/usr/include/openturns/SpecFunc.hxx is in libopenturns-dev 1.5-7build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | // -*- C++ -*-
/**
* @file SpecFunc.hxx
* @brief OpenTURNS wrapper to a library of special functions
*
* Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* along with this library. If not, see <http://www.gnu.org/licenses/>.
*
* @author schueller
* @date 2012-07-16 10:12:54 +0200 (Mon, 16 Jul 2012)
*/
#ifndef OPENTURNS_SPECFUNC_HXX
#define OPENTURNS_SPECFUNC_HXX
#include "OTprivate.hxx"
/* Many mathematical functions lack on Windows when using
Microsoft or Intel compilers. We use Boost to define
them here, so that these definitions are not duplicated
across many files. */
#ifdef _MSC_VER
#include <boost/math/special_functions.hpp>
#include <boost/numeric/conversion/converter_policies.hpp>
using boost::math::asinh;
using boost::math::acosh;
using boost::math::atanh;
using boost::math::cbrt;
using boost::math::erf;
using boost::math::erfc;
using boost::math::lgamma;
using boost::math::tgamma;
using boost::math::log1p;
using boost::math::expm1;
using boost::math::trunc;
using boost::math::round;
/* log2 is not defined */
static inline double log2(double x)
{
return log(x) / log(2.);
}
/* rint is not defined */
static inline double rint(double x)
{
return boost::numeric::RoundEven<double>::nearbyint(x);
}
/* nearbyint is not defined */
static inline double nearbyint(double x)
{
return boost::numeric::RoundEven<double>::nearbyint(x);
}
#endif /* _MSC_VER */
BEGIN_NAMESPACE_OPENTURNS
class OT_API SpecFunc
{
public:
// 0.39894228040143267 = 1 / sqrt(2.pi)
static const NumericalScalar ISQRT2PI;
// 2.5066282746310005024 = sqrt(2.pi)
static const NumericalScalar SQRT2PI;
// 0.91893853320467274177 = log(sqrt(2.pi))
static const NumericalScalar LOGSQRT2PI;
// 0.57721566490153286 = Euler constant gamma
static const NumericalScalar EulerConstant;
// 1.64493406684822643 = pi^2 / 6
static const NumericalScalar PI2_6;
// 1.28254983016118640 = pi / sqrt(6)
static const NumericalScalar PI_SQRT6;
// 0.45005320754569466 = gamma * sqrt(6) / pi
static const NumericalScalar EULERSQRT6_PI;
// 3.28986813369645287 = pi^2 / 3
static const NumericalScalar PI2_3;
// 0.55132889542179204 = sqrt(3) / pi
static const NumericalScalar SQRT3_PI;
// 1.81379936423421785 = pi / sqrt(3)
static const NumericalScalar PI_SQRT3;
// 1.20205690315959429 = Zeta(3)
static const NumericalScalar ZETA3;
// Maximum number of iterations for algorithms
static const UnsignedInteger MaximumIteration;
// Maximum precision for algorithms
static const NumericalScalar Precision;
// Minimum positive real number
static const NumericalScalar MinNumericalScalar;
static const NumericalScalar LogMinNumericalScalar;
// Maximum positive real number
static const NumericalScalar MaxNumericalScalar;
static const NumericalScalar LogMaxNumericalScalar;
// Real number accuracy
static const NumericalScalar NumericalScalarEpsilon;
// Some facilities for NaN and inf
static Bool IsNaN(const NumericalScalar value);
static Bool IsInf(const NumericalScalar value);
static Bool IsNormal(const NumericalScalar value);
// Modified first kind Bessel function of order 0: BesselI0(x) = \sum_{m=0}\infty\frac{1}{m!^2}\left(\frac{x}{2}\right)^{2m}
private:
static NumericalScalar SmallCaseBesselI0(const NumericalScalar x);
static NumericalScalar LargeCaseLogBesselI0(const NumericalScalar x);
public:
static NumericalScalar BesselI0(const NumericalScalar x);
static NumericalScalar LogBesselI0(const NumericalScalar x);
// Modified first kind Bessel function of order 1: BesselI1(x) = \sum_{m=0}\infty\frac{1}{m!(m+1)!}\left(\frac{x}{2}\right)^{2m+1}
private:
static NumericalScalar SmallCaseBesselI1(const NumericalScalar x);
static NumericalScalar LargeCaseLogBesselI1(const NumericalScalar x);
public:
static NumericalScalar BesselI1(const NumericalScalar x);
static NumericalScalar LogBesselI1(const NumericalScalar x);
// Difference between the logarithms of BesselI1 and BesselI0:
// DeltaLogBesselI10(x) = log(BesselI1(x)) - log(BesselI0(x))
static NumericalScalar LargeCaseDeltaLogBesselI10(const NumericalScalar x);
static NumericalScalar DeltaLogBesselI10(const NumericalScalar x);
// Modified second kind Bessel function of order nu: BesselK(nu, x)=\frac{\pi}{2}\frac{I_{-\nu}(x)-I_[\nu}(x)}{\sin{\nu\pi}}
static NumericalScalar LogBesselK(const NumericalScalar nu,
const NumericalScalar x);
static NumericalScalar BesselK(const NumericalScalar nu,
const NumericalScalar x);
static NumericalScalar BesselKDerivative(const NumericalScalar nu,
const NumericalScalar x);
// Beta function: beta(a, b) = \int_0^1 t^{a-1}.(1-t)^{b-1} dt
static NumericalScalar Beta(const NumericalScalar a,
const NumericalScalar b);
// Incomplete beta function: betaInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt
static NumericalScalar IncompleteBeta(const NumericalScalar a,
const NumericalScalar b,
const NumericalScalar x,
const Bool tail = false);
// Incomplete beta function inverse with respect to x
static NumericalScalar IncompleteBetaInverse(const NumericalScalar a,
const NumericalScalar b,
const NumericalScalar x,
const Bool tail = false);
// Incomplete beta ratio function: betaRatioInc(a, b, x) = \int_0^x t^{a-1}.(1-t)^{b-1} dt / beta(a, b)
static NumericalScalar RegularizedIncompleteBeta(const NumericalScalar a,
const NumericalScalar b,
const NumericalScalar x,
const Bool tail = false);
// Incomplete beta ratio function inverse with respect to x
static NumericalScalar RegularizedIncompleteBetaInverse(const NumericalScalar a,
const NumericalScalar b,
const NumericalScalar x,
const Bool tail = false);
// Natural logarithm of the beta function
static NumericalScalar LnBeta(const NumericalScalar a,
const NumericalScalar b);
static NumericalScalar LogBeta(const NumericalScalar a,
const NumericalScalar b);
// Dawson function: Dawson(x) = \exp(-x^2) * \int_0^x \exp(t^2) dt
static NumericalScalar Dawson(const NumericalScalar x);
static NumericalComplex Dawson(const NumericalComplex & z);
// Debye function of order n: DebyeN(x, n) = n / x^n \int_0^x t^n/(\exp(t)-1) dt
static NumericalScalar Debye(const NumericalScalar x,
const UnsignedInteger n);
// DiLog function: Dilog(x) = -\int_0^x \log(1-t)/t dt
static NumericalScalar DiLog(const NumericalScalar x);
// Complex Faddeeva function: Faddeeva(z) = exp(-z^2)\erfc(-I*z)
static NumericalComplex Faddeeva(const NumericalComplex & z);
// Imaginary part of the Faddeeva function: FaddeevaIm(z) = Im(Faddeeva(x))
static NumericalScalar FaddeevaIm(const NumericalScalar x);
// Gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
static NumericalScalar Gamma(const NumericalScalar a);
// igamma1pm1(a) = 1 / gamma(1 + a) - 1
static NumericalScalar IGamma1pm1(const NumericalScalar a);
// GammaCorrection(a) = LogGamma(a) - log(sqrt(2.Pi)) + a - (a - 1/2) log(a)
static NumericalScalar GammaCorrection(const NumericalScalar a);
// Complex gamma function: gamma(a) = \int_0^{\infty} t^{a-1}\exp(-t) dt
static NumericalComplex Gamma(const NumericalComplex & a);
// Natural logarithm of the gamma function
static NumericalScalar LnGamma(const NumericalScalar a);
static NumericalScalar LogGamma(const NumericalScalar a);
static NumericalScalar LogGamma1p(const NumericalScalar a);
static NumericalComplex LogGamma(const NumericalComplex & a);
// Incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt
static NumericalScalar IncompleteGamma(const NumericalScalar a,
const NumericalScalar x,
const Bool tail = false);
// Incomplete gamma function inverse with respect to x
static NumericalScalar IncompleteGammaInverse(const NumericalScalar a,
const NumericalScalar x,
const Bool tail = false);
// Regularized incomplete gamma function: gamma(a, x) = \int_0^x t^{a-1}\exp(-t) dt / \Gamma(a)
static NumericalScalar RegularizedIncompleteGamma(const NumericalScalar a,
const NumericalScalar x,
const Bool tail = false);
// Regularized incomplete gamma function inverse with respect to x
static NumericalScalar RegularizedIncompleteGammaInverse(const NumericalScalar a,
const NumericalScalar x,
const Bool tail = false);
// Digamma function: psi(x) = ((dgamma/dx) / gamma)(x)
static NumericalScalar DiGamma(const NumericalScalar x);
static NumericalScalar Psi(const NumericalScalar x);
// Inverse of the DiGamma function
static NumericalScalar DiGammaInv(const NumericalScalar a);
// Trigamma function: TriGamma(x) = ((d^2gamma/dx^2) / gamma)(x)
static NumericalScalar TriGamma(const NumericalScalar x);
// Hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
static NumericalScalar HyperGeom_1_1(const NumericalScalar p1,
const NumericalScalar q1,
const NumericalScalar x);
// Complex hypergeometric function of type (1,1): hyperGeom_1_1(p1, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) / (q1 + k)] * x^n / n!
static NumericalComplex HyperGeom_1_1(const NumericalScalar p1,
const NumericalScalar q1,
const NumericalComplex & x);
// Hypergeometric function of type (2,1): hyperGeom_2_1(p1, p2, q1, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k)] * x^n / n!
static NumericalScalar HyperGeom_2_1(const NumericalScalar p1,
const NumericalScalar p2,
const NumericalScalar q1,
const NumericalScalar x);
// Hypergeometric function of type (2,2): hyperGeom_2_1(p1, p2, q1, q2, x) = \sum_{n=0}^{\infty} [\prod_{k=0}^{n-1} (p1 + k) . (p2 + k) / (q1 + k) / (q2 + k)] * x^n / n!
static NumericalScalar HyperGeom_2_2(const NumericalScalar p1,
const NumericalScalar p2,
const NumericalScalar q1,
const NumericalScalar q2,
const NumericalScalar x);
// Erf function erf(x) = 2 / \sqrt(\pi) . \int_0^x \exp(-t^2) dt
static NumericalScalar Erf(const NumericalScalar x);
static NumericalComplex Erf(const NumericalComplex & z);
// Erf function erfi(x) = -i.erf(iz)
static NumericalScalar ErfI(const NumericalScalar x);
static NumericalComplex ErfI(const NumericalComplex & z);
// Erf function erfc(x) = 1 - erf(x)
static NumericalScalar ErfC(const NumericalScalar x);
static NumericalComplex ErfC(const NumericalComplex & z);
// Erf function erfcx(x) = exp(x^2).erfc(x)
static NumericalScalar ErfCX(const NumericalScalar x);
static NumericalComplex ErfCX(const NumericalComplex & z);
// Inverse of the erf function
static NumericalScalar ErfInverse(const NumericalScalar x);
// Real branch of Lambert W function (principal or secndary)
static NumericalScalar LambertW(const NumericalScalar x,
const Bool principal = true);
// Accurate value of log(1+z) for |z|<<1
static NumericalComplex Log1p(const NumericalComplex & z);
// Accurate value of exp(z)-1 for |z|<<1
static NumericalComplex Expm1(const NumericalComplex & z);
// Accurate value of log(1-exp(-x)) for all x
static NumericalComplex Log1MExp(const NumericalScalar x);
// MarcumQ- function
// static NumericalScalar MarcumQFunction(const NumericalScalar a,const NumericalScalar b);
// Next power of two
static UnsignedInteger NextPowerOfTwo(const UnsignedInteger n);
// Missing functions in cmath wrt math.h as of C++98
static NumericalScalar Acosh(const NumericalScalar x);
static NumericalScalar Asinh(const NumericalScalar x);
static NumericalScalar Atanh(const NumericalScalar x);
static NumericalScalar Cbrt(const NumericalScalar x);
}; /* class SpecFunc */
END_NAMESPACE_OPENTURNS
#endif /* OPENTURNS_SPECFUNC_HXX */
|