obs
   NEWMAT::Matrix M(nobs, ncoeff);
   double elt;
   int p;
   typename EXPT_SET::const_iterator cit;
   typename std::vector< VAR_TUPLE >::const_iterator oit;
   int i,j;
   for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
   {
      for(oit=obs_input.begin(), i=1; oit!=obs_input.end();++oit, ++i) //loop on observations
      {
         //compute powers using observation position
         elt=1.0;
         for(int d=0;d<DIM;++d)
         {
            p = (*cit)[d];
            if (p != 0)
            {
               elt *= std::pow( (*oit)[d], p );
            }
         }
         //init M
         M(i,j) = elt; //NEWMAT indices start at 1
      }
   }

   NEWMAT::ColumnVector v(nobs);
   for(int o=0;o<nobs;++o)
   {
      v(o+1) = obs_output[o];
   }

   //build LMS symmetric matrix tM.M
   //build best fit
   NEWMAT::ColumnVector bfit = invert(M.t()*M)*M.t()*v; //TBD : check inversion

   //compute RMS (optional, if rms non null)
   if (prms!=NULL)
   {
      NEWMAT::ColumnVector delta = M*bfit - v;
      *prms = std::sqrt( delta.SumSquare() / nobs);
   }

   //init polynom
   for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
   {
      setMonom(*cit, bfit(j));
   }
   return true;
}


/**
 * Standard least squares
 * Modified version of LMSfit that uses standard NEWMAT inverse as
 *  alternative to SVD solution.
 */
bool
SLSfit(const EXPT_SET&                expset,
       const std::vector< VAR_TUPLE > obs_input,
       const std::vector< T >         obs_output,
       T*                             prms = NULL)
{
   //init
   nullify();

   //check size
   int nobs = (int)obs_input.size();
   if (nobs != (int)obs_output.size())
   {
      std::cerr<<"ossimPolynom::LMSfit ERROR observation input/output must have the same size"<<std::endl;
      return false;
   }
   if (nobs<=0)
   {
      std::cerr<<"ossimPolynom::LMSfit ERROR observation count is zero"<<std::endl;
      return false;
   }
   int ncoeff = (int)expset.size();  
   if (ncoeff<=0)
   {
      std::cerr<<"ossimPolynom::LMSfit ERROR exponent count is zero"<<std::endl;
      return false;
   }
   
   // M : monom matrix
   // k : polynomial coefficients
   // v : output_obs
   NEWMAT::Matrix M(nobs, ncoeff);
   double elt;
   int p;
   typename EXPT_SET::const_iterator cit;
   typename std::vector< VAR_TUPLE >::const_iterator oit;
   int i,j;
   for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
   {
      for(oit=obs_input.begin(), i=1; oit!=obs_input.end();++oit, ++i) //loop on observations
      {
         elt=1.0;
         for(int d=0;d<DIM;++d)
         {
            p = (*cit)[d];
            if (p != 0)
            {
               elt *= std::pow( (*oit)[d], p );
            }
         }
         M(i,j) = elt;
      }
   }

   NEWMAT::ColumnVector v(nobs);
   for(int o=0;o<nobs;++o)
   {
      v(o+1) = obs_output[o];
   }

   //perform solution
   NEWMAT::ColumnVector bfit = (M.t()*M).i()*M.t()*v;

   //compute RMS (optional, if rms non null)
   if (prms!=NULL)
   {
      NEWMAT::ColumnVector delta = M*bfit - v;
      *prms = std::sqrt( delta.SumSquare() / nobs);
   }

   //init polynom
   for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
   {
      setMonom(*cit, bfit(j));
   }
   return true;
}

protected:
   /**
    * protected data members
    */
   MONOM_MAP theMonoms; //!associate a scalar to each tuple of orders : monom

   T theEpsilon; //! positive values below epsilon are considered 0 

   /**
    * method to erase all negligible monoms : user don't need that (automatic)
    */
   void
   discardNullMonoms()
   {     
      std::vector< typename MONOM_MAP::iterator > erasev; //storage for iterators on elements to erase
      for (typename MONOM_MAP::iterator it = theMonoms.begin(); it != theMonoms.end() ; ++it )
      {
         if (isNegligible(it->second)) erasev.push_back(it);
      }
      //erase all elements afterwards
      for ( typename std::vector< typename MONOM_MAP::iterator >::const_iterator vit = erasev.begin(); vit != erasev.end() ; ++vit )
      {
         theMonoms.erase(*vit); //*vit is  an iterator in theMonoms
      }      
   }

   /**
    * add value without testing for negligible
    */
   void 
   addMonomQuick(const EXP_TUPLE& m, const T& v)
   {
      typename MONOM_MAP::iterator it = theMonoms.find(m);
      if (it != theMonoms.end())
      {
         it->second  += v;
      } else {
         theMonoms.insert( MONOM_MAP::value_type(m,v));
      }
   }

   /** 
    * invert stolen from ossimRpcSolver
    */
   NEWMAT::Matrix 
   invert(const NEWMAT::Matrix& m)const
   {
      ossim_uint32 idx = 0;
      NEWMAT::DiagonalMatrix d;
      NEWMAT::Matrix u;
      NEWMAT::Matrix v;

      // decompose m.t*m which is stored in Temp into the singular values and vectors.
      //
      NEWMAT::SVD(m, d, u, v, true, true);
      
      // invert the diagonal
      // this is just doing the reciprical fo all diagonal components and store back int
      // d.  ths compute d inverse.
      //
      for(idx=0; idx < (ossim_uint32)d.Ncols(); ++idx)
      {
         if(d[idx] > getEpsilon()) //adpated here for epsilon
         {
            d[idx] = 1.0/d[idx];
         }
         else
         {
            d[idx] = 0.0;
         }
      }

      //compute inverse of decomposed m;
      return v*d*u.t();
   }

}; //class ossimPolynom



/**
 * stream operators
 */
template < class T, int DIM  > std::ostream& 
operator<<(std::ostream& os, const ossimPolynom<T,DIM>& pt)
{
   return pt.print(os);
}

template < class T, int DIM > std::istream&
operator>>(std::istream& is, ossimPolynom<T,DIM>& pt)
{
   return pt.import(is);
}

#endif