This file is indexed.

/usr/include/oce/BVH_BinnedBuilder.lxx is in liboce-foundation-dev 0.17.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Created on: 2013-12-20
// Created by: Denis BOGOLEPOV
// Copyright (c) 2013-2014 OPEN CASCADE SAS
//
// This file is part of Open CASCADE Technology software library.
//
// This library is free software; you can redistribute it and/or modify it under
// the terms of the GNU Lesser General Public License version 2.1 as published
// by the Free Software Foundation, with special exception defined in the file
// OCCT_LGPL_EXCEPTION.txt. Consult the file LICENSE_LGPL_21.txt included in OCCT
// distribution for complete text of the license and disclaimer of any warranty.
//
// Alternatively, this file may be used under the terms of Open CASCADE
// commercial license or contractual agreement.

// =======================================================================
// function : BVH_BinnedBuilder
// purpose  :
// =======================================================================
template<class T, int N, int Bins>
BVH_BinnedBuilder<T, N, Bins>::BVH_BinnedBuilder (const Standard_Integer theLeafNodeSize,
                                                  const Standard_Integer theMaxTreeDepth)
: BVH_QueueBuilder<T, N> (theLeafNodeSize,
                          theMaxTreeDepth)
{
  //
}

// =======================================================================
// function : ~BVH_BinnedBuilder
// purpose  :
// =======================================================================
template<class T, int N, int Bins>
BVH_BinnedBuilder<T, N, Bins>::~BVH_BinnedBuilder()
{
  //
}

// =======================================================================
// function : GetSubVolumes
// purpose  :
// =======================================================================
template<class T, int N, int Bins>
void BVH_BinnedBuilder<T, N, Bins>::GetSubVolumes (BVH_Set<T, N>*         theSet,
                                                   BVH_Tree<T, N>*        theBVH,
                                                   const Standard_Integer theNode,
                                                   BVH_BinVector&         theBins,
                                                   const Standard_Integer theAxis)
{
  const T aMin = BVH::VecComp<T, N>::Get (theBVH->MinPoint (theNode), theAxis);
  const T aMax = BVH::VecComp<T, N>::Get (theBVH->MaxPoint (theNode), theAxis);

  const T anInverseStep = static_cast<T> (Bins) / (aMax - aMin);

  for (Standard_Integer anIdx = theBVH->BegPrimitive (theNode); anIdx <= theBVH->EndPrimitive (theNode); ++anIdx)
  {
    typename BVH_Set<T, N>::BVH_BoxNt aBox = theSet->Box (anIdx);

    Standard_Integer aBinIndex = BVH::IntFloor<T> (
      (theSet->Center (anIdx, theAxis) - aMin) * anInverseStep);

    if (aBinIndex < 0)
    {
      aBinIndex = 0;
    }
    else if (aBinIndex >= Bins)
    {
      aBinIndex = Bins - 1;
    }

    theBins[aBinIndex].Count++;
    theBins[aBinIndex].Box.Combine (aBox);
  }
}

namespace BVH
{
  // =======================================================================
  // function : SplitPrimitives
  // purpose  :
  // =======================================================================
  template<class T, int N>
  Standard_Integer SplitPrimitives (BVH_Set<T, N>*         theSet,
                                    const BVH_Box<T, N>&   theBox,
                                    const Standard_Integer theBeg,
                                    const Standard_Integer theEnd,
                                    const Standard_Integer theBin,
                                    const Standard_Integer theAxis,
                                    const Standard_Integer theBins)
  {
    const T aMin = BVH::VecComp<T, N>::Get (theBox.CornerMin(), theAxis);
    const T aMax = BVH::VecComp<T, N>::Get (theBox.CornerMax(), theAxis);

    const T anInverseStep = static_cast<T> (theBins) / (aMax - aMin);

    Standard_Integer aLftIdx (theBeg);
    Standard_Integer aRghIdx (theEnd);

    do
    {
      while (BVH::IntFloor<T> ((theSet->Center (aLftIdx, theAxis) - aMin) * anInverseStep) <= theBin && aLftIdx < theEnd)
      {
        ++aLftIdx;
      }
      while (BVH::IntFloor<T> ((theSet->Center (aRghIdx, theAxis) - aMin) * anInverseStep) > theBin && aRghIdx > theBeg)
      {
        --aRghIdx;
      }

      if (aLftIdx <= aRghIdx)
      {
        if (aLftIdx != aRghIdx)
        {
          theSet->Swap (aLftIdx, aRghIdx);
        }

        ++aLftIdx;
        --aRghIdx;
      }
    } while (aLftIdx <= aRghIdx);

    return aLftIdx;
  }
}

#if defined (_WIN32) && defined (max)
  #undef max
#endif

#include <limits>

// =======================================================================
// function : BuildNode
// purpose  :
// =======================================================================
template<class T, int N, int Bins>
void BVH_BinnedBuilder<T, N, Bins>::BuildNode (BVH_Set<T, N>*         theSet,
                                               BVH_Tree<T, N>*        theBVH,
                                               const Standard_Integer theNode)
{
  const Standard_Integer aNodeBegPrimitive = theBVH->BegPrimitive (theNode);
  const Standard_Integer aNodeEndPrimitive = theBVH->EndPrimitive (theNode);

  if (aNodeEndPrimitive - aNodeBegPrimitive < BVH_Builder<T, N>::myLeafNodeSize)
  {
    return; // node does not require partitioning
  }

  const BVH_Box<T, N> anAABB (theBVH->MinPoint (theNode),
                              theBVH->MaxPoint (theNode));

  const typename BVH_Box<T, N>::BVH_VecNt aSize = anAABB.Size();

  // Parameters for storing best split
  Standard_Integer aMinSplitAxis   = -1;
  Standard_Integer aMinSplitIndex  =  0;
  Standard_Integer aMinSplitNumLft =  0;
  Standard_Integer aMinSplitNumRgh =  0;

  BVH_Box<T, N> aMinSplitBoxLft;
  BVH_Box<T, N> aMinSplitBoxRgh;

  Standard_Real aMinSplitCost = std::numeric_limits<Standard_Real>::max();

  // Find best split
  for (Standard_Integer anAxis = 0; anAxis < (N < 4 ? N : 3); ++anAxis)
  {
    if (BVH::VecComp<T, N>::Get (aSize, anAxis) <= BVH::THE_NODE_MIN_SIZE)
      continue;

    BVH_BinVector aBins;
    GetSubVolumes (theSet, theBVH, theNode, aBins, anAxis);

    // Choose the best split (with minimum SAH cost)
    for (Standard_Integer aSplit = 1; aSplit < Bins; ++aSplit)
    {
      Standard_Integer aLftCount = 0;
      Standard_Integer aRghCount = 0;

      BVH_Box<T, N> aLftAABB;
      BVH_Box<T, N> aRghAABB;

      for (Standard_Integer anIndex = 0; anIndex < aSplit; ++anIndex)
      {
        aLftCount += aBins[anIndex].Count;
        aLftAABB.Combine (aBins[anIndex].Box);
      }

      for (Standard_Integer anIndex = aSplit; anIndex < Bins; ++anIndex)
      {
        aRghCount += aBins[anIndex].Count;
        aRghAABB.Combine (aBins[anIndex].Box);
      }

      // Simple SAH evaluation
      Standard_Real aCost = (static_cast<Standard_Real> (aLftAABB.Area()) /* / aNodeArea */) * aLftCount
                          + (static_cast<Standard_Real> (aRghAABB.Area()) /* / aNodeArea */) * aRghCount;

      if (aCost <= aMinSplitCost)
      {
        aMinSplitCost   = aCost;
        aMinSplitAxis   = anAxis;
        aMinSplitIndex  = aSplit;
        aMinSplitBoxLft = aLftAABB;
        aMinSplitBoxRgh = aRghAABB;
        aMinSplitNumLft = aLftCount;
        aMinSplitNumRgh = aRghCount;
      }
    }
  }

  theBVH->SetInner (theNode);

  Standard_Integer aMiddle = -1;

  if (aMinSplitNumLft == 0 || aMinSplitNumRgh == 0 || aMinSplitAxis == -1) // case of objects with the same center
  {
    aMinSplitBoxLft.Clear();
    aMinSplitBoxRgh.Clear();

    aMiddle = std::max (aNodeBegPrimitive + 1,
      static_cast<Standard_Integer> ((aNodeBegPrimitive + aNodeEndPrimitive) / 2.f));

    aMinSplitNumLft = aMiddle - aNodeBegPrimitive;

    for (Standard_Integer anIndex = aNodeBegPrimitive; anIndex < aMiddle; ++anIndex)
    {
      aMinSplitBoxLft.Combine (theSet->Box (anIndex));
    }

    aMinSplitNumRgh = aNodeEndPrimitive - aMiddle + 1;

    for (Standard_Integer anIndex = aNodeEndPrimitive; anIndex >= aMiddle; --anIndex)
    {
      aMinSplitBoxRgh.Combine (theSet->Box (anIndex));
    }
  }
  else
  {
    aMiddle = BVH::SplitPrimitives<T, N> (theSet, anAABB,
      aNodeBegPrimitive, aNodeEndPrimitive, aMinSplitIndex - 1, aMinSplitAxis, Bins);
  }

  static const Standard_Integer aLftNode = 1;
  static const Standard_Integer aRghNode = 2;

  // Setting up tasks for child nodes
  for (Standard_Integer aSide = aLftNode; aSide <= aRghNode; ++aSide)
  {
    typename BVH_Box<T, N>::BVH_VecNt aMinPoint = (aSide == aLftNode)
                                                ? aMinSplitBoxLft.CornerMin()
                                                : aMinSplitBoxRgh.CornerMin();
    typename BVH_Box<T, N>::BVH_VecNt aMaxPoint = (aSide == aLftNode)
                                                ? aMinSplitBoxLft.CornerMax()
                                                : aMinSplitBoxRgh.CornerMax();

    Standard_Integer aBegPrimitive = (aSide == aLftNode)
                                   ? aNodeBegPrimitive
                                   : aMiddle;
    Standard_Integer aEndPrimitive = (aSide == aLftNode)
                                   ? aMiddle - 1
                                   : aNodeEndPrimitive;

    Standard_Integer aChildIndex = theBVH->AddLeafNode (aMinPoint, aMaxPoint, aBegPrimitive, aEndPrimitive);

    theBVH->Level (aChildIndex) = theBVH->Level (theNode) + 1;

    // Check to see if child node must be split
    const Standard_Integer aNbPimitives = (aSide == aLftNode)
                                        ? aMinSplitNumLft
                                        : aMinSplitNumRgh;

    if (aSide == aLftNode)
      theBVH->LeftChild  (theNode) = aChildIndex;
    else
      theBVH->RightChild (theNode) = aChildIndex;

    const Standard_Boolean isLeaf = aNbPimitives <= BVH_Builder<T, N>::myLeafNodeSize
                                 || theBVH->Level (aChildIndex) >= BVH_Builder<T, N>::myMaxTreeDepth;

    if (!isLeaf)
    {
      BVH_QueueBuilder<T, N>::myTasksQueue.Append (aChildIndex);
    }

    BVH_Builder<T, N>::UpdateDepth (theBVH, theBVH->Level (aChildIndex));
  }
}