This file is indexed.

/usr/include/mlpack/methods/amf/amf.hpp is in libmlpack-dev 2.0.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/**
 * @file amf.hpp
 * @author Sumedh Ghaisas
 * @author Mohan Rajendran
 * @author Ryan Curtin
 *
 * Alternating Matrix Factorization
 *
 * The AMF (alternating matrix factorization) class, from which more commonly
 * known techniques such as incremental SVD, NMF, and batch-learning SVD can be
 * derived.
 *
 * This file is part of mlpack 2.0.1.
 *
 * mlpack is free software; you may redstribute it and/or modify it under the
 * terms of the 3-clause BSD license.  You should have received a copy of the
 * 3-clause BSD license along with mlpack.  If not, see
 * http://www.opensource.org/licenses/BSD-3-Clause for more information.
 */
#ifndef __MLPACK_METHODS_AMF_AMF_HPP
#define __MLPACK_METHODS_AMF_AMF_HPP

#include <mlpack/core.hpp>

#include <mlpack/methods/amf/update_rules/nmf_mult_dist.hpp>
#include <mlpack/methods/amf/update_rules/nmf_als.hpp>
#include <mlpack/methods/amf/update_rules/svd_batch_learning.hpp>
#include <mlpack/methods/amf/update_rules/svd_incomplete_incremental_learning.hpp>
#include <mlpack/methods/amf/update_rules/svd_complete_incremental_learning.hpp>

#include <mlpack/methods/amf/init_rules/random_init.hpp>
#include <mlpack/methods/amf/init_rules/random_acol_init.hpp>

#include <mlpack/methods/amf/termination_policies/simple_residue_termination.hpp>
#include <mlpack/methods/amf/termination_policies/simple_tolerance_termination.hpp>

namespace mlpack {
namespace amf /** Alternating Matrix Factorization **/ {

/**
 * This class implements AMF (alternating matrix factorization) on the given
 * matrix V. Alternating matrix factorization decomposes V in the form
 * \f$ V \approx WH \f$ where W is called the basis matrix and H is called the
 * encoding matrix. V is taken to be of size n x m and the obtained W is n x r
 * and H is r x m. The size r is called the rank of the factorization.
 *
 * The implementation requires three template types; the first contains the
 * policy used to determine when the algorithm has converged; the second
 * contains the initialization rule for the W and H matrix; the last contains
 * the update rule to be used during each iteration. This templatization allows
 * the user to try various update rules, initialization rules, and termination
 * policies (including ones not supplied with mlpack) for factorization.  By
 * default, the template parameters to AMF implement non-negative matrix
 * factorization with the multiplicative distance update.
 *
 * A simple example of how to run AMF (or NMF) is shown below.
 *
 * @code
 * extern arma::mat V; // Matrix that we want to perform LMF on.
 * size_t r = 10; // Rank of decomposition
 * arma::mat W; // Basis matrix
 * arma::mat H; // Encoding matrix
 *
 * AMF<> amf; // Default options: NMF with multiplicative distance update rules.
 * amf.Apply(V, r, W, H);
 * @endcode
 *
 * @tparam TerminationPolicy The policy to use for determining when the
 *     factorization has converged.
 * @tparam InitializationRule The initialization rule for initializing W and H
 *     matrix.
 * @tparam UpdateRule The update rule for calculating W and H matrix at each
 *     iteration.
 *
 * @see NMFMultiplicativeDistanceUpdate, SimpleResidueTermination
 */
template<typename TerminationPolicyType = SimpleResidueTermination,
         typename InitializationRuleType = RandomAcolInitialization<>,
         typename UpdateRuleType = NMFMultiplicativeDistanceUpdate>
class AMF
{
 public:
  /**
   * Create the AMF object and (optionally) set the parameters which AMF will
   * run with.  The minimum residue refers to the root mean square of the
   * difference between two subsequent iterations of the product W * H.  A low
   * residue indicates that subsequent iterations are not producing much change
   * in W and H.  Once the residue goes below the specified minimum residue, the
   * algorithm terminates.
   *
   * @param initializationRule Optional instantiated InitializationRule object
   *      for initializing the W and H matrices.
   * @param updateRule Optional instantiated UpdateRule object; this parameter
   *      is useful when the update rule for the W and H vector has state that
   *      it needs to store (i.e. HUpdate() and WUpdate() are not static
   *      functions).
   * @param terminationPolicy Optional instantiated TerminationPolicy object.
   */
  AMF(const TerminationPolicyType& terminationPolicy = TerminationPolicyType(),
      const InitializationRuleType& initializeRule = InitializationRuleType(),
      const UpdateRuleType& update = UpdateRuleType());

  /**
   * Apply Alternating Matrix Factorization to the provided matrix.
   *
   * @param V Input matrix to be factorized.
   * @param W Basis matrix to be output.
   * @param H Encoding matrix to output.
   * @param r Rank r of the factorization.
   */
  template<typename MatType>
  double Apply(const MatType& V,
               const size_t r,
               arma::mat& W,
               arma::mat& H);

  //! Access the termination policy.
  const TerminationPolicyType& TerminationPolicy() const
  { return terminationPolicy; }
  //! Modify the termination policy.
  TerminationPolicyType& TerminationPolicy() { return terminationPolicy; }

  //! Access the initialization rule.
  const InitializationRuleType& InitializeRule() const
  { return initializationRule; }
  //! Modify the initialization rule.
  InitializationRuleType& InitializeRule() { return initializationRule; }

  //! Access the update rule.
  const UpdateRuleType& Update() const { return update; }
  //! Modify the update rule.
  UpdateRuleType& Update() { return update; }

 private:
  //! Termination policy.
  TerminationPolicyType terminationPolicy;
  //! Instantiated initialization Rule.
  InitializationRuleType initializationRule;
  //! Instantiated update rule.
  UpdateRuleType update;
}; // class AMF

typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::NMFALSUpdate> NMFALSFactorizer;

//! Add simple typedefs
#ifdef MLPACK_USE_CXX11

/**
 * SVDBatchFactorizer factorizes given matrix V into two matrices W and H by
 * gradient descent. SVD batch learning is described in paper 'A Guide to
 * singular Value Decomposition' by Chih-Chao Ma.
 *
 * @see SVDBatchLearning
 */
template<class MatType>
using SVDBatchFactorizer = amf::AMF<amf::SimpleResidueTermination,
                                    amf::RandomAcolInitialization<>,
                                    amf::SVDBatchLearning>;

/**
 * SVDIncompleteIncrementalFactorizer factorizes given matrix V into two
 * matrices W and H by incomplete incremental gradient descent. SVD incomplete
 * incremental learning is described in paper 'A Guide to singular Value
 * Decomposition'
 * by Chih-Chao Ma.
 *
 * @see SVDIncompleteIncrementalLearning
 */
template<class MatType>
using SVDIncompleteIncrementalFactorizer = amf::AMF<
    amf::SimpleResidueTermination,
    amf::RandomAcolInitialization<>,
    amf::SVDIncompleteIncrementalLearning>;
/**
 * SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices
 * W and H by complete incremental gradient descent. SVD complete incremental
 * learning is described in paper 'A Guide to singular Value Decomposition'
 * by Chih-Chao Ma.
 *
 * @see SVDCompleteIncrementalLearning
 */
template<class MatType>
using SVDCompleteIncrementalFactorizer = amf::AMF<
    amf::SimpleResidueTermination,
    amf::RandomAcolInitialization<>,
    amf::SVDCompleteIncrementalLearning<MatType>>;

#else // #ifdef MLPACK_USE_CXX11

/**
 * SparseSVDBatchFactorizer factorizes given sparse matrix V into two matrices W
 * and H by gradient descent. SVD batch learning is described in paper 'A Guide
 * to singular Value Decomposition' by Chih-Chao Ma.
 *
 * @see SVDBatchLearning
 */
typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::SVDBatchLearning> SparseSVDBatchFactorizer;

/**
 * SparseSVDBatchFactorizer factorizes given matrix V into two matrices W and H
 * by gradient descent. SVD batch learning is described in paper 'A Guide to
 * singular Value Decomposition' by Chih-Chao Ma.
 *
 * @see SVDBatchLearning
 */
typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::SVDBatchLearning> SVDBatchFactorizer;
/**
 * SparseSVDIncompleteIncrementalFactorizer factorizes given sparse matrix V
 * into two matrices W and H by incomplete incremental gradient descent.  SVD
 * incomplete incremental learning is described in paper 'A Guide to singular
 * Value Decomposition' by Chih-Chao Ma.
 *
 * @see SVDIncompleteIncrementalLearning
 */
typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::SVDIncompleteIncrementalLearning>
        SparseSVDIncompleteIncrementalFactorizer;

/**
 * SVDIncompleteIncrementalFactorizer factorizes given matrix V into two
 * matrices W and H by incomplete incremental gradient descent. SVD incomplete
 * incremental learning is described in paper 'A Guide to singular Value
 * Decomposition' by Chih-Chao Ma.
 *
 * @see SVDIncompleteIncrementalLearning
 */
typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::SVDIncompleteIncrementalLearning>
        SVDIncompleteIncrementalFactorizer;

/**
 * SparseSVDCompleteIncrementalFactorizer factorizes given sparse matrix V
 * into two matrices W and H by complete incremental gradient descent. SVD
 * complete incremental learning is described in paper 'A Guide to singular
 * Value Decomposition' by Chih-Chao Ma.
 *
 * @see SVDCompleteIncrementalLearning
 */
typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::SVDCompleteIncrementalLearning<arma::sp_mat> >
        SparseSVDCompleteIncrementalFactorizer;

/**
 * SVDCompleteIncrementalFactorizer factorizes given matrix V into two matrices
 * W and H by complete incremental gradient descent. SVD complete incremental
 * learning is described in paper 'A Guide to singular Value Decomposition'
 * by Chih-Chao Ma.
 *
 * @see SVDCompleteIncrementalLearning
 */
typedef amf::AMF<amf::SimpleResidueTermination,
                 amf::RandomAcolInitialization<>,
                 amf::SVDCompleteIncrementalLearning<arma::mat> >
        SVDCompleteIncrementalFactorizer;

#endif // #ifdef MLPACK_USE_CXX11

} // namespace amf
} // namespace mlpack

// Include implementation.
#include "amf_impl.hpp"

#endif // __MLPACK_METHODS_AMF_AMF_HPP