/usr/include/oce/gp_Mat.hxx is in liboce-foundation-dev 0.17.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _gp_Mat_HeaderFile
#define _gp_Mat_HeaderFile
#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>
#include <Standard_Real.hxx>
#include <Standard_Storable.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Boolean.hxx>
#include <Standard_PrimitiveTypes.hxx>
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_XYZ;
class gp_Trsf;
class gp_GTrsf;
Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_Mat);
//! Describes a three column, three row matrix. This sort of
//! object is used in various vectorial or matrix computations.
class gp_Mat
{
public:
DEFINE_STANDARD_ALLOC
//! creates a matrix with null coefficients.
gp_Mat();
gp_Mat(const Standard_Real a11, const Standard_Real a12, const Standard_Real a13, const Standard_Real a21, const Standard_Real a22, const Standard_Real a23, const Standard_Real a31, const Standard_Real a32, const Standard_Real a33);
//! Creates a matrix.
//! Col1, Col2, Col3 are the 3 columns of the matrix.
Standard_EXPORT gp_Mat(const gp_XYZ& Col1, const gp_XYZ& Col2, const gp_XYZ& Col3);
//! Assigns the three coordinates of Value to the column of index
//! Col of this matrix.
//! Raises OutOfRange if Col < 1 or Col > 3.
Standard_EXPORT void SetCol (const Standard_Integer Col, const gp_XYZ& Value) ;
//! Assigns the number triples Col1, Col2, Col3 to the three
//! columns of this matrix.
Standard_EXPORT void SetCols (const gp_XYZ& Col1, const gp_XYZ& Col2, const gp_XYZ& Col3) ;
//! Modifies the matrix M so that applying it to any number
//! triple (X, Y, Z) produces the same result as the cross
//! product of Ref and the number triple (X, Y, Z):
//! i.e.: M * {X,Y,Z}t = Ref.Cross({X, Y ,Z})
//! this matrix is anti symmetric. To apply this matrix to the
//! triplet {XYZ} is the same as to do the cross product between the
//! triplet Ref and the triplet {XYZ}.
//! Note: this matrix is anti-symmetric.
Standard_EXPORT void SetCross (const gp_XYZ& Ref) ;
//! Modifies the main diagonal of the matrix.
//! <me>.Value (1, 1) = X1
//! <me>.Value (2, 2) = X2
//! <me>.Value (3, 3) = X3
//! The other coefficients of the matrix are not modified.
void SetDiagonal (const Standard_Real X1, const Standard_Real X2, const Standard_Real X3) ;
//! Modifies this matrix so that applying it to any number
//! triple (X, Y, Z) produces the same result as the scalar
//! product of Ref and the number triple (X, Y, Z):
//! this * (X,Y,Z) = Ref.(X,Y,Z)
//! Note: this matrix is symmetric.
Standard_EXPORT void SetDot (const gp_XYZ& Ref) ;
//! Modifies this matrix so that it represents the Identity matrix.
void SetIdentity() ;
//! Modifies this matrix so that it represents a rotation. Ang is the angular value in
//! radians and the XYZ axis gives the direction of the
//! rotation.
//! Raises ConstructionError if XYZ.Modulus() <= Resolution()
Standard_EXPORT void SetRotation (const gp_XYZ& Axis, const Standard_Real Ang) ;
//! Assigns the three coordinates of Value to the row of index
//! Row of this matrix. Raises OutOfRange if Row < 1 or Row > 3.
Standard_EXPORT void SetRow (const Standard_Integer Row, const gp_XYZ& Value) ;
//! Assigns the number triples Row1, Row2, Row3 to the three
//! rows of this matrix.
Standard_EXPORT void SetRows (const gp_XYZ& Row1, const gp_XYZ& Row2, const gp_XYZ& Row3) ;
//! Modifies the the matrix so that it represents
//! a scaling transformation, where S is the scale factor. :
//! | S 0.0 0.0 |
//! <me> = | 0.0 S 0.0 |
//! | 0.0 0.0 S |
void SetScale (const Standard_Real S) ;
//! Assigns <Value> to the coefficient of row Row, column Col of this matrix.
//! Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
void SetValue (const Standard_Integer Row, const Standard_Integer Col, const Standard_Real Value) ;
//! Returns the column of Col index.
//! Raises OutOfRange if Col < 1 or Col > 3
Standard_EXPORT gp_XYZ Column (const Standard_Integer Col) const;
//! Computes the determinant of the matrix.
Standard_Real Determinant() const;
//! Returns the main diagonal of the matrix.
Standard_EXPORT gp_XYZ Diagonal() const;
//! returns the row of Row index.
//! Raises OutOfRange if Row < 1 or Row > 3
Standard_EXPORT gp_XYZ Row (const Standard_Integer Row) const;
//! Returns the coefficient of range (Row, Col)
//! Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
const Standard_Real& Value (const Standard_Integer Row, const Standard_Integer Col) const;
const Standard_Real& operator() (const Standard_Integer Row, const Standard_Integer Col) const
{
return Value(Row,Col);
}
//! Returns the coefficient of range (Row, Col)
//! Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 3
Standard_Real& ChangeValue (const Standard_Integer Row, const Standard_Integer Col) ;
Standard_Real& operator() (const Standard_Integer Row, const Standard_Integer Col)
{
return ChangeValue(Row,Col);
}
//! The Gauss LU decomposition is used to invert the matrix
//! (see Math package) so the matrix is considered as singular if
//! the largest pivot found is lower or equal to Resolution from gp.
Standard_Boolean IsSingular() const;
void Add (const gp_Mat& Other) ;
void operator += (const gp_Mat& Other)
{
Add(Other);
}
//! Computes the sum of this matrix and
//! the matrix Other for each coefficient of the matrix :
//! <me>.Coef(i,j) + <Other>.Coef(i,j)
gp_Mat Added (const gp_Mat& Other) const;
gp_Mat operator + (const gp_Mat& Other) const
{
return Added(Other);
}
void Divide (const Standard_Real Scalar) ;
void operator /= (const Standard_Real Scalar)
{
Divide(Scalar);
}
//! Divides all the coefficients of the matrix by Scalar
gp_Mat Divided (const Standard_Real Scalar) const;
gp_Mat operator / (const Standard_Real Scalar) const
{
return Divided(Scalar);
}
Standard_EXPORT void Invert() ;
//! Inverses the matrix and raises if the matrix is singular.
//! - Invert assigns the result to this matrix, while
//! - Inverted creates a new one.
//! Warning
//! The Gauss LU decomposition is used to invert the matrix.
//! Consequently, the matrix is considered as singular if the
//! largest pivot found is less than or equal to gp::Resolution().
//! Exceptions
//! Standard_ConstructionError if this matrix is singular,
//! and therefore cannot be inverted.
Standard_EXPORT gp_Mat Inverted() const;
//! Computes the product of two matrices <me> * <Other>
gp_Mat Multiplied (const gp_Mat& Other) const;
gp_Mat operator * (const gp_Mat& Other) const
{
return Multiplied(Other);
}
//! Computes the product of two matrices <me> = <Other> * <me>.
void Multiply (const gp_Mat& Other) ;
void operator *= (const gp_Mat& Other)
{
Multiply(Other);
}
void PreMultiply (const gp_Mat& Other) ;
gp_Mat Multiplied (const Standard_Real Scalar) const;
gp_Mat operator * (const Standard_Real Scalar) const
{
return Multiplied(Scalar);
}
//! Multiplies all the coefficients of the matrix by Scalar
void Multiply (const Standard_Real Scalar) ;
void operator *= (const Standard_Real Scalar)
{
Multiply(Scalar);
}
Standard_EXPORT void Power (const Standard_Integer N) ;
//! Computes <me> = <me> * <me> * .......* <me>, N time.
//! if N = 0 <me> = Identity
//! if N < 0 <me> = <me>.Invert() *...........* <me>.Invert().
//! If N < 0 an exception will be raised if the matrix is not
//! inversible
gp_Mat Powered (const Standard_Integer N) const;
void Subtract (const gp_Mat& Other) ;
void operator -= (const gp_Mat& Other)
{
Subtract(Other);
}
//! cOmputes for each coefficient of the matrix :
//! <me>.Coef(i,j) - <Other>.Coef(i,j)
gp_Mat Subtracted (const gp_Mat& Other) const;
gp_Mat operator - (const gp_Mat& Other) const
{
return Subtracted(Other);
}
void Transpose() ;
//! Transposes the matrix. A(j, i) -> A (i, j)
gp_Mat Transposed() const;
Standard_Real& _CSFDB_Getgp_Matmatrix(const Standard_Integer i1,const Standard_Integer i2) { return matrix[i1][i2]; }
friend class gp_XYZ;
friend class gp_Trsf;
friend class gp_GTrsf;
protected:
private:
Standard_Real matrix[3][3];
};
#include <gp_Mat.lxx>
#endif // _gp_Mat_HeaderFile
|