This file is indexed.

/usr/include/NTL/FFT.h is in libntl-dev 6.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#ifndef NTL_FFT__H
#define NTL_FFT__H

#include <NTL/ZZ.h>
#include <NTL/vector.h>
#include <NTL/vec_long.h>

NTL_OPEN_NNS

#define NTL_FFTFudge (4)
// This constant is used in selecting the correct
// number of FFT primes for polynomial multiplication
// in ZZ_pX and zz_pX.  Set at 4, this allows for
// two FFT reps to be added or subtracted once,
// before performing CRT, and leaves a reasonable margin for error.
// Don't change this!

#define NTL_FFTMaxRootBnd (NTL_SP_NBITS-2)
// Absolute maximum root bound for FFT primes.
// Don't change this!

#if (25 <= NTL_FFTMaxRootBnd)
#define NTL_FFTMaxRoot (25)
#else
#define NTL_FFTMaxRoot  NTL_FFTMaxRootBnd
#endif
// Root bound for FFT primes.  Held to a maximum
// of 25 to avoid large tables and excess precomputation,
// and to keep the number of FFT primes needed small.
// This means we can multiply polynomials of degree less than 2^24.  
// This can be increased, with a slight performance penalty.


// New interface

class FFTMultipliers {
public:
   long MaxK;
   Vec< Vec<long> > wtab_precomp;
   Vec< Vec<mulmod_precon_t> > wqinvtab_precomp;

   FFTMultipliers() : MaxK(-1) { }
};

#ifndef NTL_WIZARD_HACK
class zz_pInfoT; // forward reference, defined in lzz_p.h
#else
typedef long zz_pInfoT;
#endif


struct FFTPrimeInfo {
   long q;   // the prime itself
   double qinv;   // 1/((double) q)

   zz_pInfoT *zz_p_context; 
   // pointer to corresponding zz_p context, which points back to this 
   // object in the case of a non-user FFT prime

   Vec<long> RootTable;
   //   RootTable[j] = w^{2^{MaxRoot-j}},
   //                  where w is a primitive 2^MaxRoot root of unity
   //                  for q

   Vec<long> RootInvTable;
   // RootInvTable[j] = 1/RootTable[j] mod q

   Vec<long> TwoInvTable;
   // TwoInvTable[j] = 1/2^j mod q

   Vec<mulmod_precon_t> TwoInvPreconTable;
   // mulmod preconditioning data

   long bigtab; // flag indicating if we use big tables for this prime
   FFTMultipliers MulTab;
   FFTMultipliers InvMulTab;

};

void InitFFTPrimeInfo(FFTPrimeInfo& info, long q, long w, long bigtab);

#define NTL_FFT_BIGTAB_LIMIT (256)
// big tables are only used for the first NTL_FFT_BIGTAB_LIMIT primes
// TODO: maybe we should have a similar limit for the degree of
// the convolution as well.


NTL_THREAD_LOCAL
extern FFTPrimeInfo **FFTTables;


// legacy interface

NTL_THREAD_LOCAL
extern long NumFFTPrimes;

NTL_THREAD_LOCAL
extern long *FFTPrime;

NTL_THREAD_LOCAL
extern double *FFTPrimeInv;



long CalcMaxRoot(long p);
// calculates max power of two supported by this FFT prime.

void UseFFTPrime(long index);
// allocates and initializes information for FFT prime


void FFT(long* A, const long* a, long k, long q, const long* root);
// the low-level FFT routine.
// computes a 2^k point FFT modulo q, using the table root for the roots.

void FFT(long* A, const long* a, long k, long q, const long* root, FFTMultipliers& tab);


inline
void FFTFwd(long* A, const long *a, long k, FFTPrimeInfo& info)
// Slightly higher level interface...using the ith FFT prime
{
#ifdef NTL_FFT_BIGTAB
   if (info.bigtab)
      FFT(A, a, k, info.q, &info.RootTable[0], info.MulTab);
   else
      FFT(A, a, k, info.q, &info.RootTable[0]);
#else
   FFT(A, a, k, info.q, &info.RootTable[0]);
#endif
}

inline 
void FFTFwd(long* A, const long *a, long k, long i)
{
   FFTFwd(A, a, k, *FFTTables[i]);
}

inline
void FFTRev(long* A, const long *a, long k, FFTPrimeInfo& info)
// Slightly higher level interface...using the ith FFT prime
{
#ifdef NTL_FFT_BIGTAB
   if (info.bigtab)
      FFT(A, a, k, info.q, &info.RootInvTable[0], info.InvMulTab);
   else
      FFT(A, a, k, info.q, &info.RootInvTable[0]);
#else
   FFT(A, a, k, info.q, &info.RootInvTable[0]);
#endif
}

inline
void FFTRev(long* A, const long *a, long k, long i)
{
   FFTRev(A, a, k, *FFTTables[i]);
}

inline
void FFTMulTwoInv(long* A, const long *a, long k, FFTPrimeInfo& info)
{
   VectorMulModPrecon(1L << k, A, a, info.TwoInvTable[k], info.q, 
                      info.TwoInvPreconTable[k]);
}

inline
void FFTMulTwoInv(long* A, const long *a, long k, long i)
{
   FFTMulTwoInv(A, a, k, *FFTTables[i]);
}

inline 
void FFTRev1(long* A, const long *a, long k, FFTPrimeInfo& info)
// FFTRev + FFTMulTwoInv
{
   FFTRev(A, a, k, info);
   FFTMulTwoInv(A, A, k, info);
}

inline 
void FFTRev1(long* A, const long *a, long k, long i)
{
   FFTRev1(A, a, k, *FFTTables[i]);
}


long IsFFTPrime(long n, long& w);
// tests if n is an "FFT prime" and returns corresponding root




NTL_CLOSE_NNS

#endif