This file is indexed.

/usr/include/mlpack/methods/det/dtree.hpp is in libmlpack-dev 2.0.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
/**
 * @file dtree.hpp
 * @author Parikshit Ram (pram@cc.gatech.edu)
 *
 * Density Estimation Tree class
 *
 * This file is part of mlpack 2.0.1.
 *
 * mlpack is free software; you may redstribute it and/or modify it under the
 * terms of the 3-clause BSD license.  You should have received a copy of the
 * 3-clause BSD license along with mlpack.  If not, see
 * http://www.opensource.org/licenses/BSD-3-Clause for more information.
 */

#ifndef __MLPACK_METHODS_DET_DTREE_HPP
#define __MLPACK_METHODS_DET_DTREE_HPP

#include <mlpack/core.hpp>

namespace mlpack {
namespace det /** Density Estimation Trees */ {

/**
 * A density estimation tree is similar to both a decision tree and a space
 * partitioning tree (like a kd-tree).  Each leaf represents a constant-density
 * hyper-rectangle.  The tree is constructed in such a way as to minimize the
 * integrated square error between the probability distribution of the tree and
 * the observed probability distribution of the data.  Because the tree is
 * similar to a decision tree, the density estimation tree can provide very fast
 * density estimates for a given point.
 *
 * For more information, see the following paper:
 *
 * @code
 * @incollection{ram2011,
 *   author = {Ram, Parikshit and Gray, Alexander G.},
 *   title = {Density estimation trees},
 *   booktitle = {{Proceedings of the 17th ACM SIGKDD International Conference
 *       on Knowledge Discovery and Data Mining}},
 *   series = {KDD '11},
 *   year = {2011},
 *   pages = {627--635}
 * }
 * @endcode
 */
class DTree
{
 public:
  /**
   * Create an empty density estimation tree.
   */
  DTree();

  /**
   * Create a density estimation tree with the given bounds and the given number
   * of total points.  Children will not be created.
   *
   * @param maxVals Maximum values of the bounding box.
   * @param minVals Minimum values of the bounding box.
   * @param totalPoints Total number of points in the dataset.
   */
  DTree(const arma::vec& maxVals,
        const arma::vec& minVals,
        const size_t totalPoints);

  /**
   * Create a density estimation tree on the given data.  Children will be
   * created following the procedure outlined in the paper.  The data will be
   * modified; it will be reordered similar to the way BinarySpaceTree modifies
   * datasets.
   *
   * @param data Dataset to build tree on.
   */
  DTree(arma::mat& data);

  /**
   * Create a child node of a density estimation tree given the bounding box
   * specified by maxVals and minVals, using the size given in start and end and
   * the specified error.  Children of this node will not be created
   * recursively.
   *
   * @param maxVals Upper bound of bounding box.
   * @param minVals Lower bound of bounding box.
   * @param start Start of points represented by this node in the data matrix.
   * @param end End of points represented by this node in the data matrix.
   * @param error log-negative error of this node.
   */
  DTree(const arma::vec& maxVals,
        const arma::vec& minVals,
        const size_t start,
        const size_t end,
        const double logNegError);

  /**
   * Create a child node of a density estimation tree given the bounding box
   * specified by maxVals and minVals, using the size given in start and end,
   * and calculating the error with the total number of points given.  Children
   * of this node will not be created recursively.
   *
   * @param maxVals Upper bound of bounding box.
   * @param minVals Lower bound of bounding box.
   * @param start Start of points represented by this node in the data matrix.
   * @param end End of points represented by this node in the data matrix.
   */
  DTree(const arma::vec& maxVals,
        const arma::vec& minVals,
        const size_t totalPoints,
        const size_t start,
        const size_t end);

  //! Clean up memory allocated by the tree.
  ~DTree();

  /**
   * Greedily expand the tree.  The points in the dataset will be reordered
   * during tree growth.
   *
   * @param data Dataset to build tree on.
   * @param oldFromNew Mappings from old points to new points.
   * @param useVolReg If true, volume regularization is used.
   * @param maxLeafSize Maximum size of a leaf.
   * @param minLeafSize Minimum size of a leaf.
   */
  double Grow(arma::mat& data,
              arma::Col<size_t>& oldFromNew,
              const bool useVolReg = false,
              const size_t maxLeafSize = 10,
              const size_t minLeafSize = 5);

  /**
   * Perform alpha pruning on a tree.  Returns the new value of alpha.
   *
   * @param oldAlpha Old value of alpha.
   * @param points Total number of points in dataset.
   * @param useVolReg If true, volume regularization is used.
   * @return New value of alpha.
   */
  double PruneAndUpdate(const double oldAlpha,
                        const size_t points,
                        const bool useVolReg = false);

  /**
   * Compute the logarithm of the density estimate of a given query point.
   *
   * @param query Point to estimate density of.
   */
  double ComputeValue(const arma::vec& query) const;

  /**
   * Print the tree in a depth-first manner (this function is called
   * recursively).
   *
   * @param fp File to write the tree to.
   * @param level Level of the tree (should start at 0).
   */
  void WriteTree(FILE *fp, const size_t level = 0) const;

  /**
   * Index the buckets for possible usage later; this results in every leaf in
   * the tree having a specific tag (accessible with BucketTag()).  This
   * function calls itself recursively.
   *
   * @param tag Tag for the next leaf; leave at 0 for the initial call.
   */
  int TagTree(const int tag = 0);

  /**
   * Return the tag of the leaf containing the query.  This is useful for
   * generating class memberships.
   *
   * @param query Query to search for.
   */
  int FindBucket(const arma::vec& query) const;

  /**
   * Compute the variable importance of each dimension in the learned tree.
   *
   * @param importances Vector to store the calculated importances in.
   */
  void ComputeVariableImportance(arma::vec& importances) const;

  /**
   * Compute the log-negative-error for this point, given the total number of
   * points in the dataset.
   *
   * @param totalPoints Total number of points in the dataset.
   */
  double LogNegativeError(const size_t totalPoints) const;

  /**
   * Return whether a query point is within the range of this node.
   */
  bool WithinRange(const arma::vec& query) const;

 private:
  // The indices in the complete set of points
  // (after all forms of swapping in the original data
  // matrix to align all the points in a node
  // consecutively in the matrix. The 'old_from_new' array
  // maps the points back to their original indices.

  //! The index of the first point in the dataset contained in this node (and
  //! its children).
  size_t start;
  //! The index of the last point in the dataset contained in this node (and its
  //! children).
  size_t end;

  //! Upper half of bounding box for this node.
  arma::vec maxVals;
  //! Lower half of bounding box for this node.
  arma::vec minVals;

  //! The splitting dimension for this node.
  size_t splitDim;

  //! The split value on the splitting dimension for this node.
  double splitValue;

  //! log-negative-L2-error of the node.
  double logNegError;

  //! Sum of the error of the leaves of the subtree.
  double subtreeLeavesLogNegError;

  //! Number of leaves of the subtree.
  size_t subtreeLeaves;

  //! If true, this node is the root of the tree.
  bool root;

  //! Ratio of the number of points in the node to the total number of points.
  double ratio;

  //! The logarithm of the volume of the node.
  double logVolume;

  //! The tag for the leaf, used for hashing points.
  int bucketTag;

  //! Upper part of alpha sum; used for pruning.
  double alphaUpper;

  //! The left child.
  DTree* left;
  //! The right child.
  DTree* right;

 public:
  //! Return the starting index of points contained in this node.
  size_t Start() const { return start; }
  //! Return the first index of a point not contained in this node.
  size_t End() const { return end; }
  //! Return the split dimension of this node.
  size_t SplitDim() const { return splitDim; }
  //! Return the split value of this node.
  double SplitValue() const { return splitValue; }
  //! Return the log negative error of this node.
  double LogNegError() const { return logNegError; }
  //! Return the log negative error of all descendants of this node.
  double SubtreeLeavesLogNegError() const { return subtreeLeavesLogNegError; }
  //! Return the number of leaves which are descendants of this node.
  size_t SubtreeLeaves() const { return subtreeLeaves; }
  //! Return the ratio of points in this node to the points in the whole
  //! dataset.
  double Ratio() const { return ratio; }
  //! Return the inverse of the volume of this node.
  double LogVolume() const { return logVolume; }
  //! Return the left child.
  DTree* Left() const { return left; }
  //! Return the right child.
  DTree* Right() const { return right; }
  //! Return whether or not this is the root of the tree.
  bool Root() const { return root; }
  //! Return the upper part of the alpha sum.
  double AlphaUpper() const { return alphaUpper; }

  //! Return the maximum values.
  const arma::vec& MaxVals() const { return maxVals; }
  //! Modify the maximum values.
  arma::vec& MaxVals() { return maxVals; }

  //! Return the minimum values.
  const arma::vec& MinVals() const { return minVals; }
  //! Modify the minimum values.
  arma::vec& MinVals() { return minVals; }

  /**
   * Serialize the density estimation tree.
   */
  template<typename Archive>
  void Serialize(Archive& ar, const unsigned int /* version */)
  {
    using data::CreateNVP;

    ar & CreateNVP(start, "start");
    ar & CreateNVP(end, "end");
    ar & CreateNVP(maxVals, "maxVals");
    ar & CreateNVP(minVals, "minVals");
    ar & CreateNVP(splitDim, "splitDim");
    ar & CreateNVP(splitValue, "splitValue");
    ar & CreateNVP(logNegError, "logNegError");
    ar & CreateNVP(subtreeLeavesLogNegError, "subtreeLeavesLogNegError");
    ar & CreateNVP(subtreeLeaves, "subtreeLeaves");
    ar & CreateNVP(root, "root");
    ar & CreateNVP(ratio, "ratio");
    ar & CreateNVP(logVolume, "logVolume");
    ar & CreateNVP(bucketTag, "bucketTag");
    ar & CreateNVP(alphaUpper, "alphaUpper");

    if (Archive::is_loading::value)
    {
      if (left)
        delete left;
      if (right)
        delete right;
    }

    ar & CreateNVP(left, "left");
    ar & CreateNVP(right, "right");
  }

 private:

  // Utility methods.

  /**
   * Find the dimension to split on.
   */
  bool FindSplit(const arma::mat& data,
                 size_t& splitDim,
                 double& splitValue,
                 double& leftError,
                 double& rightError,
                 const size_t minLeafSize = 5) const;

  /**
   * Split the data, returning the number of points left of the split.
   */
  size_t SplitData(arma::mat& data,
                   const size_t splitDim,
                   const double splitValue,
                   arma::Col<size_t>& oldFromNew) const;

};

} // namespace det
} // namespace mlpack

#endif // __MLPACK_METHODS_DET_DTREE_HPP