This file is indexed.

/usr/include/openturns/DistFunc.hxx is in libopenturns-dev 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
//                                               -*- C++ -*-
/**
 *  @file  DistFunc.hxx
 *  @brief OpenTURNS wrapper to a library of special functions
 *
 *  Copyright 2005-2015 Airbus-EDF-IMACS-Phimeca
 *
 *  This library is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU Lesser General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  along with this library.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  @author schueller
 *  @date   2012-07-16 12:24:33 +0200 (Mon, 16 Jul 2012)
 */
#ifndef OPENTURNS_DISTFUNC_HXX
#define OPENTURNS_DISTFUNC_HXX

#include "OTprivate.hxx"
#include "ResourceMap.hxx"
#include "NumericalPoint.hxx"

BEGIN_NAMESPACE_OPENTURNS

class OT_API DistFunc
{
public:
  static const UnsignedInteger NumberOfBandNormalZigurrat;
  static const NumericalScalar NormalZigguratTail;
  // The array NormalZigguratAbscissa stores the abscissas of the bands:
  // the ith band is [NormalZigguratAbscissa[0], NormalZigguratAbscissa[i+1]] with
  // NormalZigguratAbscissa[0] = 0.0 and
  // NormalZigguratAbscissa[NumberOfBandNormalZigurrat] = NormalZigguratTail
  static const NumericalScalar NormalZigguratAbscissa[];
  // The array NormalZigguratRatio stores the ratio between a band and the next one,
  // starting from the smallest one:
  // NormalZigguratRatio[i] = NormalZigguratAbscissa[i] / NormalZigguratAbscissa[i+1]
  static const NumericalScalar NormalZigguratRatio[];

  // For Beta distribution. WARNING: here we adopt the classical definition
  // If tail=false, compute P(X<=x), else P(X>x)
  static NumericalScalar pBeta(const NumericalScalar p1,
                               const NumericalScalar p2,
                               const NumericalScalar x,
                               const Bool tail = false);
  // If tail=false, compute x such that P(X<=x)=q, else x such that P(X>x)=q
  static NumericalScalar qBeta(const NumericalScalar p1,
                               const NumericalScalar p2,
                               const NumericalScalar p,
                               const Bool tail = false);
  static NumericalScalar rBeta(const NumericalScalar p1,
                               const NumericalScalar p2);
  // For the Binomial distribution
private:
  static NumericalScalar fcBinomial(const UnsignedInteger k);

public:
  static UnsignedInteger rBinomial(const UnsignedInteger n,
                                   const NumericalScalar p);
  // For Gamma distribution
  static NumericalScalar pGamma(const NumericalScalar k,
                                const NumericalScalar x,
                                const Bool tail = false);
  static NumericalScalar qGamma(const NumericalScalar k,
                                const NumericalScalar p,
                                const Bool tail = false);
  static NumericalScalar rGamma(const NumericalScalar k);
  // For Kolmogorov distribution
  static NumericalScalar pKolmogorov(const UnsignedInteger n,
                                     const NumericalScalar x,
                                     const Bool tail = false);

  // For NonCentralChiSquare distribution
  static NumericalScalar dNonCentralChiSquare(const NumericalScalar nu,
      const NumericalScalar lambda,
      const NumericalScalar x,
      const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistFunc-Precision"),
      const UnsignedInteger maximumIteration = ResourceMap::GetAsNumericalScalar("DistFunc-MaximumIteration"));
  static NumericalScalar pNonCentralChiSquare(const NumericalScalar nu,
      const NumericalScalar lambda,
      const NumericalScalar x,
      const Bool tail = false,
      const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistFunc-Precision"),
      const UnsignedInteger maximumIteration = ResourceMap::GetAsNumericalScalar("DistFunc-MaximumIteration"));
  static NumericalScalar rNonCentralChiSquare(const NumericalScalar nu,
      const NumericalScalar lambda);
  // For NonCentralStudent distribution
  static NumericalScalar dNonCentralStudent(const NumericalScalar nu,
      const NumericalScalar delta,
      const NumericalScalar x);
  static NumericalScalar dNonCentralStudentAlt0(const NumericalScalar nu,
      const NumericalScalar delta,
      const NumericalScalar x,
      const NumericalScalar precision = ResourceMap::GetAsNumericalScalar("DistFunc-Precision"),
      const UnsignedInteger maximumIteration = ResourceMap::GetAsNumericalScalar("DistFunc-MaximumIteration"));
  static NumericalScalar pNonCentralStudent(const NumericalScalar nu,
      const NumericalScalar delta,
      const NumericalScalar x,
      const Bool tail = false);
  static NumericalScalar rNonCentralStudent(const NumericalScalar nu,
      const NumericalScalar delta);
  // For Normal distribution
  static NumericalScalar pNormal(const NumericalScalar x,
                                 const Bool tail = false);
  static NumericalScalar pNormal2D(const NumericalScalar x1,
                                   const NumericalScalar x2,
                                   const NumericalScalar rho,
                                   const Bool tail = false);
  static NumericalScalar pNormal3D(const NumericalScalar x1,
                                   const NumericalScalar x2,
                                   const NumericalScalar x3,
                                   const NumericalScalar rho12,
                                   const NumericalScalar rho13,
                                   const NumericalScalar rho23,
                                   const Bool tail = false);
  static NumericalScalar qNormal(const NumericalScalar p,
                                 const Bool tail = false);
  static NumericalScalar rNormal();
  // For Poisson distribution
  static NumericalScalar qPoisson(const NumericalScalar lambda,
                                  const NumericalScalar p,
                                  const Bool tail = false);
  static NumericalScalar rPoisson(const NumericalScalar lambda);
  // For Student distribution
  static NumericalScalar pStudent(const NumericalScalar nu,
                                  const NumericalScalar x,
                                  const Bool tail = false);
  static NumericalScalar qStudent(const NumericalScalar nu,
                                  const NumericalScalar p,
                                  const Bool tail = false);
  static NumericalScalar rStudent(const NumericalScalar nu);
  static NumericalPoint rUniformTriangle(const NumericalPoint & a,
                                         const NumericalPoint & b,
                                         const NumericalPoint & c);

  // For TruncatedNormal distribution
  //      static NumericalScalar rTruncatedNormal(const NumericalScalar a, const NumericalScalar b);
  // Compute the expectation of the min of n independent standard normal random variables
  static NumericalScalar eZ1(const UnsignedInteger n);

  // Asymptotic distribution of the DickeyFuller distribution
  static NumericalScalar pDickeyFullerTrend(const NumericalScalar x,
      const Bool tail = false);

  static NumericalScalar pDickeyFullerConstant(const NumericalScalar x,
      const Bool tail = false);

  static NumericalScalar pDickeyFullerNoConstant(const NumericalScalar x,
      const Bool tail = false);

  static NumericalScalar qDickeyFullerTrend(const NumericalScalar p,
      const Bool tail = false);

  static NumericalScalar qDickeyFullerConstant(const NumericalScalar p,
      const Bool tail = false);

  static NumericalScalar qDickeyFullerNoConstant(const NumericalScalar p,
      const Bool tail = false);

}; /* class DistFunc */

END_NAMESPACE_OPENTURNS

#endif /* OPENTURNS_DISTFUNC_HXX */