This file is indexed.

/usr/include/mlpack/methods/adaboost/adaboost.hpp is in libmlpack-dev 2.0.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
/**
 * @file adaboost.hpp
 * @author Udit Saxena
 *
 * The AdaBoost class.  AdaBoost is a boosting algorithm, meaning that it
 * combines an ensemble of weak learners to produce a strong learner.  For more
 * information on AdaBoost, see the following paper:
 *
 * @code
 * @article{schapire1999improved,
 *   author = {Schapire, Robert E. and Singer, Yoram},
 *   title = {Improved Boosting Algorithms Using Confidence-rated Predictions},
 *   journal = {Machine Learning},
 *   volume = {37},
 *   number = {3},
 *   month = dec,
 *   year = {1999},
 *   issn = {0885-6125},
 *   pages = {297--336},
 * }
 * @endcode
 *
 * This file is part of mlpack 2.0.1.
 *
 * mlpack is free software; you may redstribute it and/or modify it under the
 * terms of the 3-clause BSD license.  You should have received a copy of the
 * 3-clause BSD license along with mlpack.  If not, see
 * http://www.opensource.org/licenses/BSD-3-Clause for more information.
 */
#ifndef __MLPACK_METHODS_ADABOOST_ADABOOST_HPP
#define __MLPACK_METHODS_ADABOOST_ADABOOST_HPP

#include <mlpack/core.hpp>
#include <mlpack/methods/perceptron/perceptron.hpp>
#include <mlpack/methods/decision_stump/decision_stump.hpp>

namespace mlpack {
namespace adaboost {

/**
 * The AdaBoost class.  AdaBoost is a boosting algorithm, meaning that it
 * combines an ensemble of weak learners to produce a strong learner.  For more
 * information on AdaBoost, see the following paper:
 *
 * @code
 * @article{schapire1999improved,
 *   author = {Schapire, Robert E. and Singer, Yoram},
 *   title = {Improved Boosting Algorithms Using Confidence-rated Predictions},
 *   journal = {Machine Learning},
 *   volume = {37},
 *   number = {3},
 *   month = dec,
 *   year = {1999},
 *   issn = {0885-6125},
 *   pages = {297--336},
 * }
 * @endcode
 *
 * This class is general, and can be used with any type of weak learner, so long
 * as the learner implements the following functions:
 *
 * @code
 * // A boosting constructor, which learns using the training parameters of the
 * // given other WeakLearner, but uses the given instance weights for training.
 * WeakLearner(WeakLearner& other,
 *             const MatType& data,
 *             const arma::Row<size_t>& labels,
 *             const arma::rowvec& weights);
 *
 * // Given the test points, classify them and output predictions into
 * // predictedLabels.
 * void Classify(const MatType& data, arma::Row<size_t>& predictedLabels);
 * @endcode
 *
 * For more information on and examples of weak learners, see
 * perceptron::Perceptron<> and decision_stump::DecisionStump<>.
 *
 * @tparam MatType Data matrix type (i.e. arma::mat or arma::sp_mat).
 * @tparam WeakLearnerType Type of weak learner to use.
 */
template<typename WeakLearnerType = mlpack::perceptron::Perceptron<>,
         typename MatType = arma::mat>
class AdaBoost
{
 public:
  /**
   * Constructor.  This runs the AdaBoost.MH algorithm to provide a trained
   * boosting model.  This constructor takes an already-initialized weak
   * learner; all other weak learners will learn with the same parameters as the
   * given weak learner.
   *
   * @param data Input data.
   * @param labels Corresponding labels.
   * @param iterations Number of boosting rounds.
   * @param tol The tolerance for change in values of rt.
   * @param other Weak learner that has already been initialized.
   */
  AdaBoost(const MatType& data,
           const arma::Row<size_t>& labels,
           const WeakLearnerType& other,
           const size_t iterations = 100,
           const double tolerance = 1e-6);

  /**
   * Create the AdaBoost object without training.  Be sure to call Train()
   * before calling Classify()!
   */
  AdaBoost(const double tolerance = 1e-6);

  // Return the value of ztProduct.
  double ZtProduct() { return ztProduct; }

  //! Get the tolerance for stopping the optimization during training.
  double Tolerance() const { return tolerance; }
  //! Modify the tolerance for stopping the optimization during training.
  double& Tolerance() { return tolerance; }

  //! Get the number of classes this model is trained on.
  size_t Classes() const { return classes; }

  //! Get the number of weak learners in the model.
  size_t WeakLearners() const { return alpha.size(); }

  //! Get the weights for the given weak learner.
  double Alpha(const size_t i) const { return alpha[i]; }
  //! Modify the weight for the given weak learner (be careful!).
  double& Alpha(const size_t i) { return alpha[i]; }

  //! Get the given weak learner.
  const WeakLearnerType& WeakLearner(const size_t i) const { return wl[i]; }
  //! Modify the given weak learner (be careful!).
  WeakLearnerType& WeakLearner(const size_t i) { return wl[i]; }

  /**
   * Train AdaBoost on the given dataset.  This method takes an initialized
   * WeakLearnerType; the parameters for this weak learner will be used to train
   * each of the weak learners during AdaBoost training.  Note that this will
   * completely overwrite any model that has already been trained with this
   * object.
   *
   * @param data Dataset to train on.
   * @param labels Labels for each point in the dataset.
   * @param learner Learner to use for training.
   */
  void Train(const MatType& data,
             const arma::Row<size_t>& labels,
             const WeakLearnerType& learner,
             const size_t iterations = 100,
             const double tolerance = 1e-6);

  /**
   * Classify the given test points.
   *
   * @param test Testing data.
   * @param predictedLabels Vector in which to the predicted labels of the test
   *      set will be stored.
   */
  void Classify(const MatType& test, arma::Row<size_t>& predictedLabels);

  /**
   * Serialize the AdaBoost model.
   */
  template<typename Archive>
  void Serialize(Archive& ar, const unsigned int /* version */);

private:
  //! The number of classes in the model.
  size_t classes;
  // The tolerance for change in rt and when to stop.
  double tolerance;

  //! The vector of weak learners.
  std::vector<WeakLearnerType> wl;
  //! The weights corresponding to each weak learner.
  std::vector<double> alpha;

  //! To check for the bound for the Hamming loss.
  double ztProduct;

}; // class AdaBoost

} // namespace adaboost
} // namespace mlpack

#include "adaboost_impl.hpp"

#endif