/usr/include/openturns/SymmetricMatrix.hxx is in libopenturns-dev 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 | // -*- C++ -*-
/**
* @file SymmetricMatrix.hxx
* @brief SymmetricMatrix implements the classical mathematical symmetric matrix
*
* Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2012-07-16 10:12:54 +0200 (Mon, 16 Jul 2012)
*/
#ifndef OPENTURNS_SYMMETRICMATRIX_HXX
#define OPENTURNS_SYMMETRICMATRIX_HXX
#include "OTprivate.hxx"
#include "SquareMatrix.hxx"
BEGIN_NAMESPACE_OPENTURNS
class IdentityMatrix;
/**
* @class SymmetricMatrix
*
* SymmetricMatrix implements the classical mathematical square matrix
*/
class OT_API SymmetricMatrix :
public SquareMatrix
{
CLASSNAME;
#ifndef SWIG
friend SymmetricMatrix operator * (const NumericalScalar & s,
const SymmetricMatrix & m);
#endif
public:
/** Default constructor */
SymmetricMatrix();
/** Constructor with implementation */
SymmetricMatrix(const Implementation & i);
/** Constructor with implementation */
SymmetricMatrix(const MatrixImplementation & i);
/** Constructor with size (dim, which is the same for nbRows_ and nbColumns_) */
explicit SymmetricMatrix(const UnsignedInteger dim);
#if 0
/** Constructor from range of external collection */
template <class InputIterator>
SymmetricMatrix(const UnsignedInteger dim,
InputIterator first,
InputIterator last);
#endif
/** Constructor from external collection */
/** If the dimensions of the matrix and of the collection */
/** do not correspond, either the collection is truncated */
/** or the rest of the matrix is filled with zeros */
SymmetricMatrix(const UnsignedInteger dim,
const NumericalScalarCollection & elementsValues);
/** Check if the internal representation is actually symmetric */
void checkSymmetry() const;
/** Test if the matrix is diagonal */
Bool isDiagonal() const;
/** Row extraction */
const Matrix getRow(const UnsignedInteger rowIndex) const;
/** Column extration */
const Matrix getColumn(const UnsignedInteger columnIndex) const;
/** String converter */
String __repr__() const;
String __str__(const String & offset = "") const;
#ifndef SWIG
/** Operator () gives access to the elements of the matrix (to modify these elements) */
/** The element of the matrix is designated by its row number i and its column number j */
NumericalScalar & operator () (const UnsignedInteger i,
const UnsignedInteger j);
/** Operator () gives access to the elements of the matrix (read only) */
/** The element of the matrix is designated by its row number i and its column number j */
const NumericalScalar & operator () (const UnsignedInteger i,
const UnsignedInteger j) const;
#endif
/** SymmetricMatrix transpose */
SymmetricMatrix transpose () const;
/** SymmetricMatrix addition (must have the same dimensions) */
Matrix operator + (const Matrix & m) const;
SquareMatrix operator + (const SquareMatrix & m) const;
SymmetricMatrix operator + (const SymmetricMatrix & m) const;
/** SymmetricMatrix substraction (must have the same dimensions) */
Matrix operator - (const Matrix & m) const;
SquareMatrix operator - (const SquareMatrix & m) const;
SymmetricMatrix operator - (const SymmetricMatrix & m) const;
/** SymmetricMatrix multiplications (must have consistent dimensions) */
Matrix operator * (const Matrix & m) const;
SquareMatrix operator * (const SquareMatrix & m) const;
SquareMatrix operator * (const SymmetricMatrix & m) const;
SymmetricMatrix operator * (const IdentityMatrix & m) const;
/** SymmetricMatrix integer power */
SymmetricMatrix power(const UnsignedInteger n) const;
/** Multiplication with a NumericalPoint (must have consistent dimensions) */
NumericalPoint operator * (const NumericalPoint & p) const;
/** Multiplication with a NumericalScalar */
SymmetricMatrix operator * (const NumericalScalar & s) const;
/** Division by a NumericalScalar*/
SymmetricMatrix operator / (const NumericalScalar & s) const;
/** Resolution of a linear system */
NumericalPoint solveLinearSystem(const NumericalPoint & b,
const Bool keepIntact = true);
Matrix solveLinearSystem(const Matrix & b,
const Bool keepIntact = true);
/** Compute determinant */
NumericalScalar computeLogAbsoluteDeterminant(NumericalScalar & sign,
const Bool keepIntact = true);
NumericalScalar computeDeterminant(const Bool keepIntact = true);
/** Compute eigenvalues */
NumericalPoint computeEigenValues(const Bool keepIntact = true);
NumericalPoint computeEV(SquareMatrix & v,
const Bool keepIntact = true);
protected:
private:
/** Check if one needs to symmetrized the internal representation of the matrix */
mutable Bool hasBeenSymmetrized_;
}; /* class SymmetricMatrix */
inline SymmetricMatrix operator * (const NumericalScalar & s,
const SymmetricMatrix & m)
{
return m.operator * (s);
}
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_MATRIX_HXX */
|