This file is indexed.

/usr/include/kdl/utilities/svd_eigen_Macie.hpp is in liborocos-kdl-dev 1.3.0+dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Copyright  (C)  2008  Ruben Smits <ruben dot smits at mech dot kuleuven dot be>

// Version: 1.0
// Author: Ruben Smits <ruben dot smits at mech dot kuleuven dot be>
// Maintainer: Ruben Smits <ruben dot smits at mech dot kuleuven dot be>
// URL: http://www.orocos.org/kdl

// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.

// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA


//implementation of svd according to (Maciejewski and Klein,1989)
//and (Braun, Ulrey, Maciejewski and Siegel,2002)

/**
 * \file svd_eigen_Macie.hpp
 * provides Maciejewski's implementation for SVD.
 */

#ifndef SVD_BOOST_MACIE
#define SVD_BOOST_MACIE

#include <Eigen/Core>
using namespace Eigen;


namespace KDL
{

	/**
	 * svd_eigen_Macie provides Maciejewski implementation for SVD.
	 *
	 * computes the singular value decomposition of a matrix A, such that
	 * A=U*Sm*V
	 *
	 * (Maciejewski and Klein,1989) and (Braun, Ulrey, Maciejewski and Siegel,2002)
	 *
	 * \param A [INPUT] is an \f$m \times n\f$-matrix, where \f$ m \geq n \f$.
	 * \param S [OUTPUT] is an \f$n\f$-vector, representing the diagonal elements of the diagonal matrix Sm.
	 * \param U [INPUT/OUTPUT] is an \f$m \times m\f$ orthonormal matrix.
	 * \param V [INPUT/OUTPUT] is an \f$n \times n\f$ orthonormal matrix.
	 * \param B [TEMPORARY] is an \f$m \times n\f$ matrix used for temporary storage.
	 * \param tempi [TEMPORARY] is an \f$m\f$ vector used for temporary storage.
	 * \param thresshold [INPUT] Thresshold to determine orthogonality.
	 * \param toggle [INPUT] toggle this boolean variable on each call of this routine.
	 * \return number of sweeps.
	 */
    int svd_eigen_Macie(const MatrixXd& A,MatrixXd& U,VectorXd& S, MatrixXd& V,
                        MatrixXd& B, VectorXd& tempi,
                        double treshold,bool toggle)
    {
        bool rotate = true;
        unsigned int sweeps=0;
        unsigned int rotations=0;
        if(toggle){
            //Calculate B from new A and previous V
            B=A.lazyProduct(V);
            while(rotate){
                rotate=false;
                rotations=0;
                //Perform rotations between columns of B
                for(unsigned int i=0;i<B.cols();i++){
                    for(unsigned int j=i+1;j<B.cols();j++){
                        //calculate plane rotation
                        double p = B.col(i).dot(B.col(j));
                        double qi =B.col(i).dot(B.col(i));
                        double qj = B.col(j).dot(B.col(j));
                        double q=qi-qj;
                        double alpha = pow(p,2.0)/(qi*qj);
                        //if columns are orthogonal with precision
                        //treshold, don't perform rotation and continue
                        if(alpha<treshold)
                            continue;
                        rotations++;
                        double c = sqrt(4*pow(p,2.0)+pow(q,2.0));
                        double cos,sin;
                        if(q>=0){
                            cos=sqrt((c+q)/(2*c));
                            sin=p/(c*cos);
                        }else{
                            if(p<0)
                                sin=-sqrt((c-q)/(2*c));
                            else
                                sin=sqrt((c-q)/(2*c));
                            cos=p/(c*sin);
                        }

                        //Apply plane rotation to columns of B
                        tempi = cos*B.col(i) + sin*B.col(j);
                        B.col(j) = - sin*B.col(i) + cos*B.col(j);
                        B.col(i) = tempi;
                        
                        //Apply plane rotation to columns of V
                        tempi.head(V.rows()) = cos*V.col(i) + sin*V.col(j);
                        V.col(j) = - sin*V.col(i) + cos*V.col(j);
                        V.col(i) = tempi.head(V.rows());

                        rotate=true;
                    }
                }
                //Only calculate new U and S if there were any rotations
                if(rotations!=0){
                    for(unsigned int i=0;i<U.rows();i++) {
                        if(i<B.cols()){
                            double si=sqrt(B.col(i).dot(B.col(i)));
                            if(si==0)
                                U.col(i) = B.col(i);
                            else
                                U.col(i) = B.col(i)/si;
                            S(i)=si;
                        }
                        else
                            U.col(i) = 0*tempi;
                    }
                    sweeps++;
                }
            }
            return sweeps;
        }else{
            //Calculate B from new A and previous U'
            B = U.transpose().lazyProduct(A);
            while(rotate){
                rotate=false;
                rotations=0;
                //Perform rotations between rows of B
                for(unsigned int i=0;i<B.cols();i++){
                    for(unsigned int j=i+1;j<B.cols();j++){
                        //calculate plane rotation
                        double p = B.row(i).dot(B.row(j));
                        double qi = B.row(i).dot(B.row(i));
                        double qj = B.row(j).dot(B.row(j));

                        double q=qi-qj;
                        double alpha = pow(p,2.0)/(qi*qj);
                        //if columns are orthogonal with precision
                        //treshold, don't perform rotation and
                        //continue
                        if(alpha<treshold)
                            continue;
                        rotations++;
                        double c = sqrt(4*pow(p,2.0)+pow(q,2.0));
                        double cos,sin;
                        if(q>=0){
                            cos=sqrt((c+q)/(2*c));
                            sin=p/(c*cos);
                        }else{
                            if(p<0)
                                sin=-sqrt((c-q)/(2*c));
                            else
                                sin=sqrt((c-q)/(2*c));
                            cos=p/(c*sin);
                        }

                        //Apply plane rotation to rows of B
                        tempi.head(B.cols()) =  cos*B.row(i) + sin*B.row(j);
                        B.row(j) =  - sin*B.row(i) + cos*B.row(j);
                        B.row(i) =  tempi.head(B.cols());


                        //Apply plane rotation to rows of U
                        tempi.head(U.rows()) = cos*U.col(i) + sin*U.col(j);
                        U.col(j) = - sin*U.col(i) + cos*U.col(j);
                        U.col(i) = tempi.head(U.rows());

                        rotate=true;
                    }
                }

                //Only calculate new U and S if there were any rotations
                if(rotations!=0){
                    for(unsigned int i=0;i<V.rows();i++) {
                        double si=sqrt(B.row(i).dot(B.row(i)));
                        if(si==0)
                            V.col(i) = B.row(i);
                        else
                            V.col(i) = B.row(i)/si;
                        S(i)=si;
                    }
                    sweeps++;
                }
            }
            return sweeps;
        }
    }


}
#endif