/usr/include/octomap/OcTreeBaseImpl.hxx is in liboctomap-dev 1.6.8+dfsg-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 | /*
* OctoMap - An Efficient Probabilistic 3D Mapping Framework Based on Octrees
* http://octomap.github.com/
*
* Copyright (c) 2009-2013, K.M. Wurm and A. Hornung, University of Freiburg
* All rights reserved.
* License: New BSD
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the University of Freiburg nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#undef max
#undef min
#include <limits>
#ifdef _OPENMP
#include <omp.h>
#endif
namespace octomap {
template <class NODE,class I>
OcTreeBaseImpl<NODE,I>::OcTreeBaseImpl(double resolution) :
I(), root(NULL), tree_depth(16), tree_max_val(32768),
resolution(resolution), tree_size(0)
{
init();
// no longer create an empty root node - only on demand
}
template <class NODE,class I>
OcTreeBaseImpl<NODE,I>::OcTreeBaseImpl(double resolution, unsigned int tree_depth, unsigned int tree_max_val) :
I(), root(NULL), tree_depth(tree_depth), tree_max_val(tree_max_val),
resolution(resolution), tree_size(0)
{
init();
// no longer create an empty root node - only on demand
}
template <class NODE,class I>
OcTreeBaseImpl<NODE,I>::~OcTreeBaseImpl(){
if (root)
delete root;
root = NULL;
}
template <class NODE,class I>
OcTreeBaseImpl<NODE,I>::OcTreeBaseImpl(const OcTreeBaseImpl<NODE,I>& rhs) :
root(NULL), tree_depth(rhs.tree_depth), tree_max_val(rhs.tree_max_val),
resolution(rhs.resolution), tree_size(rhs.tree_size)
{
init();
// copy nodes recursively:
if (rhs.root)
root = new NODE(*(rhs.root));
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::init(){
this->setResolution(this->resolution);
for (unsigned i = 0; i< 3; i++){
max_value[i] = -(std::numeric_limits<double>::max( ));
min_value[i] = std::numeric_limits<double>::max( );
}
size_changed = true;
// create as many KeyRays as there are OMP_THREADS defined,
// one buffer for each thread
#ifdef _OPENMP
#pragma omp parallel
#pragma omp critical
{
if (omp_get_thread_num() == 0){
this->keyrays.resize(omp_get_num_threads());
}
}
#else
this->keyrays.resize(1);
#endif
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::swapContent(OcTreeBaseImpl<NODE,I>& other){
NODE* this_root = root;
root = other.root;
other.root = this_root;
size_t this_size = this->tree_size;
this->tree_size = other.tree_size;
other.tree_size = this_size;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::operator== (const OcTreeBaseImpl<NODE,I>& other) const{
if (tree_depth != other.tree_depth || tree_max_val != other.tree_max_val
|| resolution != other.resolution || tree_size != other.tree_size){
return false;
}
// traverse all nodes, check if structure the same
OcTreeBaseImpl<NODE,I>::tree_iterator it = this->begin_tree();
OcTreeBaseImpl<NODE,I>::tree_iterator end = this->end_tree();
OcTreeBaseImpl<NODE,I>::tree_iterator other_it = other.begin_tree();
OcTreeBaseImpl<NODE,I>::tree_iterator other_end = other.end_tree();
for (; it != end; ++it, ++other_it){
if (other_it == other_end)
return false;
if (it.getDepth() != other_it.getDepth()
|| it.getKey() != other_it.getKey()
|| !(*it == *other_it))
{
return false;
}
}
if (other_it != other_end)
return false;
return true;
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::setResolution(double r) {
resolution = r;
resolution_factor = 1. / resolution;
tree_center(0) = tree_center(1) = tree_center(2)
= (float) (((double) tree_max_val) / resolution_factor);
// init node size lookup table:
sizeLookupTable.resize(tree_depth+1);
for(unsigned i = 0; i <= tree_depth; ++i){
sizeLookupTable[i] = resolution * double(1 << (tree_depth - i));
}
size_changed = true;
}
template <class NODE,class I>
inline unsigned short int OcTreeBaseImpl<NODE,I>::coordToKey(double coordinate, unsigned depth) const{
assert (depth <= tree_depth);
int keyval = ((int) floor(resolution_factor * coordinate));
unsigned int diff = tree_depth - depth;
if(!diff) // same as coordToKey without depth
return keyval + tree_max_val;
else // shift right and left => erase last bits. Then add offset.
return ((keyval >> diff) << diff) + (1 << (diff-1)) + tree_max_val;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::coordToKeyChecked(double coordinate, unsigned short int& keyval) const {
// scale to resolution and shift center for tree_max_val
int scaled_coord = ((int) floor(resolution_factor * coordinate)) + tree_max_val;
// keyval within range of tree?
if (( scaled_coord >= 0) && (((unsigned int) scaled_coord) < (2*tree_max_val))) {
keyval = scaled_coord;
return true;
}
return false;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::coordToKeyChecked(double coordinate, unsigned depth, unsigned short int& keyval) const {
// scale to resolution and shift center for tree_max_val
int scaled_coord = ((int) floor(resolution_factor * coordinate)) + tree_max_val;
// keyval within range of tree?
if (( scaled_coord >= 0) && (((unsigned int) scaled_coord) < (2*tree_max_val))) {
keyval = scaled_coord;
keyval = adjustKeyAtDepth(keyval, depth);
return true;
}
return false;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::coordToKeyChecked(const point3d& point, OcTreeKey& key) const{
for (unsigned int i=0;i<3;i++) {
if (!coordToKeyChecked( point(i), key[i])) return false;
}
return true;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::coordToKeyChecked(const point3d& point, unsigned depth, OcTreeKey& key) const{
for (unsigned int i=0;i<3;i++) {
if (!coordToKeyChecked( point(i), depth, key[i])) return false;
}
return true;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::coordToKeyChecked(double x, double y, double z, OcTreeKey& key) const{
if (!(coordToKeyChecked(x, key[0])
&& coordToKeyChecked(y, key[1])
&& coordToKeyChecked(z, key[2])))
{
return false;
} else {
return true;
}
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::coordToKeyChecked(double x, double y, double z, unsigned depth, OcTreeKey& key) const{
if (!(coordToKeyChecked(x, depth, key[0])
&& coordToKeyChecked(y, depth, key[1])
&& coordToKeyChecked(z, depth, key[2])))
{
return false;
} else {
return true;
}
}
template <class NODE,class I>
unsigned short int OcTreeBaseImpl<NODE,I>::adjustKeyAtDepth(unsigned short int key, unsigned int depth) const{
unsigned int diff = tree_depth - depth;
if(diff == 0)
return key;
else
return (((key-tree_max_val) >> diff) << diff) + (1 << (diff-1)) + tree_max_val;
}
template <class NODE,class I>
double OcTreeBaseImpl<NODE,I>::keyToCoord(unsigned short int key, unsigned depth) const{
assert(depth <= tree_depth);
// root is centered on 0 = 0.0
if (depth == 0) {
return 0.0;
} else if (depth == tree_depth) {
return keyToCoord(key);
} else {
return (floor( (double(key)-double(this->tree_max_val)) /double(1 << (tree_depth - depth)) ) + 0.5 ) * this->getNodeSize(depth);
}
}
template <class NODE,class I>
NODE* OcTreeBaseImpl<NODE,I>::search(const point3d& value, unsigned int depth) const {
OcTreeKey key;
if (!coordToKeyChecked(value, key)){
OCTOMAP_ERROR_STR("Error in search: ["<< value <<"] is out of OcTree bounds!");
return NULL;
}
else {
return this->search(key, depth);
}
}
template <class NODE,class I>
NODE* OcTreeBaseImpl<NODE,I>::search(double x, double y, double z, unsigned int depth) const {
OcTreeKey key;
if (!coordToKeyChecked(x, y, z, key)){
OCTOMAP_ERROR_STR("Error in search: ["<< x <<" "<< y << " " << z << "] is out of OcTree bounds!");
return NULL;
}
else {
return this->search(key, depth);
}
}
template <class NODE,class I>
NODE* OcTreeBaseImpl<NODE,I>::search (const OcTreeKey& key, unsigned int depth) const {
assert(depth <= tree_depth);
if (root == NULL)
return NULL;
if (depth == 0)
depth = tree_depth;
// generate appropriate key_at_depth for queried depth
OcTreeKey key_at_depth = key;
if (depth != tree_depth)
key_at_depth = adjustKeyAtDepth(key, depth);
NODE* curNode (root);
unsigned int diff = tree_depth - depth;
// follow nodes down to requested level (for diff = 0 it's the last level)
for (unsigned i=(tree_depth-1); i>=diff; --i) {
unsigned int pos = computeChildIdx(key_at_depth, i);
if (curNode->childExists(pos)) {
// cast needed: (nodes need to ensure it's the right pointer)
curNode = static_cast<NODE*>( curNode->getChild(pos) );
} else {
// we expected a child but did not get it
// is the current node a leaf already?
if (!curNode->hasChildren()) {
return curNode;
} else {
// it is not, search failed
return NULL;
}
}
} // end for
return curNode;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::deleteNode(const point3d& value, unsigned int depth) {
OcTreeKey key;
if (!coordToKeyChecked(value, key)){
OCTOMAP_ERROR_STR("Error in deleteNode: ["<< value <<"] is out of OcTree bounds!");
return false;
}
else {
return this->deleteNode(key, depth);
}
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::deleteNode(double x, double y, double z, unsigned int depth) {
OcTreeKey key;
if (!coordToKeyChecked(x, y, z, key)){
OCTOMAP_ERROR_STR("Error in deleteNode: ["<< x <<" "<< y << " " << z << "] is out of OcTree bounds!");
return false;
}
else {
return this->deleteNode(key, depth);
}
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::deleteNode(const OcTreeKey& key, unsigned int depth) {
if (root == NULL)
return true;
if (depth == 0)
depth = tree_depth;
return deleteNodeRecurs(root, 0, depth, key);
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::clear() {
if (this->root){
delete this->root;
this->root = NULL;
this->tree_size = 0;
// max extent of tree changed:
this->size_changed = true;
}
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::prune() {
if (root == NULL)
return;
for (unsigned int depth=tree_depth-1; depth > 0; --depth) {
unsigned int num_pruned = 0;
pruneRecurs(this->root, 0, depth, num_pruned);
if (num_pruned == 0)
break;
}
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::expand() {
if (root)
expandRecurs(root,0, tree_depth);
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::computeRayKeys(const point3d& origin,
const point3d& end,
KeyRay& ray) const {
// see "A Faster Voxel Traversal Algorithm for Ray Tracing" by Amanatides & Woo
// basically: DDA in 3D
ray.reset();
OcTreeKey key_origin, key_end;
if ( !OcTreeBaseImpl<NODE,I>::coordToKeyChecked(origin, key_origin) ||
!OcTreeBaseImpl<NODE,I>::coordToKeyChecked(end, key_end) ) {
OCTOMAP_WARNING_STR("coordinates ( "
<< origin << " -> " << end << ") out of bounds in computeRayKeys");
return false;
}
if (key_origin == key_end)
return true; // same tree cell, we're done.
ray.addKey(key_origin);
// Initialization phase -------------------------------------------------------
point3d direction = (end - origin);
float length = (float) direction.norm();
direction /= length; // normalize vector
int step[3];
double tMax[3];
double tDelta[3];
OcTreeKey current_key = key_origin;
for(unsigned int i=0; i < 3; ++i) {
// compute step direction
if (direction(i) > 0.0) step[i] = 1;
else if (direction(i) < 0.0) step[i] = -1;
else step[i] = 0;
// compute tMax, tDelta
if (step[i] != 0) {
// corner point of voxel (in direction of ray)
double voxelBorder = this->keyToCoord(current_key[i]);
voxelBorder += (float) (step[i] * this->resolution * 0.5);
tMax[i] = ( voxelBorder - origin(i) ) / direction(i);
tDelta[i] = this->resolution / fabs( direction(i) );
}
else {
tMax[i] = std::numeric_limits<double>::max( );
tDelta[i] = std::numeric_limits<double>::max( );
}
}
// Incremental phase ---------------------------------------------------------
bool done = false;
while (!done) {
unsigned int dim;
// find minimum tMax:
if (tMax[0] < tMax[1]){
if (tMax[0] < tMax[2]) dim = 0;
else dim = 2;
}
else {
if (tMax[1] < tMax[2]) dim = 1;
else dim = 2;
}
// advance in direction "dim"
current_key[dim] += step[dim];
tMax[dim] += tDelta[dim];
assert (current_key[dim] < 2*this->tree_max_val);
// reached endpoint, key equv?
if (current_key == key_end) {
done = true;
break;
}
else {
// reached endpoint world coords?
// dist_from_origin now contains the length of the ray when traveled until the border of the current voxel
double dist_from_origin = std::min(std::min(tMax[0], tMax[1]), tMax[2]);
// if this is longer than the expected ray length, we should have already hit the voxel containing the end point with the code above (key_end).
// However, we did not hit it due to accumulating discretization errors, so this is the point here to stop the ray as we would never reach the voxel key_end
if (dist_from_origin > length) {
done = true;
break;
}
else { // continue to add freespace cells
ray.addKey(current_key);
}
}
assert ( ray.size() < ray.sizeMax() - 1);
} // end while
return true;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::computeRay(const point3d& origin, const point3d& end,
std::vector<point3d>& _ray) {
_ray.clear();
if (!computeRayKeys(origin, end, keyrays.at(0))) return false;
for (KeyRay::const_iterator it = keyrays[0].begin(); it != keyrays[0].end(); ++it) {
_ray.push_back(keyToCoord(*it));
}
return true;
}
template <class NODE,class I>
bool OcTreeBaseImpl<NODE,I>::deleteNodeRecurs(NODE* node, unsigned int depth, unsigned int max_depth, const OcTreeKey& key){
if (depth >= max_depth) // on last level: delete child when going up
return true;
assert(node);
unsigned int pos = computeChildIdx(key, this->tree_depth-1-depth);
if (!node->childExists(pos)) {
// child does not exist, but maybe it's a pruned node?
if ((!node->hasChildren()) && (node != this->root)) {
// current node does not have children AND it's not the root node
// -> expand pruned node
node->expandNode();
this->tree_size+=8;
this->size_changed = true;
} else { // no branch here, node does not exist
return false;
}
}
// follow down further, fix inner nodes on way back up
bool deleteChild = deleteNodeRecurs(node->getChild(pos), depth+1, max_depth, key);
if (deleteChild){
// TODO: lazy eval?
node->deleteChild(pos);
this->tree_size-=1;
this->size_changed = true;
if (!node->hasChildren())
return true;
else{
node->updateOccupancyChildren();
}
}
// node did not lose a child, or still has other children
return false;
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::pruneRecurs(NODE* node, unsigned int depth,
unsigned int max_depth, unsigned int& num_pruned) {
assert(node);
if (depth < max_depth) {
for (unsigned int i=0; i<8; i++) {
if (node->childExists(i)) {
pruneRecurs(node->getChild(i), depth+1, max_depth, num_pruned);
}
}
} // end if depth
else {
// max level reached
if (node->pruneNode()) {
num_pruned++;
tree_size -= 8;
size_changed = true;
}
}
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::expandRecurs(NODE* node, unsigned int depth,
unsigned int max_depth) {
if (depth >= max_depth)
return;
assert(node);
// current node has no children => can be expanded
if (!node->hasChildren()){
node->expandNode();
tree_size +=8;
size_changed = true;
}
// recursively expand children
for (unsigned int i=0; i<8; i++) {
if (node->childExists(i)) {
expandRecurs(node->getChild(i), depth+1, max_depth);
}
}
}
template <class NODE,class I>
std::ostream& OcTreeBaseImpl<NODE,I>::writeData(std::ostream &s) const{
if (root)
root->writeValue(s);
return s;
}
template <class NODE,class I>
std::istream& OcTreeBaseImpl<NODE,I>::readData(std::istream &s) {
if (!s.good()){
OCTOMAP_WARNING_STR(__FILE__ << ":" << __LINE__ << "Warning: Input filestream not \"good\"");
}
this->tree_size = 0;
size_changed = true;
// tree needs to be newly created or cleared externally
if (root) {
OCTOMAP_ERROR_STR("Trying to read into an existing tree.");
return s;
}
root = new NODE();
root->readValue(s);
tree_size = calcNumNodes(); // compute number of nodes
return s;
}
template <class NODE,class I>
unsigned long long OcTreeBaseImpl<NODE,I>::memoryFullGrid() const{
if (root == NULL)
return 0;
double size_x, size_y, size_z;
this->getMetricSize(size_x, size_y,size_z);
// assuming best case (one big array and efficient addressing)
// we can avoid "ceil" since size already accounts for voxels
// Note: this can be larger than the adressable memory
// - size_t may not be enough to hold it!
return ((size_x/resolution) * (size_y/resolution) * (size_z/resolution)
* sizeof(root->getValue()));
}
// non-const versions,
// change min/max/size_changed members
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getMetricSize(double& x, double& y, double& z){
double minX, minY, minZ;
double maxX, maxY, maxZ;
getMetricMax(maxX, maxY, maxZ);
getMetricMin(minX, minY, minZ);
x = maxX - minX;
y = maxY - minY;
z = maxZ - minZ;
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getMetricSize(double& x, double& y, double& z) const{
double minX, minY, minZ;
double maxX, maxY, maxZ;
getMetricMax(maxX, maxY, maxZ);
getMetricMin(minX, minY, minZ);
x = maxX - minX;
y = maxY - minY;
z = maxZ - minZ;
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::calcMinMax() {
if (!size_changed)
return;
// empty tree
if (root == NULL){
min_value[0] = min_value[1] = min_value[2] = 0.0;
max_value[0] = max_value[1] = max_value[2] = 0.0;
size_changed = false;
return;
}
for (unsigned i = 0; i< 3; i++){
max_value[i] = -std::numeric_limits<double>::max();
min_value[i] = std::numeric_limits<double>::max();
}
for(typename OcTreeBaseImpl<NODE,I>::leaf_iterator it = this->begin(),
end=this->end(); it!= end; ++it)
{
double size = it.getSize();
double halfSize = size/2.0;
double x = it.getX() - halfSize;
double y = it.getY() - halfSize;
double z = it.getZ() - halfSize;
if (x < min_value[0]) min_value[0] = x;
if (y < min_value[1]) min_value[1] = y;
if (z < min_value[2]) min_value[2] = z;
x += size;
y += size;
z += size;
if (x > max_value[0]) max_value[0] = x;
if (y > max_value[1]) max_value[1] = y;
if (z > max_value[2]) max_value[2] = z;
}
size_changed = false;
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getMetricMin(double& x, double& y, double& z){
calcMinMax();
x = min_value[0];
y = min_value[1];
z = min_value[2];
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getMetricMax(double& x, double& y, double& z){
calcMinMax();
x = max_value[0];
y = max_value[1];
z = max_value[2];
}
// const versions
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getMetricMin(double& mx, double& my, double& mz) const {
mx = my = mz = std::numeric_limits<double>::max( );
if (size_changed) {
// empty tree
if (root == NULL){
mx = my = mz = 0.0;
return;
}
for(typename OcTreeBaseImpl<NODE,I>::leaf_iterator it = this->begin(),
end=this->end(); it!= end; ++it) {
double halfSize = it.getSize()/2.0;
double x = it.getX() - halfSize;
double y = it.getY() - halfSize;
double z = it.getZ() - halfSize;
if (x < mx) mx = x;
if (y < my) my = y;
if (z < mz) mz = z;
}
} // end if size changed
else {
mx = min_value[0];
my = min_value[1];
mz = min_value[2];
}
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getMetricMax(double& mx, double& my, double& mz) const {
mx = my = mz = -std::numeric_limits<double>::max( );
if (size_changed) {
// empty tree
if (root == NULL){
mx = my = mz = 0.0;
return;
}
for(typename OcTreeBaseImpl<NODE,I>::leaf_iterator it = this->begin(),
end=this->end(); it!= end; ++it) {
double halfSize = it.getSize()/2.0;
double x = it.getX() + halfSize;
double y = it.getY() + halfSize;
double z = it.getZ() + halfSize;
if (x > mx) mx = x;
if (y > my) my = y;
if (z > mz) mz = z;
}
}
else {
mx = max_value[0];
my = max_value[1];
mz = max_value[2];
}
}
template <class NODE,class I>
size_t OcTreeBaseImpl<NODE,I>::calcNumNodes() const {
size_t retval = 0; // root node
if (root){
retval++;
calcNumNodesRecurs(root, retval);
}
return retval;
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::calcNumNodesRecurs(NODE* node, size_t& num_nodes) const {
assert (node);
if (node->hasChildren()) {
for (unsigned int i=0; i<8; ++i) {
if (node->childExists(i)) {
num_nodes++;
calcNumNodesRecurs(node->getChild(i), num_nodes);
}
}
}
}
template <class NODE,class I>
size_t OcTreeBaseImpl<NODE,I>::memoryUsage() const{
size_t num_leaf_nodes = this->getNumLeafNodes();
size_t num_inner_nodes = tree_size - num_leaf_nodes;
return (sizeof(OcTreeBaseImpl<NODE,I>) + memoryUsageNode() * tree_size + num_inner_nodes * sizeof(NODE*[8]));
}
template <class NODE,class I>
void OcTreeBaseImpl<NODE,I>::getUnknownLeafCenters(point3d_list& node_centers, point3d pmin, point3d pmax) const {
float diff[3];
unsigned int steps[3];
for (int i=0;i<3;++i) {
diff[i] = pmax(i) - pmin(i);
steps[i] = floor(diff[i] / this->resolution);
// std::cout << "bbx " << i << " size: " << diff[i] << " " << steps[i] << " steps\n";
}
point3d p = pmin;
NODE* res;
for (unsigned int x=0; x<steps[0]; ++x) {
p.x() += this->resolution;
for (unsigned int y=0; y<steps[1]; ++y) {
p.y() += this->resolution;
for (unsigned int z=0; z<steps[2]; ++z) {
// std::cout << "querying p=" << p << std::endl;
p.z() += this->resolution;
res = this->search(p);
if (res == NULL) {
node_centers.push_back(p);
}
}
p.z() = pmin.z();
}
p.y() = pmin.y();
}
}
template <class NODE,class I>
size_t OcTreeBaseImpl<NODE,I>::getNumLeafNodes() const {
if (root == NULL)
return 0;
return getNumLeafNodesRecurs(root);
}
template <class NODE,class I>
size_t OcTreeBaseImpl<NODE,I>::getNumLeafNodesRecurs(const NODE* parent) const {
assert(parent);
if (!parent->hasChildren()) // this is a leaf -> terminate
return 1;
size_t sum_leafs_children = 0;
for (unsigned int i=0; i<8; ++i) {
if (parent->childExists(i)) {
sum_leafs_children += getNumLeafNodesRecurs(parent->getChild(i));
}
}
return sum_leafs_children;
}
template <class NODE,class I>
double OcTreeBaseImpl<NODE,I>::volume() {
double x, y, z;
getMetricSize(x, y, z);
return x*y*z;
}
}
|