This file is indexed.

/usr/include/oce/gp_Vec.lxx is in liboce-foundation-dev 0.17.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright (c) 1995-1999 Matra Datavision
// Copyright (c) 1999-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.

// Modif JCV 07/12/90 introduction classe XYZ dans le package gp
// LPA et JCV 07/92 mise a jour

#include <gp.hxx>
#include <gp_Dir.hxx>
#include <gp_Pnt.hxx>
#include <gp_Trsf.hxx>
#include <gp_VectorWithNullMagnitude.hxx>
#include <Standard_ConstructionError.hxx>

inline gp_Vec::gp_Vec() { }

inline gp_Vec::gp_Vec (const gp_Dir& V) { coord = V.XYZ(); }

inline gp_Vec::gp_Vec (const gp_XYZ& Coord) : coord(Coord) { }

inline gp_Vec::gp_Vec (const Standard_Real Xv,
		       const Standard_Real Yv,
		       const Standard_Real Zv)
               : coord (Xv, Yv, Zv)   { }

inline gp_Vec::gp_Vec (const gp_Pnt& P1,
		       const gp_Pnt& P2)
{ coord = P2.XYZ().Subtracted(P1.XYZ()); }

inline void gp_Vec::SetCoord (const Standard_Integer Index,
			      const Standard_Real Xi)
{ coord.SetCoord (Index, Xi); }

inline void gp_Vec::SetCoord (const Standard_Real Xv,
			      const Standard_Real Yv,
			      const Standard_Real Zv)
{
  coord.SetX(Xv);
  coord.SetY(Yv);
  coord.SetZ(Zv);
}

inline void gp_Vec::SetX (const Standard_Real X)
{ coord.SetX (X); }

inline void gp_Vec::SetY (const Standard_Real Y)
{ coord.SetY (Y); }

inline void gp_Vec::SetZ (const Standard_Real Z)
{ coord.SetZ (Z); }

inline void gp_Vec::SetXYZ (const gp_XYZ& Coord)
{ coord = Coord; }

inline Standard_Real gp_Vec::Coord (const Standard_Integer Index) const
{ return coord.Coord (Index); }

inline void gp_Vec::Coord(Standard_Real& Xv, 
			  Standard_Real& Yv,
			  Standard_Real& Zv) const
{
  Xv = coord.X();
  Yv = coord.Y();
  Zv = coord.Z();
}

inline Standard_Real gp_Vec::X() const
{ return coord.X(); }
     
inline Standard_Real gp_Vec::Y() const
{ return coord.Y(); }

inline Standard_Real gp_Vec::Z() const
{ return coord.Z(); }
     
inline const gp_XYZ& gp_Vec::XYZ () const
{ return coord; }

inline Standard_Boolean gp_Vec::IsNormal
(const gp_Vec& Other,
 const Standard_Real AngularTolerance) const
{
  Standard_Real Ang = M_PI / 2.0 - Angle(Other);
  if (Ang < 0) Ang = - Ang;
  return  Ang <= AngularTolerance;
}    

inline Standard_Boolean gp_Vec::IsOpposite
(const gp_Vec& Other,
 const Standard_Real AngularTolerance) const
{
  Standard_Real Ang = M_PI - Angle(Other);
  return Ang <= AngularTolerance;
}    

inline Standard_Boolean gp_Vec::IsParallel
(const gp_Vec& Other,
 const Standard_Real AngularTolerance) const
{
  Standard_Real Ang = Angle (Other);
  return   Ang <= AngularTolerance || M_PI - Ang <= AngularTolerance;
}    

inline Standard_Real gp_Vec::Angle (const gp_Vec& Other) const
{
  //    Commentaires :
  //    Au dessus de 45 degres l'arccos donne la meilleur precision pour le
  //    calcul de l'angle. Sinon il vaut mieux utiliser l'arcsin.
  //    Les erreurs commises sont loin d'etre negligeables lorsque l'on est
  //    proche de zero ou de 90 degres.
  //    En 3d les valeurs angulaires sont toujours positives et comprises entre
  //    0 et Pi.
  
  gp_VectorWithNullMagnitude_Raise_if
    (coord.Modulus()       <= gp::Resolution() ||
     Other.coord.Modulus() <= gp::Resolution(), " ");
  return (gp_Dir(coord)).Angle(Other);
}

inline Standard_Real gp_Vec::AngleWithRef (const gp_Vec& Other,
					   const gp_Vec& Vref) const
{
  gp_VectorWithNullMagnitude_Raise_if
    (coord.Modulus()       <= gp::Resolution() ||
     Vref.coord.Modulus () <= gp::Resolution() ||
     Other.coord.Modulus() <= gp::Resolution(), " ");
  return (gp_Dir(coord)).AngleWithRef(Other,Vref);
} 

inline Standard_Real gp_Vec::Magnitude() const
{ return coord.Modulus(); }

inline Standard_Real gp_Vec::SquareMagnitude() const
{ return coord.SquareModulus(); }

inline void gp_Vec::Add (const gp_Vec& Other)
{ coord.Add (Other.coord); }

inline gp_Vec gp_Vec::Added (const gp_Vec& Other) const
{
  gp_Vec V = *this;
  V.coord.Add (Other.coord);
  return V;
}

inline void gp_Vec::Subtract (const gp_Vec& Right)
{ coord.Subtract (Right.coord); }

inline gp_Vec gp_Vec::Subtracted (const gp_Vec& Right) const
{
  gp_Vec V = *this;
   V.coord.Subtract(Right.coord);
   return V;
}

inline void gp_Vec::Multiply (const Standard_Real Scalar)
{ coord.Multiply(Scalar); }

inline gp_Vec gp_Vec::Multiplied (const Standard_Real Scalar) const
{
  gp_Vec V = *this;
  V.coord.Multiply (Scalar);
  return V;
}

inline void gp_Vec::Divide (const Standard_Real Scalar)
{ coord.Divide (Scalar); }

inline gp_Vec gp_Vec::Divided (const Standard_Real Scalar) const
{
  gp_Vec V = *this;
  V.coord.Divide (Scalar);
  return V;
}

inline void gp_Vec::Cross (const gp_Vec& Right)
{ coord.Cross (Right.coord); }

inline gp_Vec gp_Vec::Crossed (const gp_Vec& Right) const
{
  gp_Vec V = *this;
  V.coord.Cross (Right.coord);
  return V;
}

inline Standard_Real gp_Vec::CrossMagnitude
(const gp_Vec& Right) const
{ return coord.CrossMagnitude (Right.coord); }

inline Standard_Real gp_Vec::CrossSquareMagnitude
(const gp_Vec& Right) const
{ return coord.CrossSquareMagnitude (Right.coord); }

inline void gp_Vec::CrossCross (const gp_Vec& V1,
				const gp_Vec& V2)
{ coord.CrossCross(V1.coord, V2.coord); }

inline gp_Vec gp_Vec::CrossCrossed (const gp_Vec& V1,
				    const gp_Vec& V2) const
{
  gp_Vec V = *this;
  V.coord.CrossCross(V1.coord, V2.coord);
  return V;
}

inline Standard_Real gp_Vec::Dot (const gp_Vec& Other) const
{ return coord.Dot (Other.coord); }

inline Standard_Real gp_Vec::DotCross (const gp_Vec& V1,
				       const gp_Vec& V2)  const
{ return coord.DotCross (V1.coord, V2.coord); } 

inline void gp_Vec::Normalize()
{ 
  Standard_Real D = coord.Modulus();
  Standard_ConstructionError_Raise_if (D <= gp::Resolution(), "");
  coord.Divide (D);
}

inline gp_Vec gp_Vec::Normalized() const
{ 
  Standard_Real D = coord.Modulus();
  Standard_ConstructionError_Raise_if (D <= gp::Resolution(), "");
  gp_Vec V = *this;
  V.coord.Divide (D);
  return V; 
}

inline void gp_Vec::Reverse()
{ coord.Reverse(); }

inline gp_Vec gp_Vec::Reversed () const
{
  gp_Vec V = *this;
  V.coord.Reverse();
  return V;
}

inline void gp_Vec::SetLinearForm
(const Standard_Real L,
 const gp_Vec& Left,
 const Standard_Real R,
 const gp_Vec& Right)
{ coord.SetLinearForm (L, Left.coord, R, Right.coord); }

inline void gp_Vec::SetLinearForm
(const Standard_Real L,
 const gp_Vec& Left,
 const gp_Vec& Right)
{ coord.SetLinearForm (L, Left.coord, Right.coord); }

inline void gp_Vec::SetLinearForm
(const gp_Vec& Left,
 const gp_Vec& Right)
{ coord.SetLinearForm (Left.coord,  Right.coord); }

inline void gp_Vec::SetLinearForm
(const Standard_Real A1, const gp_Vec& V1, 
 const Standard_Real A2, const gp_Vec& V2,
 const Standard_Real A3, const gp_Vec& V3)
{ coord.SetLinearForm (A1, V1.coord, A2, V2.coord, A3, V3.coord); }

inline void gp_Vec::SetLinearForm
(const Standard_Real A1, const gp_Vec& V1, 
 const Standard_Real A2, const gp_Vec& V2, 
 const gp_Vec& V3)
{ coord.SetLinearForm (A1, V1.coord, A2, V2.coord, V3.coord); }

inline void gp_Vec::SetLinearForm
(const Standard_Real A1, const gp_Vec& V1,
 const Standard_Real A2, const gp_Vec& V2,
 const Standard_Real A3, const gp_Vec& V3,
 const gp_Vec& V4)
{ coord.SetLinearForm(A1,V1.coord,A2,V2.coord,A3,V3.coord,V4.coord); }

inline void gp_Vec::Rotate (const gp_Ax1& A1,
			    const Standard_Real Ang)
{
  gp_Trsf T;
  T.SetRotation (A1, Ang);
  coord.Multiply (T.VectorialPart());
}

inline gp_Vec gp_Vec::Rotated (const gp_Ax1& A1,
			       const Standard_Real Ang) const
{
  gp_Vec Vres = *this;
  Vres.Rotate (A1, Ang);
  return Vres;                     
}

inline void gp_Vec::Scale (const Standard_Real S)
{ coord.Multiply (S); }

inline gp_Vec gp_Vec::Scaled (const Standard_Real S) const
{
  gp_Vec V = *this;
  V.coord.Multiply(S);
  return V;
}

inline gp_Vec gp_Vec::Transformed (const gp_Trsf& T) const
{
  gp_Vec V = *this;
  V.Transform(T);
  return V;
} 

inline gp_Vec operator* (const Standard_Real Scalar, const gp_Vec& V) {
 return V.Multiplied(Scalar);
}