This file is indexed.

/usr/include/opencv2/ocl/ocl.hpp is in libopencv-ocl-dev 2.4.9.1+dfsg-1.5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_OCL_HPP__
#define __OPENCV_OCL_HPP__

#include <memory>
#include <vector>

#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/ml/ml.hpp"

namespace cv
{
    namespace ocl
    {
        enum DeviceType
        {
            CVCL_DEVICE_TYPE_DEFAULT     = (1 << 0),
            CVCL_DEVICE_TYPE_CPU         = (1 << 1),
            CVCL_DEVICE_TYPE_GPU         = (1 << 2),
            CVCL_DEVICE_TYPE_ACCELERATOR = (1 << 3),
            //CVCL_DEVICE_TYPE_CUSTOM      = (1 << 4)
            CVCL_DEVICE_TYPE_ALL         = 0xFFFFFFFF
        };

        enum DevMemRW
        {
            DEVICE_MEM_R_W = 0,
            DEVICE_MEM_R_ONLY,
            DEVICE_MEM_W_ONLY
        };

        enum DevMemType
        {
            DEVICE_MEM_DEFAULT = 0,
            DEVICE_MEM_AHP,         //alloc host pointer
            DEVICE_MEM_UHP,         //use host pointer
            DEVICE_MEM_CHP,         //copy host pointer
            DEVICE_MEM_PM           //persistent memory
        };

        // these classes contain OpenCL runtime information

        struct PlatformInfo;

        struct DeviceInfo
        {
            int _id; // reserved, don't use it

            DeviceType deviceType;
            std::string deviceProfile;
            std::string deviceVersion;
            std::string deviceName;
            std::string deviceVendor;
            int deviceVendorId;
            std::string deviceDriverVersion;
            std::string deviceExtensions;

            size_t maxWorkGroupSize;
            std::vector<size_t> maxWorkItemSizes;
            int maxComputeUnits;
            size_t localMemorySize;
            size_t maxMemAllocSize;

            int deviceVersionMajor;
            int deviceVersionMinor;

            bool haveDoubleSupport;
            bool isUnifiedMemory; // 1 means integrated GPU, otherwise this value is 0
            bool isIntelDevice;

            std::string compilationExtraOptions;

            const PlatformInfo* platform;

            DeviceInfo();
            ~DeviceInfo();
        };

        struct PlatformInfo
        {
            int _id; // reserved, don't use it

            std::string platformProfile;
            std::string platformVersion;
            std::string platformName;
            std::string platformVendor;
            std::string platformExtensons;

            int platformVersionMajor;
            int platformVersionMinor;

            std::vector<const DeviceInfo*> devices;

            PlatformInfo();
            ~PlatformInfo();
        };

        //////////////////////////////// Initialization & Info ////////////////////////
        typedef std::vector<const PlatformInfo*> PlatformsInfo;

        CV_EXPORTS int getOpenCLPlatforms(PlatformsInfo& platforms);

        typedef std::vector<const DeviceInfo*> DevicesInfo;

        CV_EXPORTS int getOpenCLDevices(DevicesInfo& devices, int deviceType = CVCL_DEVICE_TYPE_GPU,
                const PlatformInfo* platform = NULL);

        // set device you want to use
        CV_EXPORTS void setDevice(const DeviceInfo* info);

        // Initialize from OpenCL handles directly.
        // Argument types is (pointers): cl_platform_id*, cl_context*, cl_device_id*
        CV_EXPORTS void initializeContext(void* pClPlatform, void* pClContext, void* pClDevice);

        //////////////////////////////// Error handling ////////////////////////
        CV_EXPORTS void error(const char *error_string, const char *file, const int line, const char *func);

        enum FEATURE_TYPE
        {
            FEATURE_CL_DOUBLE = 1,
            FEATURE_CL_UNIFIED_MEM,
            FEATURE_CL_VER_1_2,
            FEATURE_CL_INTEL_DEVICE
        };

        // Represents OpenCL context, interface
        class CV_EXPORTS Context
        {
        protected:
            Context() { }
            ~Context() { }
        public:
            static Context* getContext();

            bool supportsFeature(FEATURE_TYPE featureType) const;
            const DeviceInfo& getDeviceInfo() const;

            const void* getOpenCLContextPtr() const;
            const void* getOpenCLCommandQueuePtr() const;
            const void* getOpenCLDeviceIDPtr() const;
        };

        inline const void *getClContextPtr()
        {
            return Context::getContext()->getOpenCLContextPtr();
        }

        inline const void *getClCommandQueuePtr()
        {
            return Context::getContext()->getOpenCLCommandQueuePtr();
        }

        CV_EXPORTS bool supportsFeature(FEATURE_TYPE featureType);

        CV_EXPORTS void finish();

        enum BINARY_CACHE_MODE
        {
            CACHE_NONE    = 0,        // do not cache OpenCL binary
            CACHE_DEBUG   = 0x1 << 0, // cache OpenCL binary when built in debug mode
            CACHE_RELEASE = 0x1 << 1, // default behavior, only cache when built in release mode
            CACHE_ALL     = CACHE_DEBUG | CACHE_RELEASE // cache opencl binary
        };
        //! Enable or disable OpenCL program binary caching onto local disk
        // After a program (*.cl files in opencl/ folder) is built at runtime, we allow the
        // compiled OpenCL program to be cached to the path automatically as "path/*.clb"
        // binary file, which will be reused when the OpenCV executable is started again.
        //
        // This feature is enabled by default.
        CV_EXPORTS void setBinaryDiskCache(int mode = CACHE_RELEASE, cv::String path = "./");

        //! set where binary cache to be saved to
        CV_EXPORTS void setBinaryPath(const char *path);

        struct ProgramSource
        {
            const char* name;
            const char* programStr;
            const char* programHash;

            // Cache in memory by name (should be unique). Caching on disk disabled.
            inline ProgramSource(const char* _name, const char* _programStr)
                : name(_name), programStr(_programStr), programHash(NULL)
            {
            }

            // Cache in memory by name (should be unique). Caching on disk uses programHash mark.
            inline ProgramSource(const char* _name, const char* _programStr, const char* _programHash)
                : name(_name), programStr(_programStr), programHash(_programHash)
            {
            }
        };

        //! Calls OpenCL kernel. Pass globalThreads = NULL, and cleanUp = true, to finally clean-up without executing.
        //! Deprecated, will be replaced
        CV_EXPORTS void openCLExecuteKernelInterop(Context *clCxt,
                const cv::ocl::ProgramSource& source, string kernelName,
                size_t globalThreads[3], size_t localThreads[3],
                std::vector< std::pair<size_t, const void *> > &args,
                int channels, int depth, const char *build_options);

        class CV_EXPORTS oclMatExpr;
        //////////////////////////////// oclMat ////////////////////////////////
        class CV_EXPORTS oclMat
        {
        public:
            //! default constructor
            oclMat();
            //! constructs oclMatrix of the specified size and type (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.)
            oclMat(int rows, int cols, int type);
            oclMat(Size size, int type);
            //! constucts oclMatrix and fills it with the specified value _s.
            oclMat(int rows, int cols, int type, const Scalar &s);
            oclMat(Size size, int type, const Scalar &s);
            //! copy constructor
            oclMat(const oclMat &m);

            //! constructor for oclMatrix headers pointing to user-allocated data
            oclMat(int rows, int cols, int type, void *data, size_t step = Mat::AUTO_STEP);
            oclMat(Size size, int type, void *data, size_t step = Mat::AUTO_STEP);

            //! creates a matrix header for a part of the bigger matrix
            oclMat(const oclMat &m, const Range &rowRange, const Range &colRange);
            oclMat(const oclMat &m, const Rect &roi);

            //! builds oclMat from Mat. Perfom blocking upload to device.
            explicit oclMat (const Mat &m);

            //! destructor - calls release()
            ~oclMat();

            //! assignment operators
            oclMat &operator = (const oclMat &m);
            //! assignment operator. Perfom blocking upload to device.
            oclMat &operator = (const Mat &m);
            oclMat &operator = (const oclMatExpr& expr);

            //! pefroms blocking upload data to oclMat.
            void upload(const cv::Mat &m);


            //! downloads data from device to host memory. Blocking calls.
            operator Mat() const;
            void download(cv::Mat &m) const;

            //! convert to _InputArray
            operator _InputArray();

            //! convert to _OutputArray
            operator _OutputArray();

            //! returns a new oclMatrix header for the specified row
            oclMat row(int y) const;
            //! returns a new oclMatrix header for the specified column
            oclMat col(int x) const;
            //! ... for the specified row span
            oclMat rowRange(int startrow, int endrow) const;
            oclMat rowRange(const Range &r) const;
            //! ... for the specified column span
            oclMat colRange(int startcol, int endcol) const;
            oclMat colRange(const Range &r) const;

            //! returns deep copy of the oclMatrix, i.e. the data is copied
            oclMat clone() const;

            //! copies those oclMatrix elements to "m" that are marked with non-zero mask elements.
            // It calls m.create(this->size(), this->type()).
            // It supports any data type
            void copyTo( oclMat &m, const oclMat &mask = oclMat()) const;

            //! converts oclMatrix to another datatype with optional scalng. See cvConvertScale.
            void convertTo( oclMat &m, int rtype, double alpha = 1, double beta = 0 ) const;

            void assignTo( oclMat &m, int type = -1 ) const;

            //! sets every oclMatrix element to s
            oclMat& operator = (const Scalar &s);
            //! sets some of the oclMatrix elements to s, according to the mask
            oclMat& setTo(const Scalar &s, const oclMat &mask = oclMat());
            //! creates alternative oclMatrix header for the same data, with different
            // number of channels and/or different number of rows. see cvReshape.
            oclMat reshape(int cn, int rows = 0) const;

            //! allocates new oclMatrix data unless the oclMatrix already has specified size and type.
            // previous data is unreferenced if needed.
            void create(int rows, int cols, int type);
            void create(Size size, int type);

            //! allocates new oclMatrix with specified device memory type.
            void createEx(int rows, int cols, int type, DevMemRW rw_type, DevMemType mem_type);
            void createEx(Size size, int type, DevMemRW rw_type, DevMemType mem_type);

            //! decreases reference counter;
            // deallocate the data when reference counter reaches 0.
            void release();

            //! swaps with other smart pointer
            void swap(oclMat &mat);

            //! locates oclMatrix header within a parent oclMatrix. See below
            void locateROI( Size &wholeSize, Point &ofs ) const;
            //! moves/resizes the current oclMatrix ROI inside the parent oclMatrix.
            oclMat& adjustROI( int dtop, int dbottom, int dleft, int dright );
            //! extracts a rectangular sub-oclMatrix
            // (this is a generalized form of row, rowRange etc.)
            oclMat operator()( Range rowRange, Range colRange ) const;
            oclMat operator()( const Rect &roi ) const;

            oclMat& operator+=( const oclMat& m );
            oclMat& operator-=( const oclMat& m );
            oclMat& operator*=( const oclMat& m );
            oclMat& operator/=( const oclMat& m );

            //! returns true if the oclMatrix data is continuous
            // (i.e. when there are no gaps between successive rows).
            // similar to CV_IS_oclMat_CONT(cvoclMat->type)
            bool isContinuous() const;
            //! returns element size in bytes,
            // similar to CV_ELEM_SIZE(cvMat->type)
            size_t elemSize() const;
            //! returns the size of element channel in bytes.
            size_t elemSize1() const;
            //! returns element type, similar to CV_MAT_TYPE(cvMat->type)
            int type() const;
            //! returns element type, i.e. 8UC3 returns 8UC4 because in ocl
            //! 3 channels element actually use 4 channel space
            int ocltype() const;
            //! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
            int depth() const;
            //! returns element type, similar to CV_MAT_CN(cvMat->type)
            int channels() const;
            //! returns element type, return 4 for 3 channels element,
            //!becuase 3 channels element actually use 4 channel space
            int oclchannels() const;
            //! returns step/elemSize1()
            size_t step1() const;
            //! returns oclMatrix size:
            // width == number of columns, height == number of rows
            Size size() const;
            //! returns true if oclMatrix data is NULL
            bool empty() const;

            //! matrix transposition
            oclMat t() const;

            /*! includes several bit-fields:
              - the magic signature
              - continuity flag
              - depth
              - number of channels
              */
            int flags;
            //! the number of rows and columns
            int rows, cols;
            //! a distance between successive rows in bytes; includes the gap if any
            size_t step;
            //! pointer to the data(OCL memory object)
            uchar *data;

            //! pointer to the reference counter;
            // when oclMatrix points to user-allocated data, the pointer is NULL
            _Atomic_word *refcount;

            //! helper fields used in locateROI and adjustROI
            //datastart and dataend are not used in current version
            uchar *datastart;
            uchar *dataend;

            //! OpenCL context associated with the oclMat object.
            Context *clCxt; // TODO clCtx
            //add offset for handle ROI, calculated in byte
            int offset;
            //add wholerows and wholecols for the whole matrix, datastart and dataend are no longer used
            int wholerows;
            int wholecols;
        };

        // convert InputArray/OutputArray to oclMat references
        CV_EXPORTS oclMat& getOclMatRef(InputArray src);
        CV_EXPORTS oclMat& getOclMatRef(OutputArray src);

        ///////////////////// mat split and merge /////////////////////////////////
        //! Compose a multi-channel array from several single-channel arrays
        // Support all types
        CV_EXPORTS void merge(const oclMat *src, size_t n, oclMat &dst);
        CV_EXPORTS void merge(const vector<oclMat> &src, oclMat &dst);

        //! Divides multi-channel array into several single-channel arrays
        // Support all types
        CV_EXPORTS void split(const oclMat &src, oclMat *dst);
        CV_EXPORTS void split(const oclMat &src, vector<oclMat> &dst);

        ////////////////////////////// Arithmetics ///////////////////////////////////

        //! adds one matrix to another with scale (dst = src1 * alpha + src2 * beta + gama)
        // supports all data types
        CV_EXPORTS void addWeighted(const oclMat &src1, double  alpha, const oclMat &src2, double beta, double gama, oclMat &dst);

        //! adds one matrix to another (dst = src1 + src2)
        // supports all data types
        CV_EXPORTS void add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        //! adds scalar to a matrix (dst = src1 + s)
        // supports all data types
        CV_EXPORTS void add(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! subtracts one matrix from another (dst = src1 - src2)
        // supports all data types
        CV_EXPORTS void subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        //! subtracts scalar from a matrix (dst = src1 - s)
        // supports all data types
        CV_EXPORTS void subtract(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! computes element-wise product of the two arrays (dst = src1 * scale * src2)
        // supports all data types
        CV_EXPORTS void multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1);
        //! multiplies matrix to a number (dst = scalar * src)
        // supports all data types
        CV_EXPORTS void multiply(double scalar, const oclMat &src, oclMat &dst);

        //! computes element-wise quotient of the two arrays (dst = src1 * scale / src2)
        // supports all data types
        CV_EXPORTS void divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scale = 1);
        //! computes element-wise quotient of the two arrays (dst = scale / src)
        // supports all data types
        CV_EXPORTS void divide(double scale, const oclMat &src1, oclMat &dst);

        //! computes element-wise minimum of the two arrays (dst = min(src1, src2))
        // supports all data types
        CV_EXPORTS void min(const oclMat &src1, const oclMat &src2, oclMat &dst);

        //! computes element-wise maximum of the two arrays (dst = max(src1, src2))
        // supports all data types
        CV_EXPORTS void max(const oclMat &src1, const oclMat &src2, oclMat &dst);

        //! compares elements of two arrays (dst = src1 <cmpop> src2)
        // supports all data types
        CV_EXPORTS void compare(const oclMat &src1, const oclMat &src2, oclMat &dst, int cmpop);

        //! transposes the matrix
        // supports all data types
        CV_EXPORTS void transpose(const oclMat &src, oclMat &dst);

        //! computes element-wise absolute values of an array (dst = abs(src))
        // supports all data types
        CV_EXPORTS void abs(const oclMat &src, oclMat &dst);

        //! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2))
        // supports all data types
        CV_EXPORTS void absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst);
        //! computes element-wise absolute difference of array and scalar (dst = abs(src1 - s))
        // supports all data types
        CV_EXPORTS void absdiff(const oclMat &src1, const Scalar &s, oclMat &dst);

        //! computes mean value and standard deviation of all or selected array elements
        // supports all data types
        CV_EXPORTS void meanStdDev(const oclMat &mtx, Scalar &mean, Scalar &stddev);

        //! computes norm of array
        // supports NORM_INF, NORM_L1, NORM_L2
        // supports all data types
        CV_EXPORTS double norm(const oclMat &src1, int normType = NORM_L2);

        //! computes norm of the difference between two arrays
        // supports NORM_INF, NORM_L1, NORM_L2
        // supports all data types
        CV_EXPORTS double norm(const oclMat &src1, const oclMat &src2, int normType = NORM_L2);

        //! reverses the order of the rows, columns or both in a matrix
        // supports all types
        CV_EXPORTS void flip(const oclMat &src, oclMat &dst, int flipCode);

        //! computes sum of array elements
        // support all types
        CV_EXPORTS Scalar sum(const oclMat &m);
        CV_EXPORTS Scalar absSum(const oclMat &m);
        CV_EXPORTS Scalar sqrSum(const oclMat &m);

        //! finds global minimum and maximum array elements and returns their values
        // support all C1 types
        CV_EXPORTS void minMax(const oclMat &src, double *minVal, double *maxVal = 0, const oclMat &mask = oclMat());

        //! finds global minimum and maximum array elements and returns their values with locations
        // support all C1 types
        CV_EXPORTS void minMaxLoc(const oclMat &src, double *minVal, double *maxVal = 0, Point *minLoc = 0, Point *maxLoc = 0,
                                  const oclMat &mask = oclMat());

        //! counts non-zero array elements
        // support all types
        CV_EXPORTS int countNonZero(const oclMat &src);

        //! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
        // destination array will have the depth type as lut and the same channels number as source
        //It supports 8UC1 8UC4 only
        CV_EXPORTS void LUT(const oclMat &src, const oclMat &lut, oclMat &dst);

        //! only 8UC1 and 256 bins is supported now
        CV_EXPORTS void calcHist(const oclMat &mat_src, oclMat &mat_hist);
        //! only 8UC1 and 256 bins is supported now
        CV_EXPORTS void equalizeHist(const oclMat &mat_src, oclMat &mat_dst);

        //! only 8UC1 is supported now
        CV_EXPORTS Ptr<cv::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8));

        //! bilateralFilter
        // supports 8UC1 8UC4
        CV_EXPORTS void bilateralFilter(const oclMat& src, oclMat& dst, int d, double sigmaColor, double sigmaSpace, int borderType=BORDER_DEFAULT);

        //! Applies an adaptive bilateral filter to the input image
        //  Unlike the usual bilateral filter that uses fixed value for sigmaColor,
        //  the adaptive version calculates the local variance in he ksize neighborhood
        //  and use this as sigmaColor, for the value filtering. However, the local standard deviation is
        //  clamped to the maxSigmaColor.
        //  supports 8UC1, 8UC3
        CV_EXPORTS void adaptiveBilateralFilter(const oclMat& src, oclMat& dst, Size ksize, double sigmaSpace, double maxSigmaColor=20.0, Point anchor = Point(-1, -1), int borderType=BORDER_DEFAULT);

        //! computes exponent of each matrix element (dst = e**src)
        // supports only CV_32FC1, CV_64FC1 type
        CV_EXPORTS void exp(const oclMat &src, oclMat &dst);

        //! computes natural logarithm of absolute value of each matrix element: dst = log(abs(src))
        // supports only CV_32FC1, CV_64FC1 type
        CV_EXPORTS void log(const oclMat &src, oclMat &dst);

        //! computes magnitude of each (x(i), y(i)) vector
        // supports only CV_32F, CV_64F type
        CV_EXPORTS void magnitude(const oclMat &x, const oclMat &y, oclMat &magnitude);

        //! computes angle (angle(i)) of each (x(i), y(i)) vector
        // supports only CV_32F, CV_64F type
        CV_EXPORTS void phase(const oclMat &x, const oclMat &y, oclMat &angle, bool angleInDegrees = false);

        //! the function raises every element of tne input array to p
        // support only CV_32F, CV_64F type
        CV_EXPORTS void pow(const oclMat &x, double p, oclMat &y);

        //! converts Cartesian coordinates to polar
        // supports only CV_32F CV_64F type
        CV_EXPORTS void cartToPolar(const oclMat &x, const oclMat &y, oclMat &magnitude, oclMat &angle, bool angleInDegrees = false);

        //! converts polar coordinates to Cartesian
        // supports only CV_32F CV_64F type
        CV_EXPORTS void polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees = false);

        //! perfroms per-elements bit-wise inversion
        // supports all types
        CV_EXPORTS void bitwise_not(const oclMat &src, oclMat &dst);

        //! calculates per-element bit-wise disjunction of two arrays
        // supports all types
        CV_EXPORTS void bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        CV_EXPORTS void bitwise_or(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! calculates per-element bit-wise conjunction of two arrays
        // supports all types
        CV_EXPORTS void bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        CV_EXPORTS void bitwise_and(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! calculates per-element bit-wise "exclusive or" operation
        // supports all types
        CV_EXPORTS void bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask = oclMat());
        CV_EXPORTS void bitwise_xor(const oclMat &src1, const Scalar &s, oclMat &dst, const oclMat &mask = oclMat());

        //! Logical operators
        CV_EXPORTS oclMat operator ~ (const oclMat &);
        CV_EXPORTS oclMat operator | (const oclMat &, const oclMat &);
        CV_EXPORTS oclMat operator & (const oclMat &, const oclMat &);
        CV_EXPORTS oclMat operator ^ (const oclMat &, const oclMat &);


        //! Mathematics operators
        CV_EXPORTS oclMatExpr operator + (const oclMat &src1, const oclMat &src2);
        CV_EXPORTS oclMatExpr operator - (const oclMat &src1, const oclMat &src2);
        CV_EXPORTS oclMatExpr operator * (const oclMat &src1, const oclMat &src2);
        CV_EXPORTS oclMatExpr operator / (const oclMat &src1, const oclMat &src2);

        //! computes convolution of two images
        // support only CV_32FC1 type
        CV_EXPORTS void convolve(const oclMat &image, const oclMat &temp1, oclMat &result);

        CV_EXPORTS void cvtColor(const oclMat &src, oclMat &dst, int code, int dcn = 0);

        //! initializes a scaled identity matrix
        CV_EXPORTS void setIdentity(oclMat& src, const Scalar & val = Scalar(1));

        //! fills the output array with repeated copies of the input array
        CV_EXPORTS void repeat(const oclMat & src, int ny, int nx, oclMat & dst);

        //////////////////////////////// Filter Engine ////////////////////////////////

        /*!
          The Base Class for 1D or Row-wise Filters

          This is the base class for linear or non-linear filters that process 1D data.
          In particular, such filters are used for the "horizontal" filtering parts in separable filters.
          */
        class CV_EXPORTS BaseRowFilter_GPU
        {
        public:
            BaseRowFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
            virtual ~BaseRowFilter_GPU() {}
            virtual void operator()(const oclMat &src, oclMat &dst) = 0;
            int ksize, anchor, bordertype;
        };

        /*!
          The Base Class for Column-wise Filters

          This is the base class for linear or non-linear filters that process columns of 2D arrays.
          Such filters are used for the "vertical" filtering parts in separable filters.
          */
        class CV_EXPORTS BaseColumnFilter_GPU
        {
        public:
            BaseColumnFilter_GPU(int ksize_, int anchor_, int bordertype_) : ksize(ksize_), anchor(anchor_), bordertype(bordertype_) {}
            virtual ~BaseColumnFilter_GPU() {}
            virtual void operator()(const oclMat &src, oclMat &dst) = 0;
            int ksize, anchor, bordertype;
        };

        /*!
          The Base Class for Non-Separable 2D Filters.

          This is the base class for linear or non-linear 2D filters.
          */
        class CV_EXPORTS BaseFilter_GPU
        {
        public:
            BaseFilter_GPU(const Size &ksize_, const Point &anchor_, const int &borderType_)
                : ksize(ksize_), anchor(anchor_), borderType(borderType_) {}
            virtual ~BaseFilter_GPU() {}
            virtual void operator()(const oclMat &src, oclMat &dst) = 0;
            Size ksize;
            Point anchor;
            int borderType;
        };

        /*!
          The Base Class for Filter Engine.

          The class can be used to apply an arbitrary filtering operation to an image.
          It contains all the necessary intermediate buffers.
          */
        class CV_EXPORTS FilterEngine_GPU
        {
        public:
            virtual ~FilterEngine_GPU() {}

            virtual void apply(const oclMat &src, oclMat &dst, Rect roi = Rect(0, 0, -1, -1)) = 0;
        };

        //! returns the non-separable filter engine with the specified filter
        CV_EXPORTS Ptr<FilterEngine_GPU> createFilter2D_GPU(const Ptr<BaseFilter_GPU> filter2D);

        //! returns the primitive row filter with the specified kernel
        CV_EXPORTS Ptr<BaseRowFilter_GPU> getLinearRowFilter_GPU(int srcType, int bufType, const Mat &rowKernel,
                int anchor = -1, int bordertype = BORDER_DEFAULT);

        //! returns the primitive column filter with the specified kernel
        CV_EXPORTS Ptr<BaseColumnFilter_GPU> getLinearColumnFilter_GPU(int bufType, int dstType, const Mat &columnKernel,
                int anchor = -1, int bordertype = BORDER_DEFAULT, double delta = 0.0);

        //! returns the separable linear filter engine
        CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableLinearFilter_GPU(int srcType, int dstType, const Mat &rowKernel,
                const Mat &columnKernel, const Point &anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT, Size imgSize = Size(-1,-1));

        //! returns the separable filter engine with the specified filters
        CV_EXPORTS Ptr<FilterEngine_GPU> createSeparableFilter_GPU(const Ptr<BaseRowFilter_GPU> &rowFilter,
                const Ptr<BaseColumnFilter_GPU> &columnFilter);

        //! returns the Gaussian filter engine
        CV_EXPORTS Ptr<FilterEngine_GPU> createGaussianFilter_GPU(int type, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT, Size imgSize = Size(-1,-1));

        //! returns filter engine for the generalized Sobel operator
        CV_EXPORTS Ptr<FilterEngine_GPU> createDerivFilter_GPU( int srcType, int dstType, int dx, int dy, int ksize, int borderType = BORDER_DEFAULT, Size imgSize = Size(-1,-1) );

        //! applies Laplacian operator to the image
        // supports only ksize = 1 and ksize = 3
        CV_EXPORTS void Laplacian(const oclMat &src, oclMat &dst, int ddepth, int ksize = 1, double scale = 1,
                double delta=0, int borderType=BORDER_DEFAULT);

        //! returns 2D box filter
        // dst type must be the same as source type
        CV_EXPORTS Ptr<BaseFilter_GPU> getBoxFilter_GPU(int srcType, int dstType,
                const Size &ksize, Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns box filter engine
        CV_EXPORTS Ptr<FilterEngine_GPU> createBoxFilter_GPU(int srcType, int dstType, const Size &ksize,
                const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns 2D filter with the specified kernel
        // supports: dst type must be the same as source type
        CV_EXPORTS Ptr<BaseFilter_GPU> getLinearFilter_GPU(int srcType, int dstType, const Mat &kernel, const Size &ksize,
                const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns the non-separable linear filter engine
        // supports: dst type must be the same as source type
        CV_EXPORTS Ptr<FilterEngine_GPU> createLinearFilter_GPU(int srcType, int dstType, const Mat &kernel,
                const Point &anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! smooths the image using the normalized box filter
        CV_EXPORTS void boxFilter(const oclMat &src, oclMat &dst, int ddepth, Size ksize,
                                  Point anchor = Point(-1, -1), int borderType = BORDER_DEFAULT);

        //! returns 2D morphological filter
        //! only MORPH_ERODE and MORPH_DILATE are supported
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        // kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
        CV_EXPORTS Ptr<BaseFilter_GPU> getMorphologyFilter_GPU(int op, int type, const Mat &kernel, const Size &ksize,
                Point anchor = Point(-1, -1));

        //! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
        CV_EXPORTS Ptr<FilterEngine_GPU> createMorphologyFilter_GPU(int op, int type, const Mat &kernel,
                const Point &anchor = Point(-1, -1), int iterations = 1);

        //! a synonym for normalized box filter
        static inline void blur(const oclMat &src, oclMat &dst, Size ksize, Point anchor = Point(-1, -1),
                                int borderType = BORDER_CONSTANT)
        {
            boxFilter(src, dst, -1, ksize, anchor, borderType);
        }

        //! applies non-separable 2D linear filter to the image
        CV_EXPORTS void filter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernel,
                                 Point anchor = Point(-1, -1), double delta = 0.0, int borderType = BORDER_DEFAULT);

        //! applies separable 2D linear filter to the image
        CV_EXPORTS void sepFilter2D(const oclMat &src, oclMat &dst, int ddepth, const Mat &kernelX, const Mat &kernelY,
                                    Point anchor = Point(-1, -1), double delta = 0.0, int bordertype = BORDER_DEFAULT);

        //! applies generalized Sobel operator to the image
        // dst.type must equalize src.type
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
        CV_EXPORTS void Sobel(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT);

        //! applies the vertical or horizontal Scharr operator to the image
        // dst.type must equalize src.type
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
        CV_EXPORTS void Scharr(const oclMat &src, oclMat &dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0.0, int bordertype = BORDER_DEFAULT);

        //! smooths the image using Gaussian filter.
        // dst.type must equalize src.type
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        // supports border type: BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT,BORDER_REFLECT_101
        CV_EXPORTS void GaussianBlur(const oclMat &src, oclMat &dst, Size ksize, double sigma1, double sigma2 = 0, int bordertype = BORDER_DEFAULT);

        //! erodes the image (applies the local minimum operator)
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        CV_EXPORTS void erode( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,

                               int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());


        //! dilates the image (applies the local maximum operator)
        // supports data type: CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4
        CV_EXPORTS void dilate( const oclMat &src, oclMat &dst, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,

                                int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());


        //! applies an advanced morphological operation to the image
        CV_EXPORTS void morphologyEx( const oclMat &src, oclMat &dst, int op, const Mat &kernel, Point anchor = Point(-1, -1), int iterations = 1,

                                      int borderType = BORDER_CONSTANT, const Scalar &borderValue = morphologyDefaultBorderValue());


        ////////////////////////////// Image processing //////////////////////////////
        //! Does mean shift filtering on GPU.
        CV_EXPORTS void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr,
                                           TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

        //! Does mean shift procedure on GPU.
        CV_EXPORTS void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr,
                                      TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

        //! Does mean shift segmentation with elimiation of small regions.
        CV_EXPORTS void meanShiftSegmentation(const oclMat &src, Mat &dst, int sp, int sr, int minsize,
                                              TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1));

        //! applies fixed threshold to the image.
        // supports CV_8UC1 and CV_32FC1 data type
        // supports threshold type: THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV
        CV_EXPORTS double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type = THRESH_TRUNC);

        //! resizes the image
        // Supports INTER_NEAREST, INTER_LINEAR
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        CV_EXPORTS void resize(const oclMat &src, oclMat &dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR);

        //! Applies a generic geometrical transformation to an image.

        // Supports INTER_NEAREST, INTER_LINEAR.
        // Map1 supports CV_16SC2, CV_32FC2  types.
        // Src supports CV_8UC1, CV_8UC2, CV_8UC4.
        CV_EXPORTS void remap(const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int bordertype, const Scalar &value = Scalar());

        //! copies 2D array to a larger destination array and pads borders with user-specifiable constant
        // supports CV_8UC1, CV_8UC4, CV_32SC1 types
        CV_EXPORTS void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int boardtype, const Scalar &value = Scalar());

        //! Smoothes image using median filter
        // The source 1- or 4-channel image. m should be 3 or 5, the image depth should be CV_8U or CV_32F.
        CV_EXPORTS void medianFilter(const oclMat &src, oclMat &dst, int m);

        //! warps the image using affine transformation
        // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        CV_EXPORTS void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);

        //! warps the image using perspective transformation
        // Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
        // supports CV_8UC1, CV_8UC4, CV_32FC1 and CV_32FC4 types
        CV_EXPORTS void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags = INTER_LINEAR);

        //! computes the integral image and integral for the squared image
        // sum will have CV_32S type, sqsum - CV32F type
        // supports only CV_8UC1 source type
        CV_EXPORTS void integral(const oclMat &src, oclMat &sum, oclMat &sqsum);
        CV_EXPORTS void integral(const oclMat &src, oclMat &sum);
        CV_EXPORTS void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
        CV_EXPORTS void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
            int blockSize, int ksize, double k, int bordertype = cv::BORDER_DEFAULT);
        CV_EXPORTS void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
        CV_EXPORTS void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &Dx, oclMat &Dy,
            int blockSize, int ksize, int bordertype = cv::BORDER_DEFAULT);
        /////////////////////////////////// ML ///////////////////////////////////////////

        //! Compute closest centers for each lines in source and lable it after center's index
        // supports CV_32FC1/CV_32FC2/CV_32FC4 data type
        // supports NORM_L1 and NORM_L2 distType
        // if indices is provided, only the indexed rows will be calculated and their results are in the same
        // order of indices
        CV_EXPORTS void distanceToCenters(const oclMat &src, const oclMat &centers, Mat &dists, Mat &labels, int distType = NORM_L2SQR);

        //!Does k-means procedure on GPU
        // supports CV_32FC1/CV_32FC2/CV_32FC4 data type
        CV_EXPORTS double kmeans(const oclMat &src, int K, oclMat &bestLabels,
                                     TermCriteria criteria, int attemps, int flags, oclMat &centers);


        ////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
        ///////////////////////////////////////////CascadeClassifier//////////////////////////////////////////////////////////////////
        ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

        class CV_EXPORTS_W OclCascadeClassifier : public  cv::CascadeClassifier
        {
        public:
            OclCascadeClassifier() {};
            ~OclCascadeClassifier() {};

            CvSeq* oclHaarDetectObjects(oclMat &gimg, CvMemStorage *storage, double scaleFactor,
                                        int minNeighbors, int flags, CvSize minSize = cvSize(0, 0), CvSize maxSize = cvSize(0, 0));
            void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
                double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
                Size minSize = Size(), Size maxSize = Size());
        };

        class CV_EXPORTS OclCascadeClassifierBuf : public  cv::CascadeClassifier
        {
        public:
            OclCascadeClassifierBuf() :
                m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {}

            ~OclCascadeClassifierBuf() { release(); }

            void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
                                  double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
                                  Size minSize = Size(), Size maxSize = Size());
            void release();

        private:
            void Init(const int rows, const int cols, double scaleFactor, int flags,
                      const int outputsz, const size_t localThreads[],
                      CvSize minSize, CvSize maxSize);
            void CreateBaseBufs(const int datasize, const int totalclassifier, const int flags, const int outputsz);
            void CreateFactorRelatedBufs(const int rows, const int cols, const int flags,
                                         const double scaleFactor, const size_t localThreads[],
                                         CvSize minSize, CvSize maxSize);
            void GenResult(CV_OUT std::vector<cv::Rect>& faces, const std::vector<cv::Rect> &rectList, const std::vector<int> &rweights);

            int m_rows;
            int m_cols;
            int m_flags;
            int m_loopcount;
            int m_nodenum;
            bool findBiggestObject;
            bool initialized;
            double m_scaleFactor;
            Size m_minSize;
            Size m_maxSize;
            vector<CvSize> sizev;
            vector<float> scalev;
            oclMat gimg1, gsum, gsqsum;
            void * buffers;
        };


        /////////////////////////////// Pyramid /////////////////////////////////////
        CV_EXPORTS void pyrDown(const oclMat &src, oclMat &dst);

        //! upsamples the source image and then smoothes it
        CV_EXPORTS void pyrUp(const oclMat &src, oclMat &dst);

        //! performs linear blending of two images
        //! to avoid accuracy errors sum of weigths shouldn't be very close to zero
        // supports only CV_8UC1 source type
        CV_EXPORTS void blendLinear(const oclMat &img1, const oclMat &img2, const oclMat &weights1, const oclMat &weights2, oclMat &result);

        //! computes vertical sum, supports only CV_32FC1 images
        CV_EXPORTS void columnSum(const oclMat &src, oclMat &sum);

        ///////////////////////////////////////// match_template /////////////////////////////////////////////////////////////
        struct CV_EXPORTS MatchTemplateBuf
        {
            Size user_block_size;
            oclMat imagef, templf;
            std::vector<oclMat> images;
            std::vector<oclMat> image_sums;
            std::vector<oclMat> image_sqsums;
        };

        //! computes the proximity map for the raster template and the image where the template is searched for
        // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
        // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
        CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method);

        //! computes the proximity map for the raster template and the image where the template is searched for
        // Supports TM_SQDIFF, TM_SQDIFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_CCOEFF, TM_CCOEFF_NORMED for type 8UC1 and 8UC4
        // Supports TM_SQDIFF, TM_CCORR for type 32FC1 and 32FC4
        CV_EXPORTS void matchTemplate(const oclMat &image, const oclMat &templ, oclMat &result, int method, MatchTemplateBuf &buf);

        ///////////////////////////////////////////// Canny /////////////////////////////////////////////
        struct CV_EXPORTS CannyBuf;
        //! compute edges of the input image using Canny operator
        // Support CV_8UC1 only
        CV_EXPORTS void Canny(const oclMat &image, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
        CV_EXPORTS void Canny(const oclMat &image, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false);
        CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false);
        CV_EXPORTS void Canny(const oclMat &dx, const oclMat &dy, CannyBuf &buf, oclMat &edges, double low_thresh, double high_thresh, bool L2gradient = false);

        struct CV_EXPORTS CannyBuf
        {
            CannyBuf() : counter(1, 1, CV_32S) { }
            ~CannyBuf()
            {
                release();
            }
            explicit CannyBuf(const Size &image_size, int apperture_size = 3) : counter(1, 1, CV_32S)
            {
                create(image_size, apperture_size);
            }
            CannyBuf(const oclMat &dx_, const oclMat &dy_);

            void create(const Size &image_size, int apperture_size = 3);
            void release();
            oclMat dx, dy;
            oclMat dx_buf, dy_buf;
            oclMat edgeBuf;
            oclMat trackBuf1, trackBuf2;
            oclMat counter;
            Ptr<FilterEngine_GPU> filterDX, filterDY;
        };

        ///////////////////////////////////////// clAmdFft related /////////////////////////////////////////
        //! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
        //! Param dft_size is the size of DFT transform.
        //!
        //! For complex-to-real transform it is assumed that the source matrix is packed in CLFFT's format.
        // support src type of CV32FC1, CV32FC2
        // support flags: DFT_INVERSE, DFT_REAL_OUTPUT, DFT_COMPLEX_OUTPUT, DFT_ROWS
        // dft_size is the size of original input, which is used for transformation from complex to real.
        // dft_size must be powers of 2, 3 and 5
        // real to complex dft requires at least v1.8 clAmdFft
        // real to complex dft output is not the same with cpu version
        // real to complex and complex to real does not support DFT_ROWS
        CV_EXPORTS void dft(const oclMat &src, oclMat &dst, Size dft_size = Size(), int flags = 0);

        //! implements generalized matrix product algorithm GEMM from BLAS
        // The functionality requires clAmdBlas library
        // only support type CV_32FC1
        // flag GEMM_3_T is not supported
        CV_EXPORTS void gemm(const oclMat &src1, const oclMat &src2, double alpha,
                             const oclMat &src3, double beta, oclMat &dst, int flags = 0);

        //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
        struct CV_EXPORTS HOGDescriptor
        {
            enum { DEFAULT_WIN_SIGMA = -1 };
            enum { DEFAULT_NLEVELS = 64 };
            enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL };
            HOGDescriptor(Size win_size = Size(64, 128), Size block_size = Size(16, 16),
                          Size block_stride = Size(8, 8), Size cell_size = Size(8, 8),
                          int nbins = 9, double win_sigma = DEFAULT_WIN_SIGMA,
                          double threshold_L2hys = 0.2, bool gamma_correction = true,
                          int nlevels = DEFAULT_NLEVELS);

            size_t getDescriptorSize() const;
            size_t getBlockHistogramSize() const;
            void setSVMDetector(const vector<float> &detector);
            static vector<float> getDefaultPeopleDetector();
            static vector<float> getPeopleDetector48x96();
            static vector<float> getPeopleDetector64x128();
            void detect(const oclMat &img, vector<Point> &found_locations,
                        double hit_threshold = 0, Size win_stride = Size(),
                        Size padding = Size());
            void detectMultiScale(const oclMat &img, vector<Rect> &found_locations,
                                  double hit_threshold = 0, Size win_stride = Size(),
                                  Size padding = Size(), double scale0 = 1.05,
                                  int group_threshold = 2);
            void getDescriptors(const oclMat &img, Size win_stride,
                                oclMat &descriptors,
                                int descr_format = DESCR_FORMAT_COL_BY_COL);
            Size win_size;
            Size block_size;
            Size block_stride;
            Size cell_size;

            int nbins;
            double win_sigma;
            double threshold_L2hys;
            bool gamma_correction;
            int nlevels;

        protected:
            // initialize buffers; only need to do once in case of multiscale detection
            void init_buffer(const oclMat &img, Size win_stride);
            void computeBlockHistograms(const oclMat &img);
            void computeGradient(const oclMat &img, oclMat &grad, oclMat &qangle);
            double getWinSigma() const;
            bool checkDetectorSize() const;

            static int numPartsWithin(int size, int part_size, int stride);
            static Size numPartsWithin(Size size, Size part_size, Size stride);

            // Coefficients of the separating plane
            float free_coef;
            oclMat detector;
            // Results of the last classification step
            oclMat labels;
            Mat labels_host;
            // Results of the last histogram evaluation step
            oclMat block_hists;
            // Gradients conputation results
            oclMat grad, qangle;
            // scaled image
            oclMat image_scale;
            // effect size of input image (might be different from original size after scaling)
            Size effect_size;
        };


        ////////////////////////feature2d_ocl/////////////////
        /****************************************************************************************\
        *                                      Distance                                          *
        \****************************************************************************************/
        template<typename T>
        struct CV_EXPORTS Accumulator
        {
            typedef T Type;
        };
        template<> struct Accumulator<unsigned char>
        {
            typedef float Type;
        };
        template<> struct Accumulator<unsigned short>
        {
            typedef float Type;
        };
        template<> struct Accumulator<char>
        {
            typedef float Type;
        };
        template<> struct Accumulator<short>
        {
            typedef float Type;
        };

        /*
         * Manhattan distance (city block distance) functor
         */
        template<class T>
        struct CV_EXPORTS L1
        {
            enum { normType = NORM_L1 };
            typedef T ValueType;
            typedef typename Accumulator<T>::Type ResultType;

            ResultType operator()( const T *a, const T *b, int size ) const
            {
                return normL1<ValueType, ResultType>(a, b, size);
            }
        };

        /*
         * Euclidean distance functor
         */
        template<class T>
        struct CV_EXPORTS L2
        {
            enum { normType = NORM_L2 };
            typedef T ValueType;
            typedef typename Accumulator<T>::Type ResultType;

            ResultType operator()( const T *a, const T *b, int size ) const
            {
                return (ResultType)sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
            }
        };

        /*
         * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
         * bit count of A exclusive XOR'ed with B
         */
        struct CV_EXPORTS Hamming
        {
            enum { normType = NORM_HAMMING };
            typedef unsigned char ValueType;
            typedef int ResultType;

            /** this will count the bits in a ^ b
             */
            ResultType operator()( const unsigned char *a, const unsigned char *b, int size ) const
            {
                return normHamming(a, b, size);
            }
        };

        ////////////////////////////////// BruteForceMatcher //////////////////////////////////

        class CV_EXPORTS BruteForceMatcher_OCL_base
        {
        public:
            enum DistType {L1Dist = 0, L2Dist, HammingDist};
            explicit BruteForceMatcher_OCL_base(DistType distType = L2Dist);
            // Add descriptors to train descriptor collection
            void add(const std::vector<oclMat> &descCollection);
            // Get train descriptors collection
            const std::vector<oclMat> &getTrainDescriptors() const;
            // Clear train descriptors collection
            void clear();
            // Return true if there are not train descriptors in collection
            bool empty() const;

            // Return true if the matcher supports mask in match methods
            bool isMaskSupported() const;

            // Find one best match for each query descriptor
            void matchSingle(const oclMat &query, const oclMat &train,
                             oclMat &trainIdx, oclMat &distance,
                             const oclMat &mask = oclMat());

            // Download trainIdx and distance and convert it to CPU vector with DMatch
            static void matchDownload(const oclMat &trainIdx, const oclMat &distance, std::vector<DMatch> &matches);
            // Convert trainIdx and distance to vector with DMatch
            static void matchConvert(const Mat &trainIdx, const Mat &distance, std::vector<DMatch> &matches);

            // Find one best match for each query descriptor
            void match(const oclMat &query, const oclMat &train, std::vector<DMatch> &matches, const oclMat &mask = oclMat());

            // Make gpu collection of trains and masks in suitable format for matchCollection function
            void makeGpuCollection(oclMat &trainCollection, oclMat &maskCollection, const std::vector<oclMat> &masks = std::vector<oclMat>());


            // Find one best match from train collection for each query descriptor
            void matchCollection(const oclMat &query, const oclMat &trainCollection,
                                 oclMat &trainIdx, oclMat &imgIdx, oclMat &distance,
                                 const oclMat &masks = oclMat());

            // Download trainIdx, imgIdx and distance and convert it to vector with DMatch
            static void matchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, std::vector<DMatch> &matches);
            // Convert trainIdx, imgIdx and distance to vector with DMatch
            static void matchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, std::vector<DMatch> &matches);

            // Find one best match from train collection for each query descriptor.
            void match(const oclMat &query, std::vector<DMatch> &matches, const std::vector<oclMat> &masks = std::vector<oclMat>());

            // Find k best matches for each query descriptor (in increasing order of distances)
            void knnMatchSingle(const oclMat &query, const oclMat &train,
                                oclMat &trainIdx, oclMat &distance, oclMat &allDist, int k,
                                const oclMat &mask = oclMat());

            // Download trainIdx and distance and convert it to vector with DMatch
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void knnMatchDownload(const oclMat &trainIdx, const oclMat &distance,
                                         std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Convert trainIdx and distance to vector with DMatch
            static void knnMatchConvert(const Mat &trainIdx, const Mat &distance,
                                        std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Find k best matches for each query descriptor (in increasing order of distances).
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            void knnMatch(const oclMat &query, const oclMat &train,
                          std::vector< std::vector<DMatch> > &matches, int k, const oclMat &mask = oclMat(),
                          bool compactResult = false);

            // Find k best matches from train collection for each query descriptor (in increasing order of distances)
            void knnMatch2Collection(const oclMat &query, const oclMat &trainCollection,
                                     oclMat &trainIdx, oclMat &imgIdx, oclMat &distance,
                                     const oclMat &maskCollection = oclMat());

            // Download trainIdx and distance and convert it to vector with DMatch
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void knnMatch2Download(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance,
                                          std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Convert trainIdx and distance to vector with DMatch
            static void knnMatch2Convert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance,
                                         std::vector< std::vector<DMatch> > &matches, bool compactResult = false);

            // Find k best matches  for each query descriptor (in increasing order of distances).
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            void knnMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, int k,
                          const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false);

            // Find best matches for each query descriptor which have distance less than maxDistance.
            // nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
            // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
            // because it didn't have enough memory.
            // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
            // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
            // Matches doesn't sorted.
            void radiusMatchSingle(const oclMat &query, const oclMat &train,
                                   oclMat &trainIdx, oclMat &distance, oclMat &nMatches, float maxDistance,
                                   const oclMat &mask = oclMat());

            // Download trainIdx, nMatches and distance and convert it to vector with DMatch.
            // matches will be sorted in increasing order of distances.
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches,
                                            std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Convert trainIdx, nMatches and distance to vector with DMatch.
            static void radiusMatchConvert(const Mat &trainIdx, const Mat &distance, const Mat &nMatches,
                                           std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Find best matches for each query descriptor which have distance less than maxDistance
            // in increasing order of distances).
            void radiusMatch(const oclMat &query, const oclMat &train,
                             std::vector< std::vector<DMatch> > &matches, float maxDistance,
                             const oclMat &mask = oclMat(), bool compactResult = false);
            // Find best matches for each query descriptor which have distance less than maxDistance.
            // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
            // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
            // Matches doesn't sorted.
            void radiusMatchCollection(const oclMat &query, oclMat &trainIdx, oclMat &imgIdx, oclMat &distance, oclMat &nMatches, float maxDistance,
                                       const std::vector<oclMat> &masks = std::vector<oclMat>());
            // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
            // matches will be sorted in increasing order of distances.
            // compactResult is used when mask is not empty. If compactResult is false matches
            // vector will have the same size as queryDescriptors rows. If compactResult is true
            // matches vector will not contain matches for fully masked out query descriptors.
            static void radiusMatchDownload(const oclMat &trainIdx, const oclMat &imgIdx, const oclMat &distance, const oclMat &nMatches,
                                            std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Convert trainIdx, nMatches and distance to vector with DMatch.
            static void radiusMatchConvert(const Mat &trainIdx, const Mat &imgIdx, const Mat &distance, const Mat &nMatches,
                                           std::vector< std::vector<DMatch> > &matches, bool compactResult = false);
            // Find best matches from train collection for each query descriptor which have distance less than
            // maxDistance (in increasing order of distances).
            void radiusMatch(const oclMat &query, std::vector< std::vector<DMatch> > &matches, float maxDistance,
                             const std::vector<oclMat> &masks = std::vector<oclMat>(), bool compactResult = false);
            DistType distType;
        private:
            std::vector<oclMat> trainDescCollection;
        };

        template <class Distance>
        class CV_EXPORTS BruteForceMatcher_OCL;

        template <typename T>
        class CV_EXPORTS BruteForceMatcher_OCL< L1<T> > : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L1Dist) {}
            explicit BruteForceMatcher_OCL(L1<T> /*d*/) : BruteForceMatcher_OCL_base(L1Dist) {}
        };

        template <typename T>
        class CV_EXPORTS BruteForceMatcher_OCL< L2<T> > : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(L2Dist) {}
            explicit BruteForceMatcher_OCL(L2<T> /*d*/) : BruteForceMatcher_OCL_base(L2Dist) {}
        };

        template <> class CV_EXPORTS BruteForceMatcher_OCL< Hamming > : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BruteForceMatcher_OCL() : BruteForceMatcher_OCL_base(HammingDist) {}
            explicit BruteForceMatcher_OCL(Hamming /*d*/) : BruteForceMatcher_OCL_base(HammingDist) {}
        };

        class CV_EXPORTS BFMatcher_OCL : public BruteForceMatcher_OCL_base
        {
        public:
            explicit BFMatcher_OCL(int norm = NORM_L2) : BruteForceMatcher_OCL_base(norm == NORM_L1 ? L1Dist : norm == NORM_L2 ? L2Dist : HammingDist) {}
        };

        class CV_EXPORTS GoodFeaturesToTrackDetector_OCL
        {
        public:
            explicit GoodFeaturesToTrackDetector_OCL(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0,
                int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04);

            //! return 1 rows matrix with CV_32FC2 type
            void operator ()(const oclMat& image, oclMat& corners, const oclMat& mask = oclMat());
            //! download points of type Point2f to a vector. the vector's content will be erased
            void downloadPoints(const oclMat &points, vector<Point2f> &points_v);

            int maxCorners;
            double qualityLevel;
            double minDistance;

            int blockSize;
            bool useHarrisDetector;
            double harrisK;
            void releaseMemory()
            {
                Dx_.release();
                Dy_.release();
                eig_.release();
                minMaxbuf_.release();
                tmpCorners_.release();
            }
        private:
            oclMat Dx_;
            oclMat Dy_;
            oclMat eig_;
            oclMat eig_minmax_;
            oclMat minMaxbuf_;
            oclMat tmpCorners_;
            oclMat counter_;
        };

        inline GoodFeaturesToTrackDetector_OCL::GoodFeaturesToTrackDetector_OCL(int maxCorners_, double qualityLevel_, double minDistance_,
            int blockSize_, bool useHarrisDetector_, double harrisK_)
        {
            maxCorners = maxCorners_;
            qualityLevel = qualityLevel_;
            minDistance = minDistance_;
            blockSize = blockSize_;
            useHarrisDetector = useHarrisDetector_;
            harrisK = harrisK_;
        }

        /////////////////////////////// PyrLKOpticalFlow /////////////////////////////////////
        class CV_EXPORTS PyrLKOpticalFlow
        {
        public:
            PyrLKOpticalFlow()
            {
                winSize = Size(21, 21);
                maxLevel = 3;
                iters = 30;
                derivLambda = 0.5;
                useInitialFlow = false;
                minEigThreshold = 1e-4f;
                getMinEigenVals = false;
                isDeviceArch11_ = false;
            }

            void sparse(const oclMat &prevImg, const oclMat &nextImg, const oclMat &prevPts, oclMat &nextPts,
                        oclMat &status, oclMat *err = 0);
            void dense(const oclMat &prevImg, const oclMat &nextImg, oclMat &u, oclMat &v, oclMat *err = 0);
            Size winSize;
            int maxLevel;
            int iters;
            double derivLambda;
            bool useInitialFlow;
            float minEigThreshold;
            bool getMinEigenVals;
            void releaseMemory()
            {
                dx_calcBuf_.release();
                dy_calcBuf_.release();

                prevPyr_.clear();
                nextPyr_.clear();

                dx_buf_.release();
                dy_buf_.release();
            }
        private:
            void calcSharrDeriv(const oclMat &src, oclMat &dx, oclMat &dy);
            void buildImagePyramid(const oclMat &img0, vector<oclMat> &pyr, bool withBorder);

            oclMat dx_calcBuf_;
            oclMat dy_calcBuf_;

            vector<oclMat> prevPyr_;
            vector<oclMat> nextPyr_;

            oclMat dx_buf_;
            oclMat dy_buf_;
            oclMat uPyr_[2];
            oclMat vPyr_[2];
            bool isDeviceArch11_;
        };

        class CV_EXPORTS FarnebackOpticalFlow
        {
        public:
            FarnebackOpticalFlow();

            int numLevels;
            double pyrScale;
            bool fastPyramids;
            int winSize;
            int numIters;
            int polyN;
            double polySigma;
            int flags;

            void operator ()(const oclMat &frame0, const oclMat &frame1, oclMat &flowx, oclMat &flowy);

            void releaseMemory();

        private:
            void prepareGaussian(
                int n, double sigma, float *g, float *xg, float *xxg,
                double &ig11, double &ig03, double &ig33, double &ig55);

            void setPolynomialExpansionConsts(int n, double sigma);

            void updateFlow_boxFilter(
                const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat &flowy,
                oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);

            void updateFlow_gaussianBlur(
                const oclMat& R0, const oclMat& R1, oclMat& flowx, oclMat& flowy,
                oclMat& M, oclMat &bufM, int blockSize, bool updateMatrices);

            oclMat frames_[2];
            oclMat pyrLevel_[2], M_, bufM_, R_[2], blurredFrame_[2];
            std::vector<oclMat> pyramid0_, pyramid1_;
        };

        //////////////// build warping maps ////////////////////
        //! builds plane warping maps
        CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, const Mat &T, float scale, oclMat &map_x, oclMat &map_y);
        //! builds cylindrical warping maps
        CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y);
        //! builds spherical warping maps
        CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat &R, float scale, oclMat &map_x, oclMat &map_y);
        //! builds Affine warping maps
        CV_EXPORTS void buildWarpAffineMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap);

        //! builds Perspective warping maps
        CV_EXPORTS void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, oclMat &xmap, oclMat &ymap);

        ///////////////////////////////////// interpolate frames //////////////////////////////////////////////
        //! Interpolate frames (images) using provided optical flow (displacement field).
        //! frame0   - frame 0 (32-bit floating point images, single channel)
        //! frame1   - frame 1 (the same type and size)
        //! fu       - forward horizontal displacement
        //! fv       - forward vertical displacement
        //! bu       - backward horizontal displacement
        //! bv       - backward vertical displacement
        //! pos      - new frame position
        //! newFrame - new frame
        //! buf      - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 oclMat;
        //!            occlusion masks            0, occlusion masks            1,
        //!            interpolated forward flow  0, interpolated forward flow  1,
        //!            interpolated backward flow 0, interpolated backward flow 1
        //!
        CV_EXPORTS void interpolateFrames(const oclMat &frame0, const oclMat &frame1,
                                          const oclMat &fu, const oclMat &fv,
                                          const oclMat &bu, const oclMat &bv,
                                          float pos, oclMat &newFrame, oclMat &buf);

        //! computes moments of the rasterized shape or a vector of points
        //! _array should be a vector a points standing for the contour
        CV_EXPORTS Moments ocl_moments(InputArray contour);
        //! src should be a general image uploaded to the GPU.
        //! the supported oclMat type are CV_8UC1, CV_16UC1, CV_16SC1, CV_32FC1 and CV_64FC1
        //! to use type of CV_64FC1, the GPU should support CV_64FC1
        CV_EXPORTS Moments ocl_moments(oclMat& src, bool binary);

        class CV_EXPORTS StereoBM_OCL
        {
        public:
            enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };

            enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };

            //! the default constructor
            StereoBM_OCL();
            //! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
            StereoBM_OCL(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ);

            //! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
            //! Output disparity has CV_8U type.
            void operator() ( const oclMat &left, const oclMat &right, oclMat &disparity);

            //! Some heuristics that tries to estmate
            // if current GPU will be faster then CPU in this algorithm.
            // It queries current active device.
            static bool checkIfGpuCallReasonable();

            int preset;
            int ndisp;
            int winSize;

            // If avergeTexThreshold  == 0 => post procesing is disabled
            // If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
            // SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
            // i.e. input left image is low textured.
            float avergeTexThreshold;
        private:
            oclMat minSSD, leBuf, riBuf;
        };

        class CV_EXPORTS StereoBeliefPropagation
        {
        public:
            enum { DEFAULT_NDISP  = 64 };
            enum { DEFAULT_ITERS  = 5  };
            enum { DEFAULT_LEVELS = 5  };
            static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels);
            explicit StereoBeliefPropagation(int ndisp  = DEFAULT_NDISP,
                                             int iters  = DEFAULT_ITERS,
                                             int levels = DEFAULT_LEVELS,
                                             int msg_type = CV_16S);
            StereoBeliefPropagation(int ndisp, int iters, int levels,
                                    float max_data_term, float data_weight,
                                    float max_disc_term, float disc_single_jump,
                                    int msg_type = CV_32F);
            void operator()(const oclMat &left, const oclMat &right, oclMat &disparity);
            void operator()(const oclMat &data, oclMat &disparity);
            int ndisp;
            int iters;
            int levels;
            float max_data_term;
            float data_weight;
            float max_disc_term;
            float disc_single_jump;
            int msg_type;
        private:
            oclMat u, d, l, r, u2, d2, l2, r2;
            std::vector<oclMat> datas;
            oclMat out;
        };

        class CV_EXPORTS StereoConstantSpaceBP
        {
        public:
            enum { DEFAULT_NDISP    = 128 };
            enum { DEFAULT_ITERS    = 8   };
            enum { DEFAULT_LEVELS   = 4   };
            enum { DEFAULT_NR_PLANE = 4   };
            static void estimateRecommendedParams(int width, int height, int &ndisp, int &iters, int &levels, int &nr_plane);
            explicit StereoConstantSpaceBP(
                int ndisp    = DEFAULT_NDISP,
                int iters    = DEFAULT_ITERS,
                int levels   = DEFAULT_LEVELS,
                int nr_plane = DEFAULT_NR_PLANE,
                int msg_type = CV_32F);
            StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
                float max_data_term, float data_weight, float max_disc_term, float disc_single_jump,
                int min_disp_th = 0,
                int msg_type = CV_32F);
            void operator()(const oclMat &left, const oclMat &right, oclMat &disparity);
            int ndisp;
            int iters;
            int levels;
            int nr_plane;
            float max_data_term;
            float data_weight;
            float max_disc_term;
            float disc_single_jump;
            int min_disp_th;
            int msg_type;
            bool use_local_init_data_cost;
        private:
            oclMat u[2], d[2], l[2], r[2];
            oclMat disp_selected_pyr[2];
            oclMat data_cost;
            oclMat data_cost_selected;
            oclMat temp;
            oclMat out;
        };

        // Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
        //
        // see reference:
        //   [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
        //   [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
        class CV_EXPORTS OpticalFlowDual_TVL1_OCL
        {
        public:
            OpticalFlowDual_TVL1_OCL();

            void operator ()(const oclMat& I0, const oclMat& I1, oclMat& flowx, oclMat& flowy);

            void collectGarbage();

            /**
            * Time step of the numerical scheme.
            */
            double tau;

            /**
            * Weight parameter for the data term, attachment parameter.
            * This is the most relevant parameter, which determines the smoothness of the output.
            * The smaller this parameter is, the smoother the solutions we obtain.
            * It depends on the range of motions of the images, so its value should be adapted to each image sequence.
            */
            double lambda;

            /**
            * Weight parameter for (u - v)^2, tightness parameter.
            * It serves as a link between the attachment and the regularization terms.
            * In theory, it should have a small value in order to maintain both parts in correspondence.
            * The method is stable for a large range of values of this parameter.
            */
            double theta;

            /**
            * Number of scales used to create the pyramid of images.
            */
            int nscales;

            /**
            * Number of warpings per scale.
            * Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
            * This is a parameter that assures the stability of the method.
            * It also affects the running time, so it is a compromise between speed and accuracy.
            */
            int warps;

            /**
            * Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
            * A small value will yield more accurate solutions at the expense of a slower convergence.
            */
            double epsilon;

            /**
            * Stopping criterion iterations number used in the numerical scheme.
            */
            int iterations;

            bool useInitialFlow;

        private:
            void procOneScale(const oclMat& I0, const oclMat& I1, oclMat& u1, oclMat& u2);

            std::vector<oclMat> I0s;
            std::vector<oclMat> I1s;
            std::vector<oclMat> u1s;
            std::vector<oclMat> u2s;

            oclMat I1x_buf;
            oclMat I1y_buf;

            oclMat I1w_buf;
            oclMat I1wx_buf;
            oclMat I1wy_buf;

            oclMat grad_buf;
            oclMat rho_c_buf;

            oclMat p11_buf;
            oclMat p12_buf;
            oclMat p21_buf;
            oclMat p22_buf;

            oclMat diff_buf;
            oclMat norm_buf;
        };
        // current supported sorting methods
        enum
        {
            SORT_BITONIC,   // only support power-of-2 buffer size
            SORT_SELECTION, // cannot sort duplicate keys
            SORT_MERGE,
            SORT_RADIX      // only support signed int/float keys(CV_32S/CV_32F)
        };
        //! Returns the sorted result of all the elements in input based on equivalent keys.
        //
        //  The element unit in the values to be sorted is determined from the data type,
        //  i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its
        //  matrix dimension.
        //  both keys and values will be sorted inplace
        //  Key needs to be single channel oclMat.
        //
        //  Example:
        //  input -
        //    keys   = {2,    3,   1}   (CV_8UC1)
        //    values = {10,5, 4,3, 6,2} (CV_8UC2)
        //  sortByKey(keys, values, SORT_SELECTION, false);
        //  output -
        //    keys   = {1,    2,   3}   (CV_8UC1)
        //    values = {6,2, 10,5, 4,3} (CV_8UC2)
        CV_EXPORTS void sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false);
        /*!Base class for MOG and MOG2!*/
        class CV_EXPORTS BackgroundSubtractor
        {
        public:
            //! the virtual destructor
            virtual ~BackgroundSubtractor();
            //! the update operator that takes the next video frame and returns the current foreground mask as 8-bit binary image.
            virtual void operator()(const oclMat& image, oclMat& fgmask, float learningRate);

            //! computes a background image
            virtual void getBackgroundImage(oclMat& backgroundImage) const = 0;
        };
                /*!
        Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm

        The class implements the following algorithm:
        "An improved adaptive background mixture model for real-time tracking with shadow detection"
        P. KadewTraKuPong and R. Bowden,
        Proc. 2nd European Workshp on Advanced Video-Based Surveillance Systems, 2001."
        http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
        */
        class CV_EXPORTS MOG: public cv::ocl::BackgroundSubtractor
        {
        public:
            //! the default constructor
            MOG(int nmixtures = -1);

            //! re-initiaization method
            void initialize(Size frameSize, int frameType);

            //! the update operator
            void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = 0.f);

            //! computes a background image which are the mean of all background gaussians
            void getBackgroundImage(oclMat& backgroundImage) const;

            //! releases all inner buffers
            void release();

            int history;
            float varThreshold;
            float backgroundRatio;
            float noiseSigma;

        private:
            int nmixtures_;

            Size frameSize_;
            int frameType_;
            int nframes_;

            oclMat weight_;
            oclMat sortKey_;
            oclMat mean_;
            oclMat var_;
        };

        /*!
        The class implements the following algorithm:
        "Improved adaptive Gausian mixture model for background subtraction"
        Z.Zivkovic
        International Conference Pattern Recognition, UK, August, 2004.
        http://www.zoranz.net/Publications/zivkovic2004ICPR.pdf
        */
        class CV_EXPORTS MOG2: public cv::ocl::BackgroundSubtractor
        {
        public:
            //! the default constructor
            MOG2(int nmixtures = -1);

            //! re-initiaization method
            void initialize(Size frameSize, int frameType);

            //! the update operator
            void operator()(const oclMat& frame, oclMat& fgmask, float learningRate = -1.0f);

            //! computes a background image which are the mean of all background gaussians
            void getBackgroundImage(oclMat& backgroundImage) const;

            //! releases all inner buffers
            void release();

            // parameters
            // you should call initialize after parameters changes

            int history;

            //! here it is the maximum allowed number of mixture components.
            //! Actual number is determined dynamically per pixel
            float varThreshold;
            // threshold on the squared Mahalanobis distance to decide if it is well described
            // by the background model or not. Related to Cthr from the paper.
            // This does not influence the update of the background. A typical value could be 4 sigma
            // and that is varThreshold=4*4=16; Corresponds to Tb in the paper.

            /////////////////////////
            // less important parameters - things you might change but be carefull
            ////////////////////////

            float backgroundRatio;
            // corresponds to fTB=1-cf from the paper
            // TB - threshold when the component becomes significant enough to be included into
            // the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
            // For alpha=0.001 it means that the mode should exist for approximately 105 frames before
            // it is considered foreground
            // float noiseSigma;
            float varThresholdGen;

            //correspondts to Tg - threshold on the squared Mahalan. dist. to decide
            //when a sample is close to the existing components. If it is not close
            //to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
            //Smaller Tg leads to more generated components and higher Tg might make
            //lead to small number of components but they can grow too large
            float fVarInit;
            float fVarMin;
            float fVarMax;

            //initial variance  for the newly generated components.
            //It will will influence the speed of adaptation. A good guess should be made.
            //A simple way is to estimate the typical standard deviation from the images.
            //I used here 10 as a reasonable value
            // min and max can be used to further control the variance
            float fCT; //CT - complexity reduction prior
            //this is related to the number of samples needed to accept that a component
            //actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
            //the standard Stauffer&Grimson algorithm (maybe not exact but very similar)

            //shadow detection parameters
            bool bShadowDetection; //default 1 - do shadow detection
            unsigned char nShadowDetection; //do shadow detection - insert this value as the detection result - 127 default value
            float fTau;
            // Tau - shadow threshold. The shadow is detected if the pixel is darker
            //version of the background. Tau is a threshold on how much darker the shadow can be.
            //Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
            //See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.

        private:
            int nmixtures_;

            Size frameSize_;
            int frameType_;
            int nframes_;

            oclMat weight_;
            oclMat variance_;
            oclMat mean_;

            oclMat bgmodelUsedModes_; //keep track of number of modes per pixel
        };

        /*!***************Kalman Filter*************!*/
        class CV_EXPORTS KalmanFilter
        {
        public:
            KalmanFilter();
            //! the full constructor taking the dimensionality of the state, of the measurement and of the control vector
            KalmanFilter(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);
            //! re-initializes Kalman filter. The previous content is destroyed.
            void init(int dynamParams, int measureParams, int controlParams=0, int type=CV_32F);

            const oclMat& predict(const oclMat& control=oclMat());
            const oclMat& correct(const oclMat& measurement);

            oclMat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
            oclMat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
            oclMat transitionMatrix;   //!< state transition matrix (A)
            oclMat controlMatrix;      //!< control matrix (B) (not used if there is no control)
            oclMat measurementMatrix;  //!< measurement matrix (H)
            oclMat processNoiseCov;    //!< process noise covariance matrix (Q)
            oclMat measurementNoiseCov;//!< measurement noise covariance matrix (R)
            oclMat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
            oclMat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
            oclMat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
        private:
            oclMat temp1;
            oclMat temp2;
            oclMat temp3;
            oclMat temp4;
            oclMat temp5;
        };

        /*!***************K Nearest Neighbour*************!*/
        class CV_EXPORTS KNearestNeighbour: public CvKNearest
        {
        public:
            KNearestNeighbour();
            ~KNearestNeighbour();

            bool train(const Mat& trainData, Mat& labels, Mat& sampleIdx = Mat().setTo(Scalar::all(0)),
                bool isRegression = false, int max_k = 32, bool updateBase = false);

            void clear();

            void find_nearest(const oclMat& samples, int k, oclMat& lables);

        private:
            oclMat samples_ocl;
        };

        /*!***************  SVM  *************!*/
        class CV_EXPORTS CvSVM_OCL : public CvSVM
        {
        public:
            CvSVM_OCL();

            CvSVM_OCL(const cv::Mat& trainData, const cv::Mat& responses,
                      const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
                      CvSVMParams params=CvSVMParams());
            CV_WRAP float predict( const int row_index, Mat& src, bool returnDFVal=false ) const;
            CV_WRAP void predict( cv::InputArray samples, cv::OutputArray results ) const;
            CV_WRAP float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
            float predict( const CvMat* samples, CV_OUT CvMat* results ) const;

        protected:
            float predict( const int row_index, int row_len, Mat& src, bool returnDFVal=false ) const;
            void create_kernel();
            void create_solver();
        };

        /*!***************  END  *************!*/
    }
}
#if defined _MSC_VER && _MSC_VER >= 1200
#  pragma warning( push)
#  pragma warning( disable: 4267)
#endif
#include "opencv2/ocl/matrix_operations.hpp"
#if defined _MSC_VER && _MSC_VER >= 1200
#  pragma warning( pop)
#endif

#endif /* __OPENCV_OCL_HPP__ */