This file is indexed.

/usr/include/ossim/base/ossim2dBilinearTransform.h is in libossim-dev 1.8.16-4ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#ifndef ossim2dBilinearTransform_HEADER
#define ossim2dBilinearTransform_HEADER
#include <ossim/base/ossim2dTo2dTransform.h>
#include <algorithm>
/**
 * ossim2dBilinearTransform allows one to specify a set of input points and output points
 * and will fit a bilinear transform to those points.  Function of the form is solved for each  
 * output dimension.
 *
 * z(x,y) = a + b*x + c*y + d*x*y
 *
 * We use the ossimLeastSquareBilin solver to solve for the coefficients.
 *
 */
class OSSIM_DLL ossim2dBilinearTransform : public ossim2dTo2dTransform
{
public: 
   /**
    * Initialize to the identity
    */
   ossim2dBilinearTransform();
   
   /**
    * Initialize the transform that best fits the input and output arrays.  
    * If the input and output are well dispersed and are 4 points it should fit
    * exactly.  Both arrays should be of equal number of points
    *
    * @param input the list of input points
    * @param output the list of output points to transform the input to
    * @param arraySize the number of points for the arrays.
    */
   ossim2dBilinearTransform(const ossimDpt* input,
                            const ossimDpt* output, 
                            ossim_uint32 arraySize)
   {
      setFromPoints(input, output, arraySize);
   }
   
   /**
    * Mapping 4 corners to an output 4 corners.
    *
    */
   ossim2dBilinearTransform(const ossimDpt& in1, const ossimDpt& in2, const ossimDpt& in3, const ossimDpt& in4,
                            const ossimDpt& out1, const ossimDpt& out2, const ossimDpt& out3, const ossimDpt& out4)
   {
      setFromPoints(in1, in2, in3, in4, out1, out2, out3, out4);
   }
   
   /**
    * Copy constructor
    */
   ossim2dBilinearTransform(const ossim2dBilinearTransform& src);
   
   /**
    * Duplication method that duplicates this object
    */
   virtual ossimObject* dup()const{return new ossim2dBilinearTransform(*this);}
   
   /**
    * Overloaded operator equal that allows for assignment.
    *
    * @param src the src data to copy into this object.  It will call the base classes
    * equal operator.
    */
   const ossim2dBilinearTransform& operator =(const ossim2dBilinearTransform& src)
   {
      if(this == &src) return *this;
      
      ossim2dTo2dTransform::operator =(*this); // call base classes equal operator
      std::copy(src.m_coefficientsXTerm, src.m_coefficientsXTerm+4, m_coefficientsXTerm);
      std::copy(src.m_coefficientsYTerm, src.m_coefficientsYTerm+4, m_coefficientsYTerm);
      std::copy(src.m_inverseCoefficientsXTerm, src.m_inverseCoefficientsXTerm+4, m_inverseCoefficientsXTerm);
      std::copy(src.m_inverseCoefficientsYTerm, src.m_inverseCoefficientsYTerm+4, m_inverseCoefficientsYTerm);
      
      return *this;
   }
   
   /**
    * Mapping 4 corners to an output 4 corners.  Will use the ossimLeastSquareBilin class to solve 
    * the bilinear coefficients that maps the given input points to the output points.
    */
   void setFromPoints(const ossimDpt& in1, const ossimDpt& in2, const ossimDpt& in3, const ossimDpt& in4,
                      const ossimDpt& out1, const ossimDpt& out2, const ossimDpt& out3, const ossimDpt& out4);

   /**
    * Initialize the transform that best fits the input and output arrays.  
    * If the input and output are well dispersed and are 4 points it should fit
    * exactly.  Both arrays should be of equal number of points
    *
    * @param input the list of input points
    * @param output the list of output points to transform the input to
    * @param arraySize the number of points for the arrays.
    */
   void setFromPoints(const ossimDpt* input,
                      const ossimDpt* output, 
                      ossim_uint32 arraySize);
 
   /**
    * forward transform will transform an input point to the output.  
    */
   virtual void forward(const ossimDpt& input,
                        ossimDpt& output) const
   {
      output.x = (m_coefficientsXTerm[0] + 
                  m_coefficientsXTerm[1]*input.x + 
                  m_coefficientsXTerm[2]*input.y + 
                  m_coefficientsXTerm[3]*input.x*input.y);
      output.y = (m_coefficientsYTerm[0] + 
                  m_coefficientsYTerm[1]*input.x + 
                  m_coefficientsYTerm[2]*input.y + 
                  m_coefficientsYTerm[3]*input.x*input.y);
   }
   
   /**
    * forward transform will transform an input point to the output and modify the passed in point
    * to the new value
    */
   virtual void forward(ossimDpt&  modify_this) const
   {
      double saveX = modify_this.x;
      modify_this.x = (m_coefficientsXTerm[0] + 
                       m_coefficientsXTerm[1]*modify_this.x + 
                       m_coefficientsXTerm[2]*modify_this.y + 
                       m_coefficientsXTerm[3]*modify_this.x*modify_this.y);
      modify_this.y = (m_coefficientsYTerm[0] + 
                       m_coefficientsYTerm[1]*saveX + 
                       m_coefficientsYTerm[2]*modify_this.y + 
                       m_coefficientsYTerm[3]*saveX*modify_this.y);
   }
   
   /**
    * Inverts the point back to the original input value.
    */
   virtual void inverse(const ossimDpt& input,
                        ossimDpt&       output) const
   {
      output.x = (m_inverseCoefficientsXTerm[0] + 
                  m_inverseCoefficientsXTerm[1]*input.x + 
                  m_inverseCoefficientsXTerm[2]*input.y + 
                  m_inverseCoefficientsXTerm[3]*input.x*input.y);
      output.y = (m_inverseCoefficientsYTerm[0] + 
                  m_inverseCoefficientsYTerm[1]*input.x + 
                  m_inverseCoefficientsYTerm[2]*input.y + 
                  m_inverseCoefficientsYTerm[3]*input.x*input.y);
   }
   
   /**
    * Inverts the point back to the original input value and modifies the passed in point
    * to the new value.
    */
   virtual void inverse(ossimDpt&  modify_this) const
   {
      double saveX = modify_this.x;
      modify_this.x = (m_inverseCoefficientsXTerm[0] + 
                       m_inverseCoefficientsXTerm[1]*modify_this.x + 
                       m_inverseCoefficientsXTerm[2]*modify_this.y + 
                       m_inverseCoefficientsXTerm[3]*modify_this.x*modify_this.y);
      modify_this.y = (m_inverseCoefficientsYTerm[0] + 
                       m_inverseCoefficientsYTerm[1]*saveX + 
                       m_inverseCoefficientsYTerm[2]*modify_this.y + 
                       m_inverseCoefficientsYTerm[3]*saveX*modify_this.y);
   }
   
   /**
    * Saves the state of this object.
    */
   virtual bool saveState(ossimKeywordlist& kwl,
                          const char* prefix = 0)const;
   
   /**
    * loads the state of this object from a keywordlist.
    */
   virtual bool loadState(const ossimKeywordlist& kwl,
                          const char* prefix = 0);
   
   /**
    * prints the contents of this object.  Will also cal the base classes
    * print method.
    */
   virtual std::ostream& print(std::ostream& out) const
   {
      ossim2dTo2dTransform::print(out);
      out << "xTerm: " << m_coefficientsXTerm[0] << ", " << m_coefficientsXTerm[1] << ", "
          << m_coefficientsXTerm[2] << ", " << m_coefficientsXTerm[3] << "\n";
      out << "yTerm: " << m_coefficientsYTerm[0] << ", " << m_coefficientsYTerm[1] << ", "
          << m_coefficientsYTerm[2] << ", " << m_coefficientsYTerm[3] << "\n";
      
      out << "xInverseTerm: " << m_inverseCoefficientsXTerm[0] << ", " << m_inverseCoefficientsXTerm[1] << ", "
          << m_inverseCoefficientsXTerm[2] << ", " << m_inverseCoefficientsXTerm[3] << "\n";
      out << "yInverseTerm: " << m_inverseCoefficientsYTerm[0] << ", " << m_inverseCoefficientsYTerm[1] << ", "
          << m_inverseCoefficientsYTerm[2] << ", " << m_inverseCoefficientsYTerm[3] << "\n";
      
      return out;
   }
   
protected:
   ossim_float64 m_coefficientsXTerm[4]; // constant, linear x, linear y, cross xy
   ossim_float64 m_coefficientsYTerm[4]; // constant, linear x, linear y, cross xy

   ossim_float64 m_inverseCoefficientsXTerm[4]; // constant, linear x, linear y, cross xy
   ossim_float64 m_inverseCoefficientsYTerm[4]; // constant, linear x, linear y, cross xy
   TYPE_DATA;   
};

#endif