This file is indexed.

/usr/include/oce/BSplSLib.hxx is in liboce-foundation-dev 0.17.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _BSplSLib_HeaderFile
#define _BSplSLib_HeaderFile

#include <Standard.hxx>
#include <Standard_DefineAlloc.hxx>
#include <Standard_Macro.hxx>

#include <Standard_Integer.hxx>
#include <Standard_Real.hxx>
#include <Standard_Boolean.hxx>
#include <BSplSLib_EvaluatorFunction.hxx>
class TColgp_Array2OfPnt;
class TColStd_Array2OfReal;
class TColStd_Array1OfReal;
class TColStd_Array1OfInteger;
class gp_Pnt;
class gp_Vec;
class TColgp_Array1OfPnt;


//! BSplSLib   B-spline surface Library
//! This  package provides   an  implementation  of  geometric
//! functions for rational and non rational, periodic  and non
//! periodic B-spline surface computation.
//!
//! this package uses   the  multi-dimensions splines  methods
//! provided in the package BSplCLib.
//!
//! In this package the B-spline surface is defined with :
//! . its control points :  Array2OfPnt     Poles
//! . its weights        :  Array2OfReal    Weights
//! . its knots and their multiplicity in the two parametric
//! direction U and V  :  Array1OfReal    UKnots, VKnots and
//! Array1OfInteger UMults, VMults.
//! . the degree of the normalized Spline functions :
//! UDegree, VDegree
//!
//! . the Booleans URational, VRational to know if the weights
//! are constant in the U or V direction.
//!
//! . the Booleans UPeriodic,   VRational  to know if the  the
//! surface is periodic in the U or V direction.
//!
//! Warnings : The  bounds of UKnots  and UMults should be the
//! same, the bounds of VKnots and VMults should be  the same,
//! the bounds of Poles and Weights shoud be the same.
//!
//! The Control points representation is :
//! Poles(Uorigin,Vorigin) ...................Poles(Uorigin,Vend)
//! .                                     .
//! .                                     .
//! Poles(Uend, Vorigin) .....................Poles(Uend, Vend)
//!
//! For  the double array  the row indice   corresponds to the
//! parametric U direction  and the columns indice corresponds
//! to the parametric V direction.
//!
//! KeyWords :
//! B-spline surface, Functions, Library
//!
//! References :
//! . A survey of curve and surface methods in CADG Wolfgang BOHM
//! CAGD 1 (1984)
//! . On de Boor-like algorithms and blossoming Wolfgang BOEHM
//! cagd 5 (1988)
//! . Blossoming and knot insertion algorithms for B-spline curves
//! Ronald N. GOLDMAN
//! . Modelisation des surfaces en CAO, Henri GIAUME Peugeot SA
//! . Curves and Surfaces for Computer Aided Geometric Design,
//! a practical guide Gerald Farin
class BSplSLib 
{
public:

  DEFINE_STANDARD_ALLOC

  

  //! this is a one dimensional function
  //! typedef  void (*EvaluatorFunction)  (
  //! Standard_Integer     // Derivative Request
  //! Standard_Real    *   // StartEnd[2][2]
  //! //  [0] = U
  //! //  [1] = V
  //! //        [0] = start
  //! //        [1] = end
  //! Standard_Real        // UParameter
  //! Standard_Real        // VParamerer
  //! Standard_Real    &   // Result
  //! Standard_Integer &) ;// Error Code
  //! serves to multiply a given vectorial BSpline by a function
  //! Computes  the     derivatives   of  a    ratio  of
  //! two-variables functions  x(u,v) / w(u,v) at orders
  //! <N,M>,    x(u,v)    is   a  vector in    dimension
  //! <3>.
  //!
  //! <Ders> is  an array  containing the values  of the
  //! input derivatives from 0  to Min(<N>,<UDeg>), 0 to
  //! Min(<M>,<VDeg>).    For orders    higher      than
  //! <UDeg,VDeg>  the  input derivatives are assumed to
  //! be 0.
  //!
  //! The <Ders> is a 2d array and the  dimension of the
  //! lines is always (<VDeg>+1) * (<3>+1), even
  //! if   <N> is smaller  than  <Udeg> (the derivatives
  //! higher than <N> are not used).
  //!
  //! Content of <Ders> :
  //!
  //! x(i,j)[k] means :  the composant  k of x derivated
  //! (i) times in u and (j) times in v.
  //!
  //! ... First line ...
  //!
  //! x[1],x[2],...,x[3],w
  //! x(0,1)[1],...,x(0,1)[3],w(1,0)
  //! ...
  //! x(0,VDeg)[1],...,x(0,VDeg)[3],w(0,VDeg)
  //!
  //! ... Then second line ...
  //!
  //! x(1,0)[1],...,x(1,0)[3],w(1,0)
  //! x(1,1)[1],...,x(1,1)[3],w(1,1)
  //! ...
  //! x(1,VDeg)[1],...,x(1,VDeg)[3],w(1,VDeg)
  //!
  //! ...
  //!
  //! ... Last line ...
  //!
  //! x(UDeg,0)[1],...,x(UDeg,0)[3],w(UDeg,0)
  //! x(UDeg,1)[1],...,x(UDeg,1)[3],w(UDeg,1)
  //! ...
  //! x(Udeg,VDeg)[1],...,x(UDeg,VDeg)[3],w(Udeg,VDeg)
  //!
  //! If <All>  is false, only  the derivative  at order
  //! <N,M> is computed.  <RDers> is an  array of length
  //! 3 which will contain the result :
  //!
  //! x(1)/w , x(2)/w ,  ... derivated <N> <M> times
  //!
  //! If   <All>    is  true  multiples  derivatives are
  //! computed. All the  derivatives (i,j) with 0 <= i+j
  //! <= Max(N,M) are  computed.  <RDers> is an array of
  //! length 3 *  (<N>+1)  * (<M>+1) which  will
  //! contains :
  //!
  //! x(1)/w , x(2)/w ,  ...
  //! x(1)/w , x(2)/w ,  ... derivated <0,1> times
  //! x(1)/w , x(2)/w ,  ... derivated <0,2> times
  //! ...
  //! x(1)/w , x(2)/w ,  ... derivated <0,N> times
  //!
  //! x(1)/w , x(2)/w ,  ... derivated <1,0> times
  //! x(1)/w , x(2)/w ,  ... derivated <1,1> times
  //! ...
  //! x(1)/w , x(2)/w ,  ... derivated <1,N> times
  //!
  //! x(1)/w , x(2)/w ,  ... derivated <N,0> times
  //! ....
  //! Warning: <RDers> must be dimensionned properly.
  Standard_EXPORT static   void RationalDerivative (const Standard_Integer UDeg, const Standard_Integer VDeg, const Standard_Integer N, const Standard_Integer M, Standard_Real& Ders, Standard_Real& RDers, const Standard_Boolean All = Standard_True) ;
  
  Standard_EXPORT static   void D0 (const Standard_Real U, const Standard_Real V, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, gp_Pnt& P) ;
  
  Standard_EXPORT static   void D1 (const Standard_Real U, const Standard_Real V, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer Degree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, gp_Pnt& P, gp_Vec& Vu, gp_Vec& Vv) ;
  
  Standard_EXPORT static   void D2 (const Standard_Real U, const Standard_Real V, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, gp_Pnt& P, gp_Vec& Vu, gp_Vec& Vv, gp_Vec& Vuu, gp_Vec& Vvv, gp_Vec& Vuv) ;
  
  Standard_EXPORT static   void D3 (const Standard_Real U, const Standard_Real V, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, gp_Pnt& P, gp_Vec& Vu, gp_Vec& Vv, gp_Vec& Vuu, gp_Vec& Vvv, gp_Vec& Vuv, gp_Vec& Vuuu, gp_Vec& Vvvv, gp_Vec& Vuuv, gp_Vec& Vuvv) ;
  
  Standard_EXPORT static   void DN (const Standard_Real U, const Standard_Real V, const Standard_Integer Nu, const Standard_Integer Nv, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, gp_Vec& Vn) ;
  
  //! Computes the  poles and weights of an isoparametric
  //! curve at parameter  <Param> (UIso if <IsU> is True,
  //! VIso  else).
  Standard_EXPORT static   void Iso (const Standard_Real Param, const Standard_Boolean IsU, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const Standard_Integer Degree, const Standard_Boolean Periodic, TColgp_Array1OfPnt& CPoles, TColStd_Array1OfReal& CWeights) ;
  
  //! Reverses the array of poles. Last is the Index of
  //! the new first Row( Col) of Poles.
  //! On  a  non periodic surface Last is
  //! Poles.Upper().
  //! On a periodic curve last is
  //! (number of flat knots - degree - 1)
  //! or
  //! (sum of multiplicities(but  for the last) + degree
  //! - 1)
  Standard_EXPORT static   void Reverse (TColgp_Array2OfPnt& Poles, const Standard_Integer Last, const Standard_Boolean UDirection) ;
  
  //! Makes an homogeneous  evaluation of Poles and Weights
  //! any and returns in P the Numerator value and
  //! in W the Denominator value if Weights are present
  //! otherwise returns 1.0e0
  Standard_EXPORT static   void HomogeneousD0 (const Standard_Real U, const Standard_Real V, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, Standard_Real& W, gp_Pnt& P) ;
  
  //! Makes an homogeneous  evaluation of Poles and Weights
  //! any and returns in P the Numerator value and
  //! in W the Denominator value if Weights are present
  //! otherwise returns 1.0e0
  Standard_EXPORT static   void HomogeneousD1 (const Standard_Real U, const Standard_Real V, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, gp_Pnt& N, gp_Vec& Nu, gp_Vec& Nv, Standard_Real& D, Standard_Real& Du, Standard_Real& Dv) ;
  
  //! Reverses the array of weights.
  Standard_EXPORT static   void Reverse (TColStd_Array2OfReal& Weights, const Standard_Integer Last, const Standard_Boolean UDirection) ;
  

  //! Returns False if all the weights  of the  array <Weights>
  //! in the area [I1,I2] * [J1,J2] are  identic.
  //! Epsilon  is used for comparing  weights.
  //! If Epsilon  is 0. the  Epsilon of the first weight is used.
  Standard_EXPORT static   Standard_Boolean IsRational (const TColStd_Array2OfReal& Weights, const Standard_Integer I1, const Standard_Integer I2, const Standard_Integer J1, const Standard_Integer J2, const Standard_Real Epsilon = 0.0) ;
  
  //! Copy in FP the coordinates of the poles.
  Standard_EXPORT static   void SetPoles (const TColgp_Array2OfPnt& Poles, TColStd_Array1OfReal& FP, const Standard_Boolean UDirection) ;
  
  //! Copy in FP the coordinates of the poles.
  Standard_EXPORT static   void SetPoles (const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, TColStd_Array1OfReal& FP, const Standard_Boolean UDirection) ;
  
  //! Get from FP the coordinates of the poles.
  Standard_EXPORT static   void GetPoles (const TColStd_Array1OfReal& FP, TColgp_Array2OfPnt& Poles, const Standard_Boolean UDirection) ;
  
  //! Get from FP the coordinates of the poles.
  Standard_EXPORT static   void GetPoles (const TColStd_Array1OfReal& FP, TColgp_Array2OfPnt& Poles, TColStd_Array2OfReal& Weights, const Standard_Boolean UDirection) ;
  
  //! Find the new poles which allows an old point (with a
  //! given u,v  as parameters)  to  reach a  new position
  //! UIndex1,UIndex2 indicate the  range of poles we can
  //! move for U
  //! (1, UNbPoles-1) or (2, UNbPoles) -> no constraint
  //! for one side in U
  //! (2, UNbPoles-1)   -> the ends are enforced for U
  //! don't enter (1,NbPoles) and (1,VNbPoles)
  //! -> error: rigid move
  //! if problem in BSplineBasis calculation, no change
  //! for the curve  and
  //! UFirstIndex, VLastIndex = 0
  //! VFirstIndex, VLastIndex = 0
  Standard_EXPORT static   void MovePoint (const Standard_Real U, const Standard_Real V, const gp_Vec& Displ, const Standard_Integer UIndex1, const Standard_Integer UIndex2, const Standard_Integer VIndex1, const Standard_Integer VIndex2, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean Rational, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UFlatKnots, const TColStd_Array1OfReal& VFlatKnots, Standard_Integer& UFirstIndex, Standard_Integer& ULastIndex, Standard_Integer& VFirstIndex, Standard_Integer& VLastIndex, TColgp_Array2OfPnt& NewPoles) ;
  
  Standard_EXPORT static   void InsertKnots (const Standard_Boolean UDirection, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& AddKnots, const TColStd_Array1OfInteger& AddMults, TColgp_Array2OfPnt& NewPoles, TColStd_Array2OfReal& NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Epsilon, const Standard_Boolean Add = Standard_True) ;
  
  Standard_EXPORT static   Standard_Boolean RemoveKnot (const Standard_Boolean UDirection, const Standard_Integer Index, const Standard_Integer Mult, const Standard_Integer Degree, const Standard_Boolean Periodic, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array2OfPnt& NewPoles, TColStd_Array2OfReal& NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults, const Standard_Real Tolerance) ;
  
  Standard_EXPORT static   void IncreaseDegree (const Standard_Boolean UDirection, const Standard_Integer Degree, const Standard_Integer NewDegree, const Standard_Boolean Periodic, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& Knots, const TColStd_Array1OfInteger& Mults, TColgp_Array2OfPnt& NewPoles, TColStd_Array2OfReal& NewWeights, TColStd_Array1OfReal& NewKnots, TColStd_Array1OfInteger& NewMults) ;
  
  Standard_EXPORT static   void Unperiodize (const Standard_Boolean UDirection, const Standard_Integer Degree, const TColStd_Array1OfInteger& Mults, const TColStd_Array1OfReal& Knots, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, TColStd_Array1OfInteger& NewMults, TColStd_Array1OfReal& NewKnots, TColgp_Array2OfPnt& NewPoles, TColStd_Array2OfReal& NewWeights) ;
  
  //! Used as argument for a non rational curve.
    static   TColStd_Array2OfReal& NoWeights() ;
  
  //! Perform the evaluation of the Taylor expansion
  //! of the Bspline normalized between 0 and 1.
  //! If rational computes the homogeneous Taylor expension
  //! for the numerator and stores it in CachePoles
  Standard_EXPORT static   void BuildCache (const Standard_Real U, const Standard_Real V, const Standard_Real USpanDomain, const Standard_Real VSpanDomain, const Standard_Boolean UPeriodicFlag, const Standard_Boolean VPeriodicFlag, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Integer UIndex, const Standard_Integer VIndex, const TColStd_Array1OfReal& UFlatKnots, const TColStd_Array1OfReal& VFlatKnots, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, TColgp_Array2OfPnt& CachePoles, TColStd_Array2OfReal& CacheWeights) ;
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static   void CacheD0 (const Standard_Real U, const Standard_Real V, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Real UCacheParameter, const Standard_Real VCacheParameter, const Standard_Real USpanLenght, const Standard_Real VSpanLength, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, gp_Pnt& Point) ;
  
  //! Calls CacheD0 for Bezier Surfaces Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for BezierSurfaces ONLY!!!
    static   void CoefsD0 (const Standard_Real U, const Standard_Real V, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, gp_Pnt& Point) ;
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static   void CacheD1 (const Standard_Real U, const Standard_Real V, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Real UCacheParameter, const Standard_Real VCacheParameter, const Standard_Real USpanLenght, const Standard_Real VSpanLength, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, gp_Pnt& Point, gp_Vec& VecU, gp_Vec& VecV) ;
  
  //! Calls CacheD0 for Bezier Surfaces Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for BezierSurfaces ONLY!!!
    static   void CoefsD1 (const Standard_Real U, const Standard_Real V, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, gp_Pnt& Point, gp_Vec& VecU, gp_Vec& VecV) ;
  
  //! Perform the evaluation of the of the cache
  //! the parameter must be normalized between
  //! the 0 and 1 for the span.
  //! The Cache must be valid when calling this
  //! routine. Geom Package will insure that.
  //! and then multiplies by the weights
  //! this just evaluates the current point
  //! the CacheParameter is where the Cache was
  //! constructed the SpanLength is to normalize
  //! the polynomial in the cache to avoid bad conditioning
  //! effects
  Standard_EXPORT static   void CacheD2 (const Standard_Real U, const Standard_Real V, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Real UCacheParameter, const Standard_Real VCacheParameter, const Standard_Real USpanLenght, const Standard_Real VSpanLength, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, gp_Pnt& Point, gp_Vec& VecU, gp_Vec& VecV, gp_Vec& VecUU, gp_Vec& VecUV, gp_Vec& VecVV) ;
  
  //! Calls CacheD0 for Bezier Surfaces Arrays computed with
  //! the method PolesCoefficients.
  //! Warning: To be used for BezierSurfaces ONLY!!!
    static   void CoefsD2 (const Standard_Real U, const Standard_Real V, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, gp_Pnt& Point, gp_Vec& VecU, gp_Vec& VecV, gp_Vec& VecUU, gp_Vec& VecUV, gp_Vec& VecVV) ;
  
  //! Warning! To be used for BezierSurfaces ONLY!!!
    static   void PolesCoefficients (const TColgp_Array2OfPnt& Poles, TColgp_Array2OfPnt& CachePoles) ;
  
  //! Encapsulation   of  BuildCache    to   perform   the
  //! evaluation  of the Taylor expansion for beziersurfaces
  //! at parameters 0.,0.;
  //! Warning: To be used for BezierSurfaces ONLY!!!
  Standard_EXPORT static   void PolesCoefficients (const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, TColgp_Array2OfPnt& CachePoles, TColStd_Array2OfReal& CacheWeights) ;
  
  //! Given a tolerance in 3D space returns two
  //! tolerances, one in U one in V such that for
  //! all (u1,v1) and (u0,v0) in the domain of
  //! the surface f(u,v)  we have :
  //! | u1 - u0 | < UTolerance and
  //! | v1 - v0 | < VTolerance
  //! we have |f (u1,v1) - f (u0,v0)| < Tolerance3D
  Standard_EXPORT static   void Resolution (const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UKnots, const TColStd_Array1OfReal& VKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const Standard_Integer UDegree, const Standard_Integer VDegree, const Standard_Boolean URat, const Standard_Boolean VRat, const Standard_Boolean UPer, const Standard_Boolean VPer, const Standard_Real Tolerance3D, Standard_Real& UTolerance, Standard_Real& VTolerance) ;
  
  //! Performs the interpolation of the data points given in
  //! the   Poles       array      in   the      form
  //! [1,...,RL][1,...,RC][1...PolesDimension]    .    The
  //! ColLength CL and the Length of UParameters must be the
  //! same. The length of VFlatKnots is VDegree + CL + 1.
  //!
  //! The  RowLength RL and the Length of VParameters must be
  //! the  same. The length of VFlatKnots is Degree + RL + 1.
  //!
  //! Warning: the method used  to do that  interpolation
  //! is gauss  elimination  WITHOUT pivoting.  Thus if  the
  //! diagonal is not  dominant  there is no guarantee  that
  //! the   algorithm will    work.  Nevertheless  for Cubic
  //! interpolation  at knots or interpolation at Scheonberg
  //! points  the method   will work.  The  InversionProblem
  //! will  report 0 if there   was no problem  else it will
  //! give the index of the faulty pivot
  Standard_EXPORT static   void Interpolate (const Standard_Integer UDegree, const Standard_Integer VDegree, const TColStd_Array1OfReal& UFlatKnots, const TColStd_Array1OfReal& VFlatKnots, const TColStd_Array1OfReal& UParameters, const TColStd_Array1OfReal& VParameters, TColgp_Array2OfPnt& Poles, TColStd_Array2OfReal& Weights, Standard_Integer& InversionProblem) ;
  
  //! Performs the interpolation of the data points given in
  //! the  Poles array.
  //! The  ColLength CL and the Length of UParameters must be
  //! the  same. The length of VFlatKnots is VDegree + CL + 1.
  //!
  //! The  RowLength RL and the Length of VParameters must be
  //! the  same. The length of VFlatKnots is Degree + RL + 1.
  //!
  //! Warning: the method used  to do that  interpolation
  //! is gauss  elimination  WITHOUT pivoting.  Thus if  the
  //! diagonal is not  dominant  there is no guarantee  that
  //! the   algorithm will    work.  Nevertheless  for Cubic
  //! interpolation  at knots or interpolation at Scheonberg
  //! points  the method   will work.  The  InversionProblem
  //! will  report 0 if there   was no problem  else it will
  //! give the index of the faulty pivot
  Standard_EXPORT static   void Interpolate (const Standard_Integer UDegree, const Standard_Integer VDegree, const TColStd_Array1OfReal& UFlatKnots, const TColStd_Array1OfReal& VFlatKnots, const TColStd_Array1OfReal& UParameters, const TColStd_Array1OfReal& VParameters, TColgp_Array2OfPnt& Poles, Standard_Integer& InversionProblem) ;
  
  //! this will multiply  a given BSpline numerator  N(u,v)
  //! and    denominator    D(u,v)  defined     by   its
  //! U/VBSplineDegree   and    U/VBSplineKnots,     and
  //! U/VMults. Its Poles  and Weights are arrays which are
  //! coded   as      array2      of      the    form
  //! [1..UNumPoles][1..VNumPoles]  by  a function a(u,v)
  //! which  is assumed  to satisfy    the following :  1.
  //! a(u,v)  * N(u,v) and a(u,v) *  D(u,v)  is a polynomial
  //! BSpline that can be expressed exactly as a BSpline of
  //! degree U/VNewDegree  on  the knots U/VFlatKnots 2. the range
  //! of a(u,v) is   the   same as  the range   of  N(u,v)
  //! or D(u,v)
  //! ---Warning:  it is   the caller's  responsability  to
  //! insure that conditions 1. and  2. above are satisfied
  //! : no  check  whatsoever is made   in  this method  --
  //! Status will  return 0 if  OK else it will return  the
  //! pivot index -- of the   matrix that was inverted to
  //! compute the multiplied -- BSpline  : the method used
  //! is  interpolation   at Schoenenberg   --  points  of
  //! a(u,v)* N(u,v) and a(u,v) * D(u,v)
  //! Status will return 0 if OK else it will return the pivot index
  //! of the matrix that was inverted to compute the multiplied
  //! BSpline : the method used is interpolation at Schoenenberg
  //! points of a(u,v)*F(u,v)
  //! --
  Standard_EXPORT static   void FunctionMultiply (const BSplSLib_EvaluatorFunction& Function, const Standard_Integer UBSplineDegree, const Standard_Integer VBSplineDegree, const TColStd_Array1OfReal& UBSplineKnots, const TColStd_Array1OfReal& VBSplineKnots, const TColStd_Array1OfInteger& UMults, const TColStd_Array1OfInteger& VMults, const TColgp_Array2OfPnt& Poles, const TColStd_Array2OfReal& Weights, const TColStd_Array1OfReal& UFlatKnots, const TColStd_Array1OfReal& VFlatKnots, const Standard_Integer UNewDegree, const Standard_Integer VNewDegree, TColgp_Array2OfPnt& NewNumerator, TColStd_Array2OfReal& NewDenominator, Standard_Integer& Status) ;




protected:





private:





};


#include <BSplSLib.lxx>





#endif // _BSplSLib_HeaderFile