This file is indexed.

/usr/include/octave-4.0.0/octave/oct-binmap.h is in liboctave-dev 4.0.0-3ubuntu9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*

Copyright (C) 2010-2015 VZLU Prague

This file is part of Octave.

Octave is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

Octave is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with Octave; see the file COPYING.  If not, see
<http://www.gnu.org/licenses/>.

*/

#if !defined (octave_oct_binmap_h)
#define octave_oct_binmap_h 1

#include "Array.h"
#include "Sparse.h"
#include "Array-util.h"

#include "bsxfun.h"

// This source file implements a general binary maping function for
// arrays. The syntax is binmap<type> (a, b, f,[name]). type denotes
// the expected return type of the operation. a, b, should be one of
// the 6 combinations:
//
// Array-Array
// Array-scalar
// scalar-Array
// Sparse-Sparse
// Sparse-scalar
// scalar-Sparse
//
// If both operands are nonscalar, name must be supplied. It is used
// as the base for error message when operands are nonconforming.
//
// The operation needs not be homogeneous, i.e. a, b and the result
// may be of distinct types. f can have any of the four signatures:
//
// U f (T, R)
// U f (const T&, R)
// U f (T, const R&)
// U f (const T&, const R&)
//
// Additionally, f can be an arbitrary functor object.
//
// octave_quit() is called at appropriate places, hence the operation
// is breakable.

// The following template wrappers are provided for automatic bsxfun
// calls (see the function signature for do_bsxfun_op).

template<typename R, typename X, typename Y, typename F>
class bsxfun_wrapper
{
private:
  static F f;

public:
  static void
  set_f (const F& f_in)
  {
    f = f_in;
  }

  static void
  op_mm (size_t n, R* r, const X* x , const Y* y)
  {
    for (size_t i = 0; i < n; i++)
      r[i] = f (x[i], y[i]);
  }

  static void
  op_sm (size_t n, R* r, X x, const Y* y)
  {
    for (size_t i = 0; i < n; i++)
      r[i] = f (x, y[i]);
  }

  static void
  op_ms (size_t n , R* r, const X* x, Y y)
  {
    for (size_t i = 0; i < n; i++)
      r[i] = f (x[i], y);
  }
};

// Static init
template<typename R, typename X, typename Y, typename F>
F bsxfun_wrapper<R, X, Y, F>::f;


// scalar-Array
template <class U, class T, class R, class F>
Array<U>
binmap (const T& x, const Array<R>& ya, F fcn)
{
  octave_idx_type len = ya.numel ();

  const R *y = ya.data ();

  Array<U> result (ya.dims ());
  U *p = result.fortran_vec ();

  octave_idx_type i;
  for (i = 0; i < len - 3; i += 4)
    {
      octave_quit ();

      p[i] = fcn (x, y[i]);
      p[i+1] = fcn (x, y[i+1]);
      p[i+2] = fcn (x, y[i+2]);
      p[i+3] = fcn (x, y[i+3]);
    }

  octave_quit ();

  for (; i < len; i++)
    p[i] = fcn (x, y[i]);

  return result;
}

// Array-scalar
template <class U, class T, class R, class F>
Array<U>
binmap (const Array<T>& xa, const R& y, F fcn)
{
  octave_idx_type len = xa.numel ();

  const R *x = xa.data ();

  Array<U> result (xa.dims ());
  U *p = result.fortran_vec ();

  octave_idx_type i;
  for (i = 0; i < len - 3; i += 4)
    {
      octave_quit ();

      p[i] = fcn (x[i], y);
      p[i+1] = fcn (x[i+1], y);
      p[i+2] = fcn (x[i+2], y);
      p[i+3] = fcn (x[i+3], y);
    }

  octave_quit ();

  for (; i < len; i++)
    p[i] = fcn (x[i], y);

  return result;
}

// Array-Array (treats singletons as scalars)
template <class U, class T, class R, class F>
Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, F fcn, const char *name)
{
  dim_vector xad = xa.dims ();
  dim_vector yad = ya.dims ();
  if (xa.numel () == 1)
    return binmap<U, T, R, F> (xa(0), ya, fcn);
  else if (ya.numel () == 1)
    return binmap<U, T, R, F> (xa, ya(0), fcn);
  else if (xad != yad)
    {
      if (is_valid_bsxfun (name, xad, yad))
        {
          bsxfun_wrapper<U, T, R, F>::set_f(fcn);
          return do_bsxfun_op (xa, ya,
                               bsxfun_wrapper<U, T, R, F>::op_mm,
                               bsxfun_wrapper<U, T, R, F>::op_sm,
                               bsxfun_wrapper<U, T, R, F>::op_ms);
        }
      else
        gripe_nonconformant (name, xad, yad);
    }

  octave_idx_type len = xa.numel ();

  const T *x = xa.data ();
  const T *y = ya.data ();

  Array<U> result (xa.dims ());
  U *p = result.fortran_vec ();

  octave_idx_type i;
  for (i = 0; i < len - 3; i += 4)
    {
      octave_quit ();

      p[i] = fcn (x[i], y[i]);
      p[i+1] = fcn (x[i+1], y[i+1]);
      p[i+2] = fcn (x[i+2], y[i+2]);
      p[i+3] = fcn (x[i+3], y[i+3]);
    }

  octave_quit ();

  for (; i < len; i++)
    p[i] = fcn (x[i], y[i]);

  return result;
}

// scalar-Sparse
template <class U, class T, class R, class F>
Sparse<U>
binmap (const T& x, const Sparse<R>& ys, F fcn)
{
  R yzero = R ();
  U fz = fcn (x, yzero);

  if (fz == U ())  // Sparsity preserving fcn
    {
      octave_idx_type nz = ys.nnz ();
      Sparse<U> retval (ys.rows (), ys.cols (), nz);
      std::copy (ys.ridx (), ys.ridx () + nz, retval.ridx ());
      std::copy (ys.cidx (), ys.cidx () + ys.cols () + 1, retval.cidx ());

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          // FIXME: Could keep track of whether fcn call results in a 0.
          //        If no zeroes are created could skip maybe_compress()
          retval.xdata (i) = fcn (x, ys.data (i));
        }

      octave_quit ();
      retval.maybe_compress (true);
      return retval;
    }
  else
    return Sparse<U> (binmap<U, T, R, F> (x, ys.array_value (), fcn));
}

// Sparse-scalar
template <class U, class T, class R, class F>
Sparse<U>
binmap (const Sparse<T>& xs, const R& y, F fcn)
{
  T xzero = T ();
  U fz = fcn (xzero, y);

  if (fz == U ())  // Sparsity preserving fcn
    {
      octave_idx_type nz = xs.nnz ();
      Sparse<U> retval (xs.rows (), xs.cols (), nz);
      std::copy (xs.ridx (), xs.ridx () + nz, retval.ridx ());
      std::copy (xs.cidx (), xs.cidx () + xs.cols () + 1, retval.cidx ());

      for (octave_idx_type i = 0; i < nz; i++)
        {
          octave_quit ();
          // FIXME: Could keep track of whether fcn call results in a 0.
          //        If no zeroes are created could skip maybe_compress()
          retval.xdata (i) = fcn (xs.data (i), y);
        }

      octave_quit ();
      retval.maybe_compress (true);
      return retval;
    }
  else
    return Sparse<U> (binmap<U, T, R, F> (xs.array_value (), y, fcn));
}

// Sparse-Sparse (treats singletons as scalars)
template <class U, class T, class R, class F>
Sparse<U>
binmap (const Sparse<T>& xs, const Sparse<R>& ys, F fcn, const char *name)
{
  if (xs.rows () == 1 && xs.cols () == 1)
    return binmap<U, T, R, F> (xs(0,0), ys, fcn);
  else if (ys.rows () == 1 && ys.cols () == 1)
    return binmap<U, T, R, F> (xs, ys(0,0), fcn);
  else if (xs.dims () != ys.dims ())
    gripe_nonconformant (name, xs.dims (), ys.dims ());

  T xzero = T ();
  R yzero = R ();
  U fz = fcn (xzero, yzero);

  if (fz == U ())
    {
      // Sparsity-preserving function.  Do it efficiently.
      octave_idx_type nr = xs.rows ();
      octave_idx_type nc = xs.cols ();
      Sparse<T> retval (nr, nc, xs.nnz () + ys.nnz ());

      octave_idx_type nz = 0;
      for (octave_idx_type j = 0; j < nc; j++)
        {
          octave_quit ();

          octave_idx_type jx = xs.cidx (j);
          octave_idx_type jx_max = xs.cidx (j+1);
          bool jx_lt_max = jx < jx_max;

          octave_idx_type jy = ys.cidx (j);
          octave_idx_type jy_max = ys.cidx (j+1);
          bool jy_lt_max = jy < jy_max;

          while (jx_lt_max || jy_lt_max)
            {
              if (! jy_lt_max
                  || (jx_lt_max && (xs.ridx (jx) < ys.ridx (jy))))
                {
                  retval.xridx (nz) = xs.ridx (jx);
                  retval.xdata (nz) = fcn (xs.data (jx), yzero);
                  jx++;
                  jx_lt_max = jx < jx_max;
                }
              else if (! jx_lt_max
                       || (jy_lt_max && (ys.ridx (jy) < xs.ridx (jx))))
                {
                  retval.xridx (nz) = ys.ridx (jy);
                  retval.xdata (nz) = fcn (xzero, ys.data (jy));
                  jy++;
                  jy_lt_max = jy < jy_max;
                }
              else
                {
                  retval.xridx (nz) = xs.ridx (jx);
                  retval.xdata (nz) = fcn (xs.data (jx), ys.data (jy));
                  jx++;
                  jx_lt_max = jx < jx_max;
                  jy++;
                  jy_lt_max = jy < jy_max;
                }
              nz++;
            }
          retval.xcidx (j+1) = nz;
        }

      retval.maybe_compress (true);
      return retval;
    }
  else
    return Sparse<U> (binmap<U, T, R, F> (xs.array_value (), ys.array_value (),
                                          fcn, name));
}

// Overloads for function pointers.

// Signature (T, R)

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (T, R),
        const char *name)
{ return binmap<U, T, R, U (*) (T, R)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (x, ya, fcn); }

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (xa, y, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (T, R),
        const char *name)
{ return binmap<U, T, R, U (*) (T, R)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (x, ya, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (T, R))
{ return binmap<U, T, R, U (*) (T, R)> (xa, y, fcn); }

// Signature (const T&, const R&)

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (const T&, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (x, ya, fcn); }

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, y, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (const T&, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (x, ya, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (const T&, const R&))
{ return binmap<U, T, R, U (*) (const T&, const R&)> (xa, y, fcn); }

// Signature (const T&, R)

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (const T&, R),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (x, ya, fcn); }

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, y, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (const T&, R),
        const char *name)
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (x, ya, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (const T&, R))
{ return binmap<U, T, R, U (*) (const T&, R)> (xa, y, fcn); }

// Signature (T, const R&)

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const Array<R>& ya, U (*fcn) (T, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Array<U>
binmap (const T& x, const Array<R>& ya, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (x, ya, fcn); }

template <class U, class T, class R>
inline Array<U>
binmap (const Array<T>& xa, const R& y, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, y, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const Sparse<R>& ya, U (*fcn) (T, const R&),
        const char *name)
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, ya, fcn, name); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const T& x, const Sparse<R>& ya, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (x, ya, fcn); }

template <class U, class T, class R>
inline Sparse<U>
binmap (const Sparse<T>& xa, const R& y, U (*fcn) (T, const R&))
{ return binmap<U, T, R, U (*) (T, const R&)> (xa, y, fcn); }

#endif