This file is indexed.

/usr/include/oce/gp_GTrsf.hxx is in liboce-foundation-dev 0.17.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _gp_GTrsf_HeaderFile
#define _gp_GTrsf_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>

#include <gp_Mat.hxx>
#include <gp_XYZ.hxx>
#include <gp_TrsfForm.hxx>
#include <Standard_Real.hxx>
#include <Standard_Storable.hxx>
#include <Standard_Integer.hxx>
#include <Standard_Boolean.hxx>
#include <gp_Trsf.hxx>
#include <Standard_PrimitiveTypes.hxx>
class Standard_ConstructionError;
class Standard_OutOfRange;
class gp_Trsf;
class gp_Mat;
class gp_XYZ;
class gp_Ax1;
class gp_Ax2;


Standard_EXPORT const Handle(Standard_Type)& STANDARD_TYPE(gp_GTrsf);


//! Defines a non-persistent transformation in 3D space.
//! This transformation is a general transformation.
//! It can be a Trsf from gp, an affinity, or you can define
//! your own transformation giving the matrix of transformation.
//!
//! With a Gtrsf you can transform only a triplet of coordinates
//! XYZ. It is not possible to transform other geometric objects
//! because these transformations can change the nature of non-
//! elementary geometric objects.
//! The transformation GTrsf can be represented as follow :
//!
//! V1   V2   V3    T       XYZ        XYZ
//! | a11  a12  a13   a14 |   | x |      | x'|
//! | a21  a22  a23   a24 |   | y |      | y'|
//! | a31  a32  a33   a34 |   | z |   =  | z'|
//! |  0    0    0     1  |   | 1 |      | 1 |
//!
//! where {V1, V2, V3} define the vectorial part of the
//! transformation and T defines the translation part of the
//! transformation.
//! Warning
//! A GTrsf transformation is only applicable to
//! coordinates. Be careful if you apply such a
//! transformation to all points of a geometric object, as
//! this can change the nature of the object and thus
//! render it incoherent!
//! Typically, a circle is transformed into an ellipse by an
//! affinity transformation. To avoid modifying the nature of
//! an object, use a gp_Trsf transformation instead, as
//! objects of this class respect the nature of geometric objects.
class gp_GTrsf 
{

public:

  DEFINE_STANDARD_ALLOC

  
  //! Returns the Identity transformation.
    gp_GTrsf();
  

  //! Converts the gp_Trsf transformation T into a
  //! general transformation, i.e. Returns a GTrsf with
  //! the same matrix of coefficients as the Trsf T.
    gp_GTrsf(const gp_Trsf& T);
  

  //! Creates a transformation based on the matrix M and the
  //! vector V where M defines the vectorial part of
  //! the transformation, and V the translation part, or
    gp_GTrsf(const gp_Mat& M, const gp_XYZ& V);
  
  //! Changes this transformation into an affinity of ratio Ratio
  //! with respect to the axis A1.
  //! Note: an affinity is a point-by-point transformation that
  //! transforms any point P into a point P' such that if H is
  //! the orthogonal projection of P on the axis A1 or the
  //! plane A2, the vectors HP and HP' satisfy:
  //! HP' = Ratio * HP.
      void SetAffinity (const gp_Ax1& A1, const Standard_Real Ratio) ;
  
  //! Changes this transformation into an affinity of ratio Ratio
  //! with respect to  the plane defined by the origin, the "X Direction" and
  //! the "Y Direction" of coordinate system A2.
  //! Note: an affinity is a point-by-point transformation that
  //! transforms any point P into a point P' such that if H is
  //! the orthogonal projection of P on the axis A1 or the
  //! plane A2, the vectors HP and HP' satisfy:
  //! HP' = Ratio * HP.
      void SetAffinity (const gp_Ax2& A2, const Standard_Real Ratio) ;
  

  //! Replaces  the coefficient (Row, Col) of the matrix representing
  //! this transformation by Value.  Raises OutOfRange
  //! if  Row < 1 or Row > 3 or Col < 1 or Col > 4
      void SetValue (const Standard_Integer Row, const Standard_Integer Col, const Standard_Real Value) ;
  
  //! Replaces the vectorial part of this transformation by Matrix.
      void SetVectorialPart (const gp_Mat& Matrix) ;
  
  //! Replaces the translation part of
  //! this transformation by the coordinates of the number triple Coord.
  Standard_EXPORT   void SetTranslationPart (const gp_XYZ& Coord) ;
  
  //! Assigns the vectorial and translation parts of T to this transformation.
      void SetTrsf (const gp_Trsf& T) ;
  

  //! Returns true if the determinant of the vectorial part of
  //! this transformation is negative.
      Standard_Boolean IsNegative()  const;
  

  //! Returns true if this transformation is singular (and
  //! therefore, cannot be inverted).
  //! Note: The Gauss LU decomposition is used to invert the
  //! transformation matrix. Consequently, the transformation
  //! is considered as singular if the largest pivot found is less
  //! than or equal to gp::Resolution().
  //! Warning
  //! If this transformation is singular, it cannot be inverted.
      Standard_Boolean IsSingular()  const;
  

  //! Returns the nature of the transformation.  It can be an
  //! identity transformation, a rotation, a translation, a mirror
  //! transformation (relative to a point, an axis or a plane), a
  //! scaling transformation, a compound transformation or
  //! some other type of transformation.
  Standard_EXPORT   gp_TrsfForm Form()  const;
  

  //! verify and set the shape of the GTrsf Other or CompoundTrsf
  //! Ex :
  //! myGTrsf.SetValue(row1,col1,val1);
  //! myGTrsf.SetValue(row2,col2,val2);
  //! ...
  //! myGTrsf.SetForm();
  Standard_EXPORT   void SetForm() ;
  
  //! Returns the translation part of the GTrsf.
     const  gp_XYZ& TranslationPart()  const;
  

  //! Computes the vectorial part of the GTrsf. The returned Matrix
  //! is a  3*3 matrix.
     const  gp_Mat& VectorialPart()  const;
  

  //! Returns the coefficients of the global matrix of transformation.
  //! Raises OutOfRange if Row < 1 or Row > 3 or Col < 1 or Col > 4
      Standard_Real Value (const Standard_Integer Row, const Standard_Integer Col)  const;
    Standard_Real operator() (const Standard_Integer Row, const Standard_Integer Col)  const
{
  return Value(Row,Col);
}
  
  Standard_EXPORT   void Invert() ;
  

  //! Computes the reverse transformation.
  //! Raises an exception if the matrix of the transformation
  //! is not inversible.
      gp_GTrsf Inverted()  const;
  

  //! Computes the transformation composed from T and <me>.
  //! In a C++ implementation you can also write Tcomposed = <me> * T.
  //! Example :
  //! GTrsf T1, T2, Tcomp; ...............
  //! //composition :
  //! Tcomp = T2.Multiplied(T1);         // or   (Tcomp = T2 * T1)
  //! // transformation of a point
  //! XYZ P(10.,3.,4.);
  //! XYZ P1(P);
  //! Tcomp.Transforms(P1);               //using Tcomp
  //! XYZ P2(P);
  //! T1.Transforms(P2);                  //using T1 then T2
  //! T2.Transforms(P2);                  // P1 = P2 !!!
      gp_GTrsf Multiplied (const gp_GTrsf& T)  const;
  

  //! Computes the transformation composed with <me> and T.
  //! <me> = <me> * T
  //! C++: alias operator *=
  Standard_EXPORT   void Multiply (const gp_GTrsf& T) ;
  

  //! Computes the product of the transformation T and this
  //! transformation and assigns the result to this transformation.
  //! this = T * this
  Standard_EXPORT   void PreMultiply (const gp_GTrsf& T) ;
  
  Standard_EXPORT   void Power (const Standard_Integer N) ;
  

  //! Computes:
  //! -   the product of this transformation multiplied by itself
  //! N times, if N is positive, or
  //! -   the product of the inverse of this transformation
  //! multiplied by itself |N| times, if N is negative.
  //! If N equals zero, the result is equal to the Identity
  //! transformation.
  //! I.e.:  <me> * <me> * .......* <me>, N time.
  //! if N =0 <me> = Identity
  //! if N < 0 <me> = <me>.Inverse() *...........* <me>.Inverse().
  //!
  //! Raises an exception if N < 0 and if the matrix of the
  //! transformation not inversible.
      gp_GTrsf Powered (const Standard_Integer N)  const;
  
      void Transforms (gp_XYZ& Coord)  const;
  
  //! Transforms a triplet XYZ with a GTrsf.
      void Transforms (Standard_Real& X, Standard_Real& Y, Standard_Real& Z)  const;
  
      gp_Trsf Trsf()  const;
    const gp_Mat& _CSFDB_Getgp_GTrsfmatrix() const { return matrix; }
    const gp_XYZ& _CSFDB_Getgp_GTrsfloc() const { return loc; }
    gp_TrsfForm _CSFDB_Getgp_GTrsfshape() const { return shape; }
    void _CSFDB_Setgp_GTrsfshape(const gp_TrsfForm p) { shape = p; }
    Standard_Real _CSFDB_Getgp_GTrsfscale() const { return scale; }
    void _CSFDB_Setgp_GTrsfscale(const Standard_Real p) { scale = p; }



protected:




private: 


  gp_Mat matrix;
  gp_XYZ loc;
  gp_TrsfForm shape;
  Standard_Real scale;


};


#include <gp_GTrsf.lxx>





#endif // _gp_GTrsf_HeaderFile