/usr/include/ompl/base/StateSpace.h is in libompl-dev 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 | /*********************************************************************
* Software License Agreement (BSD License)
*
* Copyright (c) 2010, Rice University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the Rice University nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/
/* Author: Ioan Sucan */
#ifndef OMPL_BASE_STATE_SPACE_
#define OMPL_BASE_STATE_SPACE_
#include "ompl/base/State.h"
#include "ompl/base/StateSpaceTypes.h"
#include "ompl/base/StateSampler.h"
#include "ompl/base/ProjectionEvaluator.h"
#include "ompl/base/GenericParam.h"
#include "ompl/util/Console.h"
#include "ompl/util/ClassForward.h"
#include <boost/concept_check.hpp>
#include <boost/noncopyable.hpp>
#include <iostream>
#include <vector>
#include <string>
#include <map>
namespace ompl
{
namespace base
{
/// @cond IGNORE
/** \brief Forward declaration of ompl::base::StateSpace */
OMPL_CLASS_FORWARD(StateSpace);
/// @endcond
/** \class ompl::base::StateSpacePtr
\brief A boost shared pointer wrapper for ompl::base::StateSpace */
/** \brief Representation of a space in which planning can be
performed. Topology specific sampling, interpolation and distance
are defined.
See \ref implementingStateSpaces. */
class StateSpace : private boost::noncopyable
{
public:
/** \brief Define the type of state allocated by this space */
typedef State StateType;
/** \brief Constructor. Assigns a @b unique name to the space */
StateSpace();
virtual ~StateSpace();
/** \brief Cast this instance to a desired type. */
template<class T>
T* as()
{
/** \brief Make sure the type we are casting to is indeed a state space */
BOOST_CONCEPT_ASSERT((boost::Convertible<T*, StateSpace*>));
return static_cast<T*>(this);
}
/** \brief Cast this instance to a desired type. */
template<class T>
const T* as() const
{
/** \brief Make sure the type we are casting to is indeed a state space */
BOOST_CONCEPT_ASSERT((boost::Convertible<T*, StateSpace*>));
return static_cast<const T*>(this);
}
/** \brief Representation of the address of a substate in a state. This structure stores the indexing information needed to access a particular substate of a state */
struct SubstateLocation
{
/** \brief In a complex state space there may be multiple
compound state spaces that make up an even larger
compound space. This array indicates the sequence of
indices of the subspaces that need to be followed to
get to the component of the state that is of interest. */
std::vector<std::size_t> chain;
/** \brief The space that is reached if the chain above is followed on the state space */
const StateSpace *space;
};
/** \brief Representation of the address of a value in a state. This structure stores the indexing information needed to access elements of a state (no pointer values are stored) */
struct ValueLocation
{
/** \brief Location of the substate that contains the pointed to value */
SubstateLocation stateLocation;
/** \brief The index of the value to be accessed, within the substate location above */
std::size_t index;
};
/** \brief Flags to use in a bit mask for state space sanity checks. Some basic checks do not have flags associated (they are always executed; for example,
whether copyState() works as expected) */
enum SanityChecks
{
/// \brief Check whether the distances between non-equal states is strictly positive (StateSpace::distance())
STATESPACE_DISTANCE_DIFFERENT_STATES = (1<<1),
/// \brief Check whether the distance function is symmetric (StateSpace::distance())
STATESPACE_DISTANCE_SYMMETRIC = (1<<2),
/// \brief Check whether calling StateSpace::interpolate() works as expected
STATESPACE_INTERPOLATION = (1<<3),
/// \brief Check whether the triangle inequality holds when using StateSpace::interpolate() and StateSpace::distance()
STATESPACE_TRIANGLE_INEQUALITY = (1<<4),
/// \brief Check whether the StateSpace::distance() is bounded by StateSpace::getExtent()
STATESPACE_DISTANCE_BOUND = (1<<5),
/// \brief Check whether sampled states are always within bounds
STATESPACE_RESPECT_BOUNDS = (1<<6),
/// \brief Check that enforceBounds() does not modify the contents of states that are within bounds
STATESPACE_ENFORCE_BOUNDS_NO_OP = (1<<7),
/// \brief Check whether the StateSpace::serialize() and StateSpace::deserialize() work as expected
STATESPACE_SERIALIZATION = (1<<8)
};
/** @name Generic functionality for state spaces
@{ */
/** \brief Check if the state space is compound */
virtual bool isCompound() const;
/** \brief Check if the set of states is discrete
\note In fact, because of limited numerical precision,
the representation of all spaces is discrete; this
function returns true if the corresponding
mathematical object is a discrete one. */
virtual bool isDiscrete() const;
/** \brief Check if this is a hybrid state space (i.e., both discrete and continuous components exist)*/
virtual bool isHybrid() const;
/** \brief Return true if the distance function associated with the space
is a metric */
virtual bool isMetricSpace() const
{
return true;
}
/** \brief Check if the distance function on this state space is symmetric, i.e. distance(s1,s2) = distance(s2,s1). Default implementation returns true.*/
virtual bool hasSymmetricDistance() const;
/** \brief Check if the interpolation function on this state space is symmetric, i.e. interpolate(from, to, t, state) = interpolate(to, from, 1-t, state). Default implementation returns true.*/
virtual bool hasSymmetricInterpolate() const;
/** \brief Get the name of the state space */
const std::string& getName() const;
/** \brief Set the name of the state space */
void setName(const std::string &name);
/** \brief Get the type of the state space. The type can be
used to verify whether two space instances are of
the same type (e.g., SO2) */
int getType() const
{
return type_;
}
/** \brief Return true if \e other is a space included (perhaps equal, perhaps a subspace) in this one. */
bool includes(const StateSpacePtr &other) const;
/** \brief Return true if \e other is a space included (perhaps equal, perhaps a subspace) in this one. */
bool includes(const StateSpace *other) const;
/** \brief Return true if \e other is a space that is either included (perhaps equal, perhaps a subspace)
in this one, or all of its subspaces are included in this one. */
bool covers(const StateSpacePtr &other) const;
/** \brief Return true if \e other is a space that is either included (perhaps equal, perhaps a subspace)
in this one, or all of its subspaces are included in this one. */
bool covers(const StateSpace *other) const;
/** \brief Get the parameters for this space */
ParamSet& params()
{
return params_;
}
/** \brief Get the parameters for this space */
const ParamSet& params() const
{
return params_;
}
/** \brief When performing discrete validation of motions,
the length of the longest segment that does not
require state validation needs to be specified. This
function returns this length, for this state space, as a
fraction of the space's maximum extent. */
virtual double getLongestValidSegmentFraction() const;
/** \brief When performing discrete validation of motions,
the length of the longest segment that does not
require state validation needs to be specified. This
function sets this length as a fraction of the
space's maximum extent.
\note This function's effect is not considered until
after setup() has been called. For immediate effects
(i.e., during planning) use
setValidSegmentCountFactor() */
virtual void setLongestValidSegmentFraction(double segmentFraction);
/** \brief Count how many segments of the "longest valid length" fit on the motion from \e state1 to \e state2 */
virtual unsigned int validSegmentCount(const State *state1, const State *state2) const;
/** \brief Set \e factor to be the value to multiply the
return value of validSegmentCount(). By default, this
value is 1. The higher the value, the smaller the size
of the segments considered valid. The effect of this
function is immediate (setup() does not need to be
called). */
void setValidSegmentCountFactor(unsigned int factor);
/** \brief Get the value used to multiply the return value of validSegmentCount().*/
unsigned int getValidSegmentCountFactor() const;
/** \brief Get the longest valid segment at the time setup() was called. */
double getLongestValidSegmentLength() const;
/** \brief Compute an array of ints that uniquely identifies the structure of the state space.
The first element of the signature is the number of integers that follow */
void computeSignature(std::vector<int> &signature) const;
/** @} */
/** @name Functionality specific to state spaces (to be implemented by derived state spaces)
@{ */
/** \brief Get the dimension of the space (not the dimension of the surrounding ambient space) */
virtual unsigned int getDimension() const = 0;
/** \brief Get the maximum value a call to distance() can return (or an upper bound).
For unbounded state spaces, this function can return infinity.
\note Tight upper bounds are preferred because the value of the extent is used in
the automatic computation of parameters for planning. If the bounds are less tight,
the automatically computed parameters will be less useful.*/
virtual double getMaximumExtent() const = 0;
/** \brief Get a measure of the space (this can be thought of as a generalization of volume) */
virtual double getMeasure() const = 0;
/** \brief Bring the state within the bounds of the state space. For unbounded spaces this
function can be a no-op. */
virtual void enforceBounds(State *state) const = 0;
/** \brief Check if a state is inside the bounding box. For unbounded spaces this function
can always return true. */
virtual bool satisfiesBounds(const State *state) const = 0;
/** \brief Copy a state to another. The memory of source and destination should NOT overlap.
\note For more advanced state copying methods (partial copy, for example), see \ref advancedStateCopy. */
virtual void copyState(State *destination, const State *source) const = 0;
/** \brief Computes distance between two states. This function satisfies the properties of a
metric if isMetricSpace() is true, and its return value will always be between 0 and getMaximumExtent() */
virtual double distance(const State *state1, const State *state2) const = 0;
/** \brief Get the number of chars in the serialization of a state in this space */
virtual unsigned int getSerializationLength() const;
/** \brief Write the binary representation of \e state to \e serialization */
virtual void serialize(void *serialization, const State *state) const;
/** \brief Read the binary representation of a state from \e serialization and write it to \e state */
virtual void deserialize(State *state, const void *serialization) const;
/** \brief Checks whether two states are equal */
virtual bool equalStates(const State *state1, const State *state2) const = 0;
/** \brief Computes the state that lies at time @e t in [0, 1] on the segment that connects @e from state to @e to state.
The memory location of @e state is not required to be different from the memory of either
@e from or @e to. */
virtual void interpolate(const State *from, const State *to, const double t, State *state) const = 0;
/** \brief Allocate an instance of the default uniform state sampler for this space */
virtual StateSamplerPtr allocDefaultStateSampler() const = 0;
/** \brief Allocate an instance of the state sampler for this space. This sampler will be allocated with the
sampler allocator that was previously specified by setStateSamplerAllocator() or, if no sampler allocator was specified,
allocDefaultStateSampler() is called */
virtual StateSamplerPtr allocStateSampler() const;
/** \brief Set the sampler allocator to use */
void setStateSamplerAllocator(const StateSamplerAllocator &ssa);
/** \brief Clear the state sampler allocator (reset to default) */
void clearStateSamplerAllocator();
/** \brief Allocate a state that can store a point in the described space */
virtual State* allocState() const = 0;
/** \brief Free the memory of the allocated state */
virtual void freeState(State *state) const = 0;
/** @} */
/** @name Functionality specific to accessing real values in a state
@{ */
/** \brief Many states contain a number of double values. This function provides a means to get the
memory address of a double value from state \e state located at position \e index. The first double value
is returned for \e index = 0. If \e index is too large (does not point to any double values in the state),
the return value is NULL.
\note This function does @b not map a state to an
array of doubles. There may be components of a state
that do not correspond to double values and they are
'invisible' to this function. Furthermore, this
function is @b slow and is not intended for use in the
implementation of planners. Ideally, state values should not be accessed by index. If accessing of individual state elements
is however needed, getValueAddressAtLocation() provides a faster implementation. */
virtual double* getValueAddressAtIndex(State *state, const unsigned int index) const;
/** \brief Const variant of the same function as above; */
const double* getValueAddressAtIndex(const State *state, const unsigned int index) const;
/** \brief Get the locations of values of type double contained in a state from this space. The order of the values is
consistent with getValueAddressAtIndex(). The setup() function must have been previously called. */
const std::vector<ValueLocation>& getValueLocations() const;
/** \brief Get the named locations of values of type double contained in a state from this space.
The setup() function must have been previously called. */
const std::map<std::string, ValueLocation>& getValueLocationsByName() const;
/** \brief Get a pointer to the double value in \e state that \e loc points to */
double* getValueAddressAtLocation(State *state, const ValueLocation &loc) const;
/** \brief Const variant of the same function as above; */
const double* getValueAddressAtLocation(const State *state, const ValueLocation &loc) const;
/** \brief Get a pointer to the double value in \e state that \e name points to */
double* getValueAddressAtName(State *state, const std::string &name) const;
/** \brief Const variant of the same function as above; */
const double* getValueAddressAtName(const State *state, const std::string &name) const;
/** \brief Copy all the real values from a state \e source to the array \e reals using getValueAddressAtLocation() */
void copyToReals(std::vector<double> &reals, const State *source) const;
/** \brief Copy the values from \e reals to the state \e destination using getValueAddressAtLocation() */
void copyFromReals(State *destination, const std::vector<double> &reals) const;
/** @} */
/** @name Management of projections from this state space to Euclidean spaces
@{ */
/** \brief Register a projection for this state space under a specified name */
void registerProjection(const std::string &name, const ProjectionEvaluatorPtr &projection);
/** \brief Register the default projection for this state space */
void registerDefaultProjection(const ProjectionEvaluatorPtr &projection);
/** \brief Register the projections for this state space. Usually, this is at least the default
projection. These are implicit projections, set by the implementation of the state space. This is called by setup(). */
virtual void registerProjections();
/** \brief Get the projection registered under a specific name */
ProjectionEvaluatorPtr getProjection(const std::string &name) const;
/** \brief Get the default projection */
ProjectionEvaluatorPtr getDefaultProjection() const;
/** \brief Check if a projection with a specified name is available */
bool hasProjection(const std::string &name) const;
/** \brief Check if a default projection is available */
bool hasDefaultProjection() const;
/** \brief Get all the registered projections */
const std::map<std::string, ProjectionEvaluatorPtr>& getRegisteredProjections() const;
/** @} */
/** @name Debugging tools
@{ */
/** \brief Print a state to a stream */
virtual void printState(const State *state, std::ostream &out) const;
/** \brief Print the settings for this state space to a stream */
virtual void printSettings(std::ostream &out) const;
/** \brief Print the list of registered projections. This function is also called by printSettings() */
virtual void printProjections(std::ostream &out) const;
/** \brief Perform sanity checks for this state space. Throws an exception if failures are found.
\note This checks if distances are always positive, whether the integration works as expected, etc. */
virtual void sanityChecks(double zero, double eps, unsigned int flags) const;
/** \brief Convenience function that allows derived state spaces to choose which checks
should pass (see SanityChecks flags) and how strict the checks are. This just calls sanityChecks() with some default arguments. */
virtual void sanityChecks() const;
/** \brief Print a Graphviz digraph that represents the containment diagram for the state space */
void diagram(std::ostream &out) const;
/** \brief Print the list of all contained state space instances */
void list(std::ostream &out) const;
/** \brief Print a Graphviz digraph that represents the containment diagram for all the instantiated state spaces */
static void Diagram(std::ostream &out);
/** \brief Print the list of available state space instances */
static void List(std::ostream &out);
/** @} */
/** @name Operations with substates
@{ */
/** \brief Allocate a sampler that actually samples only components that are part of \e subspace */
StateSamplerPtr allocSubspaceStateSampler(const StateSpacePtr &subspace) const;
/** \brief Allocate a sampler that actually samples only components that are part of \e subspace */
virtual StateSamplerPtr allocSubspaceStateSampler(const StateSpace *subspace) const;
/** \brief Get the substate of \e state that is pointed to by \e loc */
State* getSubstateAtLocation(State *state, const SubstateLocation &loc) const;
/** \brief Get the substate of \e state that is pointed to by \e loc */
const State* getSubstateAtLocation(const State *state, const SubstateLocation &loc) const;
/** \brief Get the list of known substate locations (keys of the map corrspond to names of subspaces) */
const std::map<std::string, SubstateLocation>& getSubstateLocationsByName() const;
/** \brief Get the set of subspaces that this space and \e other have in common. The computed list of \e subspaces does
not contain spaces that cover each other, even though they may be common, as that is redundant information. */
void getCommonSubspaces(const StateSpacePtr &other, std::vector<std::string> &subspaces) const;
/** \brief Get the set of subspaces that this space and \e other have in common. The computed list of \e subspaces does
not contain spaces that cover each other, even though they may be common, as that is redundant information. */
void getCommonSubspaces(const StateSpace *other, std::vector<std::string> &subspaces) const;
/** \brief Compute the location information for various components of the state space. Either this function or setup() must be
called before any calls to getValueAddressAtName(), getValueAddressAtLocation() (and other functions where those are used). */
virtual void computeLocations();
/** @} */
/** \brief Perform final setup steps. This function is
automatically called by the SpaceInformation. If any
default projections are to be registered, this call
will set them and call their setup() functions. It is
safe to call this function multiple times. At a
subsequent call, projections that have been previously
user configured are not re-instantiated, but their
setup() method is still called. */
virtual void setup();
protected:
/** \brief The name used for the default projection */
static const std::string DEFAULT_PROJECTION_NAME;
/** \brief A type assigned for this state space */
int type_;
/** \brief An optional state sampler allocator */
StateSamplerAllocator ssa_;
/** \brief The extent of this space at the time setup() was called */
double maxExtent_;
/** \brief The fraction of the longest valid segment */
double longestValidSegmentFraction_;
/** \brief The longest valid segment at the time setup() was called */
double longestValidSegment_;
/** \brief The factor to multiply the value returned by validSegmentCount(). Rarely used but useful for things like doubling the resolution */
unsigned int longestValidSegmentCountFactor_;
/** \brief List of available projections */
std::map<std::string, ProjectionEvaluatorPtr> projections_;
/** \brief The set of parameters for this space */
ParamSet params_;
/** \brief The value locations for all varliables of type double contained in a state;
The locations point to values in the same order as that returned by getValueAddressAtIndex() */
std::vector<ValueLocation> valueLocationsInOrder_;
/** \brief All the known value locations, by name. The names of state spaces access the first element of a state.
RealVectorStateSpace dimensions are used to access individual dimensions. */
std::map<std::string, ValueLocation> valueLocationsByName_;
/** \brief All the known substat locations, by name. */
std::map<std::string, SubstateLocation> substateLocationsByName_;
private:
/** \brief State space name */
std::string name_;
};
/** \brief A space to allow the composition of state spaces */
class CompoundStateSpace : public StateSpace
{
public:
/** \brief Define the type of state allocated by this state space */
typedef CompoundState StateType;
/** \brief Construct an empty compound state space */
CompoundStateSpace();
/** \brief Construct a compound state space from a list of subspaces (\e components) and their corresponding weights (\e weights) */
CompoundStateSpace(const std::vector<StateSpacePtr> &components, const std::vector<double> &weights);
virtual ~CompoundStateSpace()
{
}
/** \brief Cast a component of this instance to a desired type. */
template<class T>
T* as(const unsigned int index) const
{
/** \brief Make sure the type we are casting to is indeed a state space */
BOOST_CONCEPT_ASSERT((boost::Convertible<T*, StateSpace*>));
return static_cast<T*>(getSubspace(index).get());
}
/** \brief Cast a component of this instance to a desired type. */
template<class T>
T* as(const std::string &name) const
{
/** \brief Make sure the type we are casting to is indeed a state space */
BOOST_CONCEPT_ASSERT((boost::Convertible<T*, StateSpace*>));
return static_cast<T*>(getSubspace(name).get());
}
virtual bool isCompound() const;
virtual bool isHybrid() const;
/** @name Management of contained subspaces
@{ */
/** \brief Adds a new state space as part of the compound state space. For computing distances within the compound
state space, the weight of the component also needs to be specified. */
void addSubspace(const StateSpacePtr &component, double weight);
/** \brief Get the number of state spaces that make up the compound state space */
unsigned int getSubspaceCount() const;
/** \brief Get a specific subspace from the compound state space */
const StateSpacePtr& getSubspace(const unsigned int index) const;
/** \brief Get a specific subspace from the compound state space */
const StateSpacePtr& getSubspace(const std::string& name) const;
/** \brief Get the index of a specific subspace from the compound state space */
unsigned int getSubspaceIndex(const std::string& name) const;
/** \brief Check if a specific subspace is contained in this state space */
bool hasSubspace(const std::string &name) const;
/** \brief Get the weight of a subspace from the compound state space (used in distance computation) */
double getSubspaceWeight(const unsigned int index) const;
/** \brief Get the weight of a subspace from the compound state space (used in distance computation) */
double getSubspaceWeight(const std::string &name) const;
/** \brief Set the weight of a subspace in the compound state space (used in distance computation) */
void setSubspaceWeight(const unsigned int index, double weight);
/** \brief Set the weight of a subspace in the compound state space (used in distance computation) */
void setSubspaceWeight(const std::string &name, double weight);
/** \brief Get the list of components */
const std::vector<StateSpacePtr>& getSubspaces() const;
/** \brief Get the list of component weights */
const std::vector<double>& getSubspaceWeights() const;
/** \brief Return true if the state space is locked. A value
of true means that no further spaces can be added
as components. */
bool isLocked() const;
/** \brief Lock this state space. This means no further
spaces can be added as components. This function can
be for instance called from the constructor of a
state space that inherits from CompoundStateSpace to
prevent the user to add further components. */
void lock();
/** @} */
/** @name Operations with substates
@{ */
virtual StateSamplerPtr allocSubspaceStateSampler(const StateSpace *subspace) const;
/** @} */
/** @name Functionality specific to the state space
@{ */
virtual unsigned int getDimension() const;
virtual double getMaximumExtent() const;
virtual double getMeasure() const;
virtual void enforceBounds(State *state) const;
virtual bool satisfiesBounds(const State *state) const;
virtual void copyState(State *destination, const State *source) const;
virtual unsigned int getSerializationLength() const;
virtual void serialize(void *serialization, const State *state) const;
virtual void deserialize(State *state, const void *serialization) const;
virtual double distance(const State *state1, const State *state2) const;
/** \brief When performing discrete validation of motions,
the length of the longest segment that does not
require state validation needs to be specified. This
function sets this length as a fraction of the space's
maximum extent. The call is passed to all contained subspaces */
virtual void setLongestValidSegmentFraction(double segmentFraction);
/** \brief Count how many segments of the "longest valid length" fit on the motion from \e state1 to \e state2.
This is the max() of the counts returned by contained subspaces. */
virtual unsigned int validSegmentCount(const State *state1, const State *state2) const;
virtual bool equalStates(const State *state1, const State *state2) const;
virtual void interpolate(const State *from, const State *to, const double t, State *state) const;
virtual StateSamplerPtr allocDefaultStateSampler() const;
virtual State* allocState() const;
virtual void freeState(State *state) const;
virtual double* getValueAddressAtIndex(State *state, const unsigned int index) const;
/** @} */
virtual void printState(const State *state, std::ostream &out) const;
virtual void printSettings(std::ostream &out) const;
virtual void computeLocations();
virtual void setup();
protected:
/** \brief Allocate the state components. Called by allocState(). Usually called by derived state spaces. */
void allocStateComponents(CompoundState *state) const;
/** \brief The state spaces that make up the compound state space */
std::vector<StateSpacePtr> components_;
/** \brief The number of components */
unsigned int componentCount_;
/** \brief The weight assigned to each component of the state space when computing the compound distance */
std::vector<double> weights_;
/** \brief The sum of all the weights in \e weights_ */
double weightSum_;
/** \brief Flag indicating whether adding further components is allowed or not */
bool locked_;
};
/** \addtogroup stateAndSpaceOperators
* @{
*/
/** \brief Construct a compound state space from two existing
state spaces. The components of this compound space are \e
a (or the components of \e a, if \e a is compound) and \e
b (or the components of \e b, if \e b is compound).
State spaces are identified by name. Duplicates are checked
for and added only once. If the compound state space would
end up containing solely one component, that component is returned
instead. */
StateSpacePtr operator+(const StateSpacePtr &a, const StateSpacePtr &b);
/** \brief Construct a compound state space that contains
subspaces only from \e a. If \e a is compound, \e b (or
the components from \e b, if \e b is compound) are removed
and the remaining components are returned as a compound
state space. If the compound space would end up containing solely
one component, that component is returned instead. */
StateSpacePtr operator-(const StateSpacePtr &a, const StateSpacePtr &b);
/** \brief Construct a compound state space that contains
subspaces only from \e a, except for maybe the one named \e name */
StateSpacePtr operator-(const StateSpacePtr &a, const std::string &name);
/** \brief Construct a compound state space that contains
subspaces that are in both \e a and \e b */
StateSpacePtr operator*(const StateSpacePtr &a, const StateSpacePtr &b);
/** @} */
/** \defgroup advancedStateCopy Advanced methods for copying states
* @{
*/
/** \brief The possible outputs for an advanced copy operation */
enum AdvancedStateCopyOperation
{
/** \brief No data was copied */
NO_DATA_COPIED = 0,
/** \brief Some data was copied */
SOME_DATA_COPIED = 1,
/** \brief All data was copied */
ALL_DATA_COPIED = 2
};
/** \brief Copy data from \e source (state from space \e
sourceS) to \e dest (state from space \e destS) on a
component by component basis. State spaces are matched by
name. If the state space \e destS contains any subspace
whose name matches any subspace of the state space \e
sourceS, the corresponding state components are
copied. */
AdvancedStateCopyOperation copyStateData(const StateSpacePtr &destS, State *dest,
const StateSpacePtr &sourceS, const State *source);
/** \brief Copy data from \e source (state from space \e
sourceS) to \e dest (state from space \e destS) on a
component by component basis. State spaces are matched by
name. If the state space \e destS contains any subspace
whose name matches any subspace of the state space \e
sourceS, the corresponding state components are
copied. */
AdvancedStateCopyOperation copyStateData(const StateSpace *destS, State *dest,
const StateSpace *sourceS, const State *source);
/** \brief Copy data from \e source (state from space \e
sourceS) to \e dest (state from space \e destS) but only
for the subspaces indicated by name in \e subspaces. This
uses StateSpace::getSubstateLocationsByName().
\note For efficiency reasons it is a good idea usually to make sure the elements of \e subspaces are not subspaces of each other */
AdvancedStateCopyOperation copyStateData(const StateSpacePtr &destS, State *dest,
const StateSpacePtr &sourceS, const State *source,
const std::vector<std::string> &subspaces);
/** \brief Copy data from \e source (state from space \e
sourceS) to \e dest (state from space \e destS) but only
for the subspaces indicated by name in \e subspaces. This
uses StateSpace::getSubstateLocationsByName().
\note For efficiency reasons it is a good idea usually to make sure the elements of \e subspaces are not subspaces of each other */
AdvancedStateCopyOperation copyStateData(const StateSpace *destS, State *dest,
const StateSpace *sourceS, const State *source,
const std::vector<std::string> &subspaces);
/** @} */
}
}
#endif
|