/usr/include/ossim/base/ossimPolynom.h is in libossim-dev 1.8.16-4ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | ///////////////////////////////////////////////////////////////////////////////
// ossimPolynom.h
// Author: Frederic Claudel Meraka/CSIR, 2005
///////////////////////////////////////////////////////////////////////////////
//
//TODO : check if automatically removing small monoms is actually viable
//
//TBD : normalization for Least Mean Square fit
//TBD : copy constructor for different DIM
//TBD : LOW PRIORITY redo serialization so that doesn't have to use strings (streams only)
#ifndef ossimPolynom_HEADER
#define ossimPolynom_HEADER
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <iostream>
#include <iomanip>
#include <ossim/base/ossimConstants.h>
#include <ossim/base/ossimString.h>
#include <ossim/matrix/newmat.h>
#include <ossim/matrix/newmatap.h>
/**
* template class for multivariate polynom algebra
*
* T : the storage type, constraints: must have 0 (zero) as value, support ops fabs + - * /
* DIM : the dimension of the input space, integer (>=1, default : 1)
*
* stores a set of monoms, a monom is (exponent tuples + coefficient)
* requires a precion (epsilon) for comparisons
* note: monoms absolute values below epsilon are removed from the map
*/
template < class T, int DIM = 1 >
class ossimPolynom
{
public:
/**
* inner types
*/
typedef std::vector< int > EXP_TUPLE; //! type to store exponent tuples
typedef std::vector< T > VAR_TUPLE; //! type to store multivariate input
struct EXP_TUPLE_LESSTHAN //! inner functor for sorting exponent tuples
{
//warning both EXP_TUPLE should have same dimension (not necessarily DIM)
bool operator()(const EXP_TUPLE& o1, const EXP_TUPLE& o2)const
{
for(unsigned int i=0;i<o1.size();++i)
{
if (o1[i]<o2[i])
{
return true;
} else if (o1[i]>o2[i])
{
return false;
}
}
return false;
}
};
typedef std::map< EXP_TUPLE, T , EXP_TUPLE_LESSTHAN > MONOM_MAP; //! for storing polynom
typedef std::set< EXP_TUPLE, EXP_TUPLE_LESSTHAN > EXPT_SET; //! for storing set of exponent tuples
/**
* construction :
*
*/
//TBD : by default, adapt epsilon to template type T
ossimPolynom(const T& epsilon = 0) //! must supply epsilon value, default 0
: theEpsilon(epsilon)
{}
ossimPolynom(const ossimPolynom& p) :
theMonoms(p.getMonoms()),
theEpsilon(p.getEpsilon())
{}
~ossimPolynom()
{}
const ossimPolynom& operator=(const ossimPolynom< T, DIM >& pt)
{
if (this != &pt)
{
theEpsilon = pt.getEpsilon();
theMonoms = pt.getMonoms();
}
return *this;
}
void setMonom(const EXP_TUPLE& m, const T& v)
{
if (isNegligible(v))
{
theMonoms.erase(m); //TBC TBD: what happens if m is not in the map?
} else {
theMonoms[m] = v;
}
}
void setMonom(const int mexp[DIM], const T& v)
{
EXP_TUPLE mexpV(mexp,mexp+DIM);
if (isNegligible(v))
{
theMonoms.erase(mexpV); //TBC TBD: what happens if m is not in the map?
} else {
theMonoms[mexpV] = v;
}
}
inline void delMonom(const EXP_TUPLE& m)
{
theMonoms.erase(m); //TBC TBD: what happens if m is not in the map?
}
T getCoeff(const EXP_TUPLE& m)const
{
typename MONOM_MAP::const_iterator it = theMonoms.find(m);
if (it != theMonoms.end())
{
return it->second;
} else {
return 0;
}
}
void nullify() //set to 0
{
theMonoms.clear();
}
inline bool isNull()const
{
return (theMonoms.size() == 0);
}
inline const MONOM_MAP& getMonoms()const
{
return theMonoms;
}
inline const T& getEpsilon()const //! no setEpsilon beacause might erase monoms
{
return theEpsilon;
}
/**
* comparison operators
* -don't compare theEpsilon values
* -use my own epsilon in comparisons (not the compared to's epsilon)
*/
bool operator==(const ossimPolynom& pt)const
{
if (getMonoms().size() != pt.getMonoms().size()) return false;
// loop on my monoms
typename MONOM_MAP::const_iterator it;
for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
if ( !isNegligible(it->second - pt.getCoeff(it->first)) ) return false;
}
return true; //same number of identical monoms
}
bool operator!=(const ossimPolynom& pt)const
{
return !operator==(pt);
}
inline bool isNegligible(const T& v)const //! can v be considered as zero?
{
return ( fabs(v) <= theEpsilon );
}
/**
* orders
*/
int getOrder(int d)const //! returns maximum order of monoms for a specific dimension (d starts at 0)
{
if ((d>=DIM) || (d<0)) return -1; //error = no dimension
// loop on monoms
int order = -1; //for null polynom
int corder;
typename MONOM_MAP::const_iterator it;
for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
corder = (it->first)[d];
if ( corder > order ) order = corder;
}
return order;
}
int getTotalOrder()const //! returns maximum order of monoms
{
int order = -1; //for null polynom
int sorder;
typename MONOM_MAP::const_iterator it;
for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
sorder = 0;
for (int d=0;d<DIM;++d) sorder+=(it->first)[d];
if ( sorder > order ) order = sorder;
}
return order;
}
/**
* evaluation : needs DIM values as input
*/
T eval(const VAR_TUPLE& v)const
{
T ev = 0;
//loop on monoms. TBD optimize powers using map order
typename MONOM_MAP::const_iterator it;
int p;
for ( it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
//compute powers
T mv = it->second;
for(int d=0;d<DIM;++d)
{
p = (it->first)[d];
if (p != 0)
{
mv *= std::pow( v[d], p );
}
}
//add momom value
ev += mv;
}
return ev;
}
/**
* partial differentiation polynom
*/
void pdiff(int pdim, ossimPolynom& result)const
{
result.nullify();
int ord;
//loop on monoms
for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
ord = it->first[pdim];
if (ord>=1)
{
EXP_TUPLE expDiff(it->first);
expDiff[pdim] -= 1;
result.setMonom(expDiff, it->second * ord);
}
}
}
/**
* operations with scalar
*/
const ossimPolynom& operator*=(const T& k)
{
//loop on monoms
for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
it->second *= k;
}
discardNullMonoms();
}
/**
* arithmetic operators
*/
ossimPolynom operator+(const ossimPolynom& p)const
{
ossimPolynom< T , DIM > sum(*this);
return (sum+=p);
}
ossimPolynom operator-(const ossimPolynom& p)const
{
ossimPolynom< T , DIM > diff(*this);
return (diff-=p);
}
const ossimPolynom& operator+=(const ossimPolynom& p)
{
typename MONOM_MAP::const_iterator it;
//loop on p monoms
for ( it = p.getMonoms().begin(); it != p.getMonoms().end() ; ++it )
{
setMonom( it->first, getCoeff(it->first) + it->second );
}
return *this;
}
const ossimPolynom& operator-=(const ossimPolynom& p)
{
typename MONOM_MAP::const_iterator it;
//loop on p monoms
for ( it = p.getMonoms().begin(); it != p.getMonoms().end() ; ++it )
{
setMonom( it->first, getCoeff(it->first) - it->second );
}
return *this;
}
/**
* product operator : use epsilon from left side
*/
ossimPolynom operator*(const ossimPolynom& p)const
{
//do a stupid multiplication (sum all monom pairs)
ossimPolynom< T , DIM > prod(getEpsilon());
T coeff;
//loop on p monoms
for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
for ( typename MONOM_MAP::const_iterator pit = p.getMonoms().begin(); pit != p.getMonoms().end() ; ++pit )
{
coeff = it->second * pit->second;
if (coeff!=0)
{
EXP_TUPLE prodExp(it->first);
addExpTuple(prodExp, pit->first);
prod.addMonomQuick(prodExp, coeff);
}
}
}
//scan for null monoms and discard
prod.discardNullMonoms();
return prod;
}
const ossimPolynom& operator*=(const ossimPolynom& p)
{
return operator=( this->operator*(p) );
}
static void addExpTuple(EXP_TUPLE& m1, const EXP_TUPLE& m2)
{
for(int i=0;i<DIM;++i) {
m1[i] += m2[i];
}
}
/**
* I/O
*
* stream serialization format :
* [ k1 (e1_1,e1_2,...,e1_DIM) ; k2 (e2_1,e2_2,..,e2_DIM) ; kN (eN_1,...eN_DIM)]
*
* N is the number of monoms
* ei_j is exponent for dimension j and monom i
*
* order is not important
* all monoms should have the same dimension : DIM
* you should add eps=xxxx at the beginning, separated by semi-colon ; (by default epsilon is 0)
*
* examples:
* [ ] is the null polynom, [ eps=1.0e-5 ] too
* [ 1.0 (0) 3.5 (1) ] is polynom 1.0 + 3.5*x, with epsilon = 0
* [ eps=1.0E-12 ; 2.0 (1,1,0) ; -1.0 (0,0,1) ] is polynom 2*x*y-z, with epsilon=10^-12
*/
std::ostream& print(std::ostream& os)const
{
static const char* monom_sep = " ; ";
static const char* no_sep = "";
const char* use_sep = no_sep;
os<<"[";
os<<std::setprecision(16); //16 for double, TBD TBC: adapt to epsilon
os<<std::setiosflags(std::ios_base::scientific);
//output epsilon if not null
if (getEpsilon() > 0)
{
os<<use_sep<<"eps="<<getEpsilon();
use_sep=monom_sep;
}
//loop on monoms
for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
os<<use_sep<<it->second<<"(";
for(int d=0 ; d<DIM ; ++d)
{
if (d>0)
{
os<<",";
}
os<<(it->first)[d];
}
os<<")";
use_sep=monom_sep;
}
os<<"]";
return os;
}
std::ostream&
printNice(std::ostream& os, const char symbols[DIM]) //!classic representation (bad accuracy, for display only)
{
if (getMonoms().size() == 0)
{
os<<"0"; //zero
} else {
os<<std::setiosflags(std::ios_base::fixed);
os<<std::setprecision(14); //14 for double, TBD TBC: adapt to epsilon
//loop on monoms (map order)
for ( typename MONOM_MAP::const_iterator it = getMonoms().begin(); it != getMonoms().end() ; ++it )
{
T coeff = it->second;
if (coeff>0)
{
os<<"+";
}
os<<coeff;
for(int d=0;d<DIM;++d)
{
int ord=(it->first)[d];
if (ord>0)
{
os<<""<<symbols[d];
if (ord != 1)
{
os<<ord;
}
}
}
}
}
return os;
}
std::istream& import(std::istream& is) //! note that it can only import for the template type T and dimesnion DIM
{
nullify();
//extract data in brackets [ ]
//swallow bracket
ossimString tempString;
char tempChar;
is.get(tempChar);
if (!is)
{
std::cerr<<"ossimPolynom::import ERROR, cannot read left bracket ["<<std::endl;
return is;
}
if (tempChar != '[')
{
std::cerr<<"ossimPolynom::import ERROR, missing left bracket ["<<std::endl;
return is;
}
const int BUFSIZE=32768; //should be enough fro most apps (TBC TBD : allow loops if not enough)
char buffer[BUFSIZE];
is.getline(buffer, BUFSIZE, ']');
if (!is)
{
std::cerr<<"ossimPolynom::import ERROR, cannot read after left bracket ["<<std::endl;
return is;
}
if (is.gcount() >= BUFSIZE-1)
{
std::cerr<<"ossimPolynom::import ERROR, cannot find right bracket ] after "<<BUFSIZE-1<<"characters"<<std::endl;
return is;
}
tempString = buffer; //no more brackets
//split string using semicolons
std::vector< ossimString > subparts = tempString.explode(";");
//loop on subparts
for (typename std::vector< ossimString >::const_iterator it=subparts.begin() ; it!=subparts.end() ; ++it )
{
ossimString sp = it->trim();
//check for epsilon
ossimString aft_eps=sp.after("eps=");
if (aft_eps.size()>0)
{
//get epsilon value
aft_eps.trim();
theEpsilon = static_cast< T >(aft_eps.toDouble());
} else {
//no epsilon : must be a monom
ossimString scalpart=sp.before("(");
if (scalpart.size() < sp.size())
{
T coeff = static_cast< T >(scalpart.toDouble());
ossimString expopart = ((sp.before(")")).after("(")).trim();
if (expopart.size() == 0)
{
std::cerr<<"ossimPolynom::import ERROR, cannot find ) in monom or empty monom"<<std::endl;
return is;
}
std::vector< ossimString > vexpo = expopart.explode(",");
if (vexpo.size() != DIM)
{
std::cerr<<"ossimPolynom::import ERROR, bad number of exponents in monom (need "<<DIM<<"): "<<vexpo.size()<<std::endl;
return is;
}
//store all exponents
EXP_TUPLE expt(DIM);
int d;
std::vector< ossimString >::const_iterator eit;
for (eit=vexpo.begin() , d=0 ; eit != vexpo.end() ; ++eit, ++d )
{
expt[d] = eit->toInt(); //TBD : could check that value is integer, but how?
}
//add new monom (if duplicate...error)
if (getMonoms().find(expt) != getMonoms().end())
{
std::cerr<<"ossimPolynom::import ERROR, duplicate exponent tuple in polynom"<<std::endl;
return is;
}
theMonoms[expt] = coeff;
} else {
std::cerr<<"ossimPolynom::import ERROR, cannot find left parenthesis ( in monom "<<std::endl;
return is;
}
}
}
return is;
}
/**
* constructs simple exponent tuples set for using LMSfit
* need order for each dimension
*/
EXPT_SET builExpSet(const EXP_TUPLE& orders)const
{
EXPT_SET eset;
if (orders.size() != DIM)
{
std::cerr<<"ossimPolynom::import ERROR bad dimension for parameter, need "<<DIM<<" elements"<<std::endl;
return eset;
}
//initialise variable exponent tuple
EXP_TUPLE et(DIM);
for(int d=0;d<DIM;++d) et[d]=0;
while (et[0] <= orders[0])
{
//add tuple to set
eset.insert(et);
//increment tuple within bounds
et[DIM-1]++;
for(int d=DIM-1 ; d>=0 ; --d)
{
if ((et[d] > orders[d]) && (d>0))
{
et[d] = 0;
et[d-1]++;
}
}
}
return eset;
}
/**
* concatenate exponents (at the right) to existing tuple set, for a given maximum total order
* eg: with eset={(0,1),(0,0)} ,
* then addExpTuple(2,1,eset) = {(0,1,0,0),(0,1,0,1),(0,1,1,0), (0,0,0,0),(0,0,0,1),(0,0,1,0)}
*/
void addExpTupleRight(int newdim, int totalOrder, EXPT_SET& eset )const
{
EXPT_SET newset;
// add a copy off eset for each order with the specific last dim
for(int o=0; o<=totalOrder ; ++o)
{
EXPT_SET extset; //extended set
if (eset.size()==0)
{
EXP_TUPLE tu(1);
tu[0]=o;
extset.insert(tu);
} else {
//we have to construct a new set from eset, extending dimension
// cause: stored tuples cannot be compared at different dimensions
for(typename EXPT_SET::iterator sit = eset.begin(); sit != eset.end(); ++sit)
{
EXP_TUPLE tu(*sit);
tu.push_back(o);
extset.insert(tu);
}
}
//recursively add remaining dimensions
if (newdim>1)
{
addExpTupleRight(newdim-1, totalOrder-o, extset); //only dimension decreases
}
//add full set for the specific order
newset.insert(extset.begin(), extset.end());
}
eset=newset; //overwrite
}
/**
* fits the polynom to the observations using Least Mean Squares
* returns true on success (can fail if not enough observations)
* + also updates rms error(root mean square)
* NOTES: inputs must have same size and must be ordered the same way
* use builExpSet() to construct classic polynoms
* TODO: add weights to observations
*/
bool
LMSfit(const EXPT_SET& expset,
const std::vector< VAR_TUPLE > obs_input,
const std::vector< T > obs_output,
T* prms = NULL)
{
//init
nullify();
//check size
int nobs = (int)obs_input.size();
if (nobs != (int)obs_output.size())
{
std::cerr<<"ossimPolynom::LMSfit ERROR observation input/output must have the same size"<<std::endl;
return false;
}
if (nobs<=0)
{
std::cerr<<"ossimPolynom::LMSfit ERROR observation count is zero"<<std::endl;
return false;
}
int ncoeff = (int)expset.size();
if (ncoeff<=0)
{
std::cerr<<"ossimPolynom::LMSfit ERROR exponent count is zero"<<std::endl;
return false;
}
//construct LMS linear system (using OSSIM matrices)
// M.k = v
// M : monom matrix
// k : polynbm coefficients
// v : output_obs
NEWMAT::Matrix M(nobs, ncoeff);
double elt;
int p;
typename EXPT_SET::const_iterator cit;
typename std::vector< VAR_TUPLE >::const_iterator oit;
int i,j;
for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
{
for(oit=obs_input.begin(), i=1; oit!=obs_input.end();++oit, ++i) //loop on observations
{
//compute powers using observation position
elt=1.0;
for(int d=0;d<DIM;++d)
{
p = (*cit)[d];
if (p != 0)
{
elt *= std::pow( (*oit)[d], p );
}
}
//init M
M(i,j) = elt; //NEWMAT indices start at 1
}
}
NEWMAT::ColumnVector v(nobs);
for(int o=0;o<nobs;++o)
{
v(o+1) = obs_output[o];
}
//build LMS symmetric matrix tM.M
//build best fit
NEWMAT::ColumnVector bfit = invert(M.t()*M)*M.t()*v; //TBD : check inversion
//compute RMS (optional, if rms non null)
if (prms!=NULL)
{
NEWMAT::ColumnVector delta = M*bfit - v;
*prms = std::sqrt( delta.SumSquare() / nobs);
}
//init polynom
for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
{
setMonom(*cit, bfit(j));
}
return true;
}
/**
* Standard least squares
* Modified version of LMSfit that uses standard NEWMAT inverse as
* alternative to SVD solution.
*/
bool
SLSfit(const EXPT_SET& expset,
const std::vector< VAR_TUPLE > obs_input,
const std::vector< T > obs_output,
T* prms = NULL)
{
//init
nullify();
//check size
int nobs = (int)obs_input.size();
if (nobs != (int)obs_output.size())
{
std::cerr<<"ossimPolynom::LMSfit ERROR observation input/output must have the same size"<<std::endl;
return false;
}
if (nobs<=0)
{
std::cerr<<"ossimPolynom::LMSfit ERROR observation count is zero"<<std::endl;
return false;
}
int ncoeff = (int)expset.size();
if (ncoeff<=0)
{
std::cerr<<"ossimPolynom::LMSfit ERROR exponent count is zero"<<std::endl;
return false;
}
// M : monom matrix
// k : polynomial coefficients
// v : output_obs
NEWMAT::Matrix M(nobs, ncoeff);
double elt;
int p;
typename EXPT_SET::const_iterator cit;
typename std::vector< VAR_TUPLE >::const_iterator oit;
int i,j;
for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
{
for(oit=obs_input.begin(), i=1; oit!=obs_input.end();++oit, ++i) //loop on observations
{
elt=1.0;
for(int d=0;d<DIM;++d)
{
p = (*cit)[d];
if (p != 0)
{
elt *= std::pow( (*oit)[d], p );
}
}
M(i,j) = elt;
}
}
NEWMAT::ColumnVector v(nobs);
for(int o=0;o<nobs;++o)
{
v(o+1) = obs_output[o];
}
//perform solution
NEWMAT::ColumnVector bfit = (M.t()*M).i()*M.t()*v;
//compute RMS (optional, if rms non null)
if (prms!=NULL)
{
NEWMAT::ColumnVector delta = M*bfit - v;
*prms = std::sqrt( delta.SumSquare() / nobs);
}
//init polynom
for (cit=expset.begin(), j=1; cit != expset.end() ; ++cit, ++j) //loop on exponent tuples
{
setMonom(*cit, bfit(j));
}
return true;
}
protected:
/**
* protected data members
*/
MONOM_MAP theMonoms; //!associate a scalar to each tuple of orders : monom
T theEpsilon; //! positive values below epsilon are considered 0
/**
* method to erase all negligible monoms : user don't need that (automatic)
*/
void
discardNullMonoms()
{
std::vector< typename MONOM_MAP::iterator > erasev; //storage for iterators on elements to erase
for (typename MONOM_MAP::iterator it = theMonoms.begin(); it != theMonoms.end() ; ++it )
{
if (isNegligible(it->second)) erasev.push_back(it);
}
//erase all elements afterwards
for ( typename std::vector< typename MONOM_MAP::iterator >::const_iterator vit = erasev.begin(); vit != erasev.end() ; ++vit )
{
theMonoms.erase(*vit); //*vit is an iterator in theMonoms
}
}
/**
* add value without testing for negligible
*/
void
addMonomQuick(const EXP_TUPLE& m, const T& v)
{
typename MONOM_MAP::iterator it = theMonoms.find(m);
if (it != theMonoms.end())
{
it->second += v;
} else {
theMonoms.insert( MONOM_MAP::value_type(m,v));
}
}
/**
* invert stolen from ossimRpcSolver
*/
NEWMAT::Matrix
invert(const NEWMAT::Matrix& m)const
{
ossim_uint32 idx = 0;
NEWMAT::DiagonalMatrix d;
NEWMAT::Matrix u;
NEWMAT::Matrix v;
// decompose m.t*m which is stored in Temp into the singular values and vectors.
//
NEWMAT::SVD(m, d, u, v, true, true);
// invert the diagonal
// this is just doing the reciprical fo all diagonal components and store back int
// d. ths compute d inverse.
//
for(idx=0; idx < (ossim_uint32)d.Ncols(); ++idx)
{
if(d[idx] > getEpsilon()) //adpated here for epsilon
{
d[idx] = 1.0/d[idx];
}
else
{
d[idx] = 0.0;
}
}
//compute inverse of decomposed m;
return v*d*u.t();
}
}; //class ossimPolynom
/**
* stream operators
*/
template < class T, int DIM > std::ostream&
operator<<(std::ostream& os, const ossimPolynom<T,DIM>& pt)
{
return pt.print(os);
}
template < class T, int DIM > std::istream&
operator>>(std::istream& is, ossimPolynom<T,DIM>& pt)
{
return pt.import(is);
}
#endif
|