This file is indexed.

/usr/include/openturns/Matrix.hxx is in libopenturns-dev 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
//                                               -*- C++ -*-
/**
 *  @file  Matrix.hxx
 *  @brief Matrix implements the classical mathematical matrix
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-07-16 10:12:54 +0200 (Mon, 16 Jul 2012)
 */
#ifndef OPENTURNS_MATRIX_HXX
#define OPENTURNS_MATRIX_HXX

#include "MatrixImplementation.hxx"
#include "TypedInterfaceObject.hxx"

BEGIN_NAMESPACE_OPENTURNS


class CovarianceMatrix;
class IdentityMatrix;
class SquareMatrix;
class SymmetricMatrix;

/**
 * @class Matrix
 *
 * Matrix implements the classical mathematical matrix
 */

class OT_API Matrix :
  public TypedInterfaceObject<MatrixImplementation>
{
  CLASSNAME;

#ifndef SWIG
  /** Declaration of friend operators */
  friend Matrix operator * (const NumericalScalar s,
                            const Matrix & m);
#endif


public:

  typedef Collection<NumericalScalar>       NumericalScalarCollection;
  typedef Collection<NumericalComplex>      NumericalComplexCollection;

  /** Default constructor */
  Matrix();

  /** Constructor with implementation */
  Matrix(const Implementation & i);

  /** Constructor with implementation */
  Matrix(const MatrixImplementation & i);

  /** Constructor with size (rowDim and colDim) */
  Matrix(const UnsignedInteger rowDim,
         const UnsignedInteger colDim);

  /** Constructor from range of external collection */
  template <class InputIterator>
  Matrix(const UnsignedInteger rowDim,
         const UnsignedInteger colDim,
         const InputIterator first,
         const InputIterator last);

  /** Constructor from external collection */
  /** If the dimensions of the matrix and of the collection */
  /** do not correspond, either the collection is truncated */
  /** or the rest of the matrix is filled with zeros */
  Matrix(const UnsignedInteger rowDim,
         const UnsignedInteger colDim,
         const NumericalScalarCollection & elementsValues);

  /** Set small elements to zero */
  virtual Matrix clean(const NumericalScalar threshold) const;

  /** String converter */
  virtual String __repr__() const;
  virtual String __str__(const String & offset = "") const;

#ifndef SWIG
  /** Operator () gives access to the elements of the matrix (to modify these elements) */
  /** The element of the matrix is designated by its row number i and its column number j */
  NumericalScalar & operator () (const UnsignedInteger i,
                                 const UnsignedInteger j);

  /** Operator () gives access to the elements of the matrix (read only) */
  /** The element of the matrix is designated by its row number i and its column number j */
  const NumericalScalar & operator () (const UnsignedInteger i,
                                       const UnsignedInteger j) const;
#endif

  /** Get the dimensions of the matrix */
  /** Number of rows */
  UnsignedInteger getNbRows() const;
  /** Number of columns */
  UnsignedInteger getNbColumns() const;

  /** Matrix transpose */
  Matrix transpose () const;

  /** Row extraction */
  const Matrix getRow(const UnsignedInteger rowIndex) const;
  /** Column extration */
  const Matrix getColumn(const UnsignedInteger columnIndex) const;

  /** Matrix additions (must have the same dimensions) */
  Matrix operator + (const Matrix & m) const;
  Matrix operator + (const SymmetricMatrix & m) const;

  /** Matrix substractions (must have the same dimensions) */
  Matrix operator - (const Matrix & m) const;
  Matrix operator - (const SymmetricMatrix & m) const;

  /** Matrix multiplications (must have consistent dimensions) */
  Matrix operator * (const Matrix & m) const;
  Matrix operator * (const SymmetricMatrix & m) const;
  Matrix operator * (const IdentityMatrix & m) const;

  /** Multiplication with a NumericalPoint (must have consistent dimensions) */
  NumericalPoint operator * (const NumericalPoint & pt) const;

  /** Multiplication with a NumericalScalar */
  Matrix operator * (const NumericalScalar s) const;

  /** Division by a NumericalScalar*/
  Matrix operator / (const NumericalScalar s) const;

  /** Resolution of a linear system */
  NumericalPoint solveLinearSystem(const NumericalPoint & b,
                                   const Bool keepIntact = true);
  Matrix solveLinearSystem(const Matrix & b,
                           const Bool keepIntact = true);

  /** Compute singular values */
  NumericalPoint computeSingularValues(const Bool keepIntact = true);

  NumericalPoint computeSVD(Matrix & u,
                            Matrix & vT,
                            const Bool fullSVD = false,
                            const Bool keepIntact = true);

  /** Build the QR factorization of the matrix */
  virtual Matrix computeQR(Matrix & R,
                           const Bool fullQR = false,
                           const Bool keepIntact = true);

  /** Compute the associated Gram matrix */
  virtual CovarianceMatrix computeGram(const Bool transpose = true) const;

  /** Comparison operators */
  Bool operator == (const Matrix & rhs) const;

  /** Empty returns true if there is no element in the matrix */
  Bool isEmpty() const;

  // These functions are only intended to be used by SWIG, DO NOT use them for your own purpose !
  // INTENTIONALY NOT DOCUMENTED
  const NumericalScalar * __baseaddress__ () const;
  UnsignedInteger __elementsize__ () const;
  UnsignedInteger __stride__ (UnsignedInteger dim) const;

}; /* class Matrix */

/** Declaration of friend operators */
inline Matrix operator * (const NumericalScalar s,
                          const Matrix & m)
{
  return m.operator * (s);
}


/** Constructor from range of external collection */
template <class InputIterator>
Matrix::Matrix(const UnsignedInteger rowDim,
               const UnsignedInteger colDim,
               const InputIterator first,
               const InputIterator last)
  : TypedInterfaceObject<MatrixImplementation>(new MatrixImplementation(rowDim, colDim, first, last))
{
  // Nothing to do
}

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_MATRIX_HXX */