This file is indexed.

/usr/include/octomap/OcTreeBaseSE.hxx is in liboctomap-dev 1.6.8+dfsg-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*
 * OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
 * http://octomap.github.com/
 *
 * Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
 * All rights reserved.
 * License: New BSD
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the University of Freiburg nor the names of its
 *       contributors may be used to endorse or promote products derived from
 *       this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */


#include <limits>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>

namespace octomap {


  template <class NODE>
  OcTreeBaseSE<NODE>::OcTreeBaseSE (double _resolution) :
    OcTreeBase<NODE>(_resolution) {
    
    lut = new OcTreeLUT (this->tree_depth);
  }

  template <class NODE>
  OcTreeBaseSE<NODE>::~OcTreeBaseSE () {
    delete lut;
  }


  template <class NODE>
  bool OcTreeBaseSE<NODE>::computeRayKeys(const point3d& origin, 
                                          const point3d& end, 
                                          KeyRay& ray) const {

    //    std::cout << "using key ray method\n";

    // see "A Faster Voxel Traversal Algorithm for Ray Tracing" by Amanatides & Woo
    // basically: DDA in 3D

    ray.reset();

    OcTreeKey key_origin, key_end;
    if ( !OcTreeBase<NODE>::coordToKeyChecked(origin, key_origin) || 
         !OcTreeBase<NODE>::coordToKeyChecked(end, key_end) ) {
      OCTOMAP_WARNING_STR("Coordinates out of bounds during ray casting");
      return false;
    }

    ray.addKey(key_origin);
    
    if (key_origin == key_end) return true; // same tree cell, we're done.


    // Initialization phase -------------------------------------------------------

    point3d direction = (end - origin);
    double length = direction.norm2();
    direction /= length; // normalize vector

    int    step[3];
    double tMax[3];
    double tDelta[3];

    OcTreeKey current_key = key_origin; 

    for(unsigned int i=0; i < 3; ++i) {

      // compute step direction
      if (direction(i) > 0.0) step[i] =  1;
      else if (direction(i) < 0.0)   step[i] = -1;
      else step[i] = 0;

      // compute tMax, tDelta
      double voxelBorder = this->keyToCoord(current_key[i]); // negative corner point of voxel
      voxelBorder += double(step[i] * this->resolution * 0.5);

      if (step[i] != 0) {
        tMax[i] = ( voxelBorder - origin(i) ) / direction(i);
        tDelta[i] = this->resolution / fabs( direction(i) );
      }
      else {
        tMax[i] =  std::numeric_limits<double>::max();
        tDelta[i] = std::numeric_limits<double>::max();
      }
    }

    // for speedup:
    point3d origin_scaled = origin;  
    origin_scaled /= this->resolution;  
    double length_scaled = length - this->resolution/2.; // safety margin
    length_scaled /= this->resolution;  // scale 
    length_scaled = length_scaled*length_scaled;  // avoid sqrt in dist comp.

    // Incremental phase  ---------------------------------------------------------

    bool done = false;
    while (!done) {

      unsigned int dim;

      // find minimum tMax:
      if (tMax[0] < tMax[1]){
        if (tMax[0] < tMax[2]) dim = 0;
        else                   dim = 2;
      }
      else {
        if (tMax[1] < tMax[2]) dim = 1;
        else                   dim = 2;
      }

      // advance in direction "dim"
      current_key[dim] += step[dim];
      tMax[dim] += tDelta[dim];

      assert ((current_key[dim] >= 0) && (current_key[dim] < 2*this->tree_max_val));

      // reached endpoint, key equv?
      if (current_key == key_end) {
        done = true;
        break;
      }
      else {

        // reached endpoint world coords?
        double dist_from_endpoint = 0;
        for (unsigned int j = 0; j < 3; j++) {
          double coord = (double) current_key[j] - (double) this->tree_max_val;
          dist_from_endpoint += (coord - origin_scaled(j)) * (coord - origin_scaled(j));
        }
        if (dist_from_endpoint > length_scaled) {
          done = true;
          break;
        }
        
        else {  // continue to add freespace cells
          ray.addKey(current_key);
        }
      }

      assert ( ray.size() < ray.sizeMax() - 1);
      
    } // end while

    return true;
  }



  template <class NODE>
  NODE* OcTreeBaseSE<NODE>::getLUTNeighbor (const point3d& node_coord, OcTreeLUT::NeighborDirection dir) const {

    OcTreeKey start_key;

    if (! OcTreeBase<NODE>::coordToKeyChecked(node_coord, start_key)) {
      OCTOMAP_ERROR_STR("Error in search: ["<< node_coord <<"] is out of OcTree bounds!");
      return NULL;
    }

    OcTreeKey neighbor_key;
    lut->genNeighborKey(start_key, (signed char&) dir, neighbor_key);
    return this->search(neighbor_key);
  }



}