/usr/include/oce/math_Crout.hxx is in liboce-foundation-dev 0.17.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_Crout_HeaderFile
#define _math_Crout_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>
#include <math_Matrix.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_Real.hxx>
#include <math_Vector.hxx>
#include <Standard_OStream.hxx>
class StdFail_NotDone;
class math_NotSquare;
class Standard_DimensionError;
class math_Matrix;
//! This class implements the Crout algorithm used to solve a
//! system A*X = B where A is a symmetric matrix. It can be used to
//! invert a symmetric matrix.
//! This algorithm is similar to Gauss but is faster than Gauss.
//! Only the inferior triangle of A and the diagonal can be given.
class math_Crout
{
public:
DEFINE_STANDARD_ALLOC
//! Given an input matrix A, this algorithm inverts A by the
//! Crout algorithm. The user can give only the inferior
//! triangle for the implementation.
//! A can be decomposed like this:
//! A = L * D * T(L) where L is triangular inferior and D is
//! diagonal.
//! If one element of A is less than MinPivot, A is
//! considered as singular.
//! Exception NotSquare is raised if A is not a square matrix.
Standard_EXPORT math_Crout(const math_Matrix& A, const Standard_Real MinPivot = 1.0e-20);
//! Returns True if all has been correctly done.
Standard_Boolean IsDone() const;
//! Given an input vector <B>, this routine returns the
//! solution of the set of linear equations A . X = B.
//! Exception NotDone is raised if the decomposition was not
//! done successfully.
//! Exception DimensionError is raised if the range of B is
//! not equal to the rowrange of A.
Standard_EXPORT void Solve (const math_Vector& B, math_Vector& X) const;
//! returns the inverse matrix of A. Only the inferior
//! triangle is returned.
//! Exception NotDone is raised if NotDone.
const math_Matrix& Inverse() const;
//! returns in Inv the inverse matrix of A. Only the inferior
//! triangle is returned.
//! Exception NotDone is raised if NotDone.
void Invert (math_Matrix& Inv) const;
//! Returns the value of the determinant of the previously LU
//! decomposed matrix A. Zero is returned if the matrix A is considered as singular.
//! Exceptions
//! StdFail_NotDone if the algorithm fails (and IsDone returns false).
Standard_Real Determinant() const;
//! Prints on the stream o information on the current state
//! of the object.
Standard_EXPORT void Dump (Standard_OStream& o) const;
protected:
private:
math_Matrix InvA;
Standard_Boolean Done;
Standard_Real Det;
};
#include <math_Crout.lxx>
#endif // _math_Crout_HeaderFile
|