/usr/include/oce/math_GlobOptMin.hxx is in liboce-foundation-dev 0.17.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | // Created on: 2014-01-20
// Created by: Alexaner Malyshev
// Copyright (c) 2014-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.
#ifndef _math_GlobOptMin_HeaderFile
#define _math_GlobOptMin_HeaderFile
#include <math_MultipleVarFunction.hxx>
#include <NCollection_Sequence.hxx>
#include <Standard_Type.hxx>
//! This class represents Evtushenko's algorithm of global optimization based on nonuniform mesh.<br>
//! Article: Yu. Evtushenko. Numerical methods for finding global extreme (case of a non-uniform mesh). <br>
//! U.S.S.R. Comput. Maths. Math. Phys., Vol. 11, N 6, pp. 38-54.
class math_GlobOptMin
{
public:
Standard_EXPORT math_GlobOptMin(math_MultipleVarFunction* theFunc,
const math_Vector& theA,
const math_Vector& theB,
const Standard_Real theC = 9,
const Standard_Real theDiscretizationTol = 1.0e-2,
const Standard_Real theSameTol = 1.0e-7);
Standard_EXPORT void SetGlobalParams(math_MultipleVarFunction* theFunc,
const math_Vector& theA,
const math_Vector& theB,
const Standard_Real theC = 9,
const Standard_Real theDiscretizationTol = 1.0e-2,
const Standard_Real theSameTol = 1.0e-7);
Standard_EXPORT void SetLocalParams(const math_Vector& theLocalA,
const math_Vector& theLocalB);
Standard_EXPORT void SetTol(const Standard_Real theDiscretizationTol,
const Standard_Real theSameTol);
Standard_EXPORT void GetTol(Standard_Real& theDiscretizationTol,
Standard_Real& theSameTol);
Standard_EXPORT ~math_GlobOptMin();
Standard_EXPORT void Perform();
//! Get best functional value.
Standard_EXPORT Standard_Real GetF();
//! Return count of global extremas.
Standard_EXPORT Standard_Integer NbExtrema();
//! Return solution i, 1 <= i <= NbExtrema.
Standard_EXPORT void Points(const Standard_Integer theIndex, math_Vector& theSol);
Standard_Boolean isDone();
private:
math_GlobOptMin & operator = (const math_GlobOptMin & theOther);
Standard_Boolean computeLocalExtremum(const math_Vector& thePnt, Standard_Real& theVal, math_Vector& theOutPnt);
void computeGlobalExtremum(Standard_Integer theIndex);
//! Computes starting value / approximation:
// myF - initial best value.
// myY - initial best point.
// myC - approximation of Lipschitz constant.
// to imporve convergence speed.
void computeInitialValues();
//! Check that myA <= pnt <= myB
Standard_Boolean isInside(const math_Vector& thePnt);
Standard_Boolean isStored(const math_Vector &thePnt);
// Input.
math_MultipleVarFunction* myFunc;
Standard_Integer myN;
math_Vector myA; // Left border on current C2 interval.
math_Vector myB; // Right border on current C2 interval.
math_Vector myGlobA; // Global left border.
math_Vector myGlobB; // Global right border.
Standard_Real myTol; // Discretization tolerance, default 1.0e-2.
Standard_Real mySameTol; // points with ||p1 - p2|| < mySameTol is equal,
// function values |val1 - val2| * 0.01 < mySameTol is equal,
// default value is 1.0e-7.
Standard_Real myC; //Lipschitz constant, default 9
// Output.
Standard_Boolean myDone;
NCollection_Sequence<Standard_Real> myY;// Current solutions.
Standard_Integer mySolCount; // Count of solutions.
// Algorithm data.
Standard_Real myZ;
Standard_Real myE1; // Border coeff.
Standard_Real myE2; // Minimum step size.
Standard_Real myE3; // Local extrema starting parameter.
math_Vector myX; // Current modified solution.
math_Vector myTmp; // Current modified solution.
math_Vector myV; // Steps array.
math_Vector myMaxV; // Max Steps array.
Standard_Real myF; // Current value of Global optimum.
};
const Handle(Standard_Type)& TYPE(math_GlobOptMin);
#endif
|