This file is indexed.

/usr/include/message_filters/sync_policies/approximate_time.h is in libmessage-filters-dev 1.11.16-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
/*********************************************************************
* Software License Agreement (BSD License)
*
*  Copyright (c) 2009, Willow Garage, Inc.
*  All rights reserved.
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions
*  are met:
*
*   * Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   * Redistributions in binary form must reproduce the above
*     copyright notice, this list of conditions and the following
*     disclaimer in the documentation and/or other materials provided
*     with the distribution.
*   * Neither the name of the Willow Garage nor the names of its
*     contributors may be used to endorse or promote products derived
*     from this software without specific prior written permission.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
*  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
*  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
*  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
*  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
*  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
*  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
*  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
*  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
*  POSSIBILITY OF SUCH DAMAGE.
*********************************************************************/

#ifndef MESSAGE_FILTERS_SYNC_APPROXIMATE_TIME_H
#define MESSAGE_FILTERS_SYNC_APPROXIMATE_TIME_H

#include "message_filters/synchronizer.h"
#include "message_filters/connection.h"
#include "message_filters/null_types.h"
#include "message_filters/signal9.h"

#include <boost/tuple/tuple.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/function.hpp>
#include <boost/thread/mutex.hpp>

#include <boost/bind.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/noncopyable.hpp>
#include <boost/mpl/or.hpp>
#include <boost/mpl/at.hpp>
#include <boost/mpl/vector.hpp>

#include <ros/assert.h>
#include <ros/message_traits.h>
#include <ros/message_event.h>

#include <deque>
#include <vector>
#include <string>

namespace message_filters
{
namespace sync_policies
{

namespace mpl = boost::mpl;

template<typename M0, typename M1, typename M2 = NullType, typename M3 = NullType, typename M4 = NullType,
         typename M5 = NullType, typename M6 = NullType, typename M7 = NullType, typename M8 = NullType>
struct ApproximateTime : public PolicyBase<M0, M1, M2, M3, M4, M5, M6, M7, M8>
{
  typedef Synchronizer<ApproximateTime> Sync;
  typedef PolicyBase<M0, M1, M2, M3, M4, M5, M6, M7, M8> Super;
  typedef typename Super::Messages Messages;
  typedef typename Super::Signal Signal;
  typedef typename Super::Events Events;
  typedef typename Super::RealTypeCount RealTypeCount;
  typedef typename Super::M0Event M0Event;
  typedef typename Super::M1Event M1Event;
  typedef typename Super::M2Event M2Event;
  typedef typename Super::M3Event M3Event;
  typedef typename Super::M4Event M4Event;
  typedef typename Super::M5Event M5Event;
  typedef typename Super::M6Event M6Event;
  typedef typename Super::M7Event M7Event;
  typedef typename Super::M8Event M8Event;
  typedef std::deque<M0Event> M0Deque;
  typedef std::deque<M1Event> M1Deque;
  typedef std::deque<M2Event> M2Deque;
  typedef std::deque<M3Event> M3Deque;
  typedef std::deque<M4Event> M4Deque;
  typedef std::deque<M5Event> M5Deque;
  typedef std::deque<M6Event> M6Deque;
  typedef std::deque<M7Event> M7Deque;
  typedef std::deque<M8Event> M8Deque;
  typedef std::vector<M0Event> M0Vector;
  typedef std::vector<M1Event> M1Vector;
  typedef std::vector<M2Event> M2Vector;
  typedef std::vector<M3Event> M3Vector;
  typedef std::vector<M4Event> M4Vector;
  typedef std::vector<M5Event> M5Vector;
  typedef std::vector<M6Event> M6Vector;
  typedef std::vector<M7Event> M7Vector;
  typedef std::vector<M8Event> M8Vector;
  typedef boost::tuple<M0Event, M1Event, M2Event, M3Event, M4Event, M5Event, M6Event, M7Event, M8Event> Tuple;
  typedef boost::tuple<M0Deque, M1Deque, M2Deque, M3Deque, M4Deque, M5Deque, M6Deque, M7Deque, M8Deque> DequeTuple;
  typedef boost::tuple<M0Vector, M1Vector, M2Vector, M3Vector, M4Vector, M5Vector, M6Vector, M7Vector, M8Vector> VectorTuple;

  ApproximateTime(uint32_t queue_size)
  : parent_(0)
  , queue_size_(queue_size)
  , num_non_empty_deques_(0)
  , pivot_(NO_PIVOT)
  , max_interval_duration_(ros::DURATION_MAX)
  , age_penalty_(0.1)
  , has_dropped_messages_(9, false)
  , inter_message_lower_bounds_(9, ros::Duration(0))
  , warned_about_incorrect_bound_(9, false)
  {
    ROS_ASSERT(queue_size_ > 0);  // The synchronizer will tend to drop many messages with a queue size of 1. At least 2 is recommended.
  }

  ApproximateTime(const ApproximateTime& e)
  {
    *this = e;
  }

  ApproximateTime& operator=(const ApproximateTime& rhs)
  {
    parent_ = rhs.parent_;
    queue_size_ = rhs.queue_size_;
    num_non_empty_deques_ = rhs.num_non_empty_deques_;
    pivot_time_ = rhs.pivot_time_;
    pivot_ = rhs.pivot_;
    max_interval_duration_ = rhs.max_interval_duration_;
    age_penalty_ = rhs.age_penalty_;
    candidate_start_ = rhs.candidate_start_;
    candidate_end_ = rhs.candidate_end_;
    deques_ = rhs.deques_;
    past_ = rhs.past_;
    has_dropped_messages_ = rhs.has_dropped_messages_;
    inter_message_lower_bounds_ = rhs.inter_message_lower_bounds_;
    warned_about_incorrect_bound_ = rhs.warned_about_incorrect_bound_;

    return *this;
  }

  void initParent(Sync* parent)
  {
    parent_ = parent;
  }

  template<int i>
  void checkInterMessageBound()
  {
    namespace mt = ros::message_traits;
    if (warned_about_incorrect_bound_[i])
    {
      return;
    }
    std::deque<typename mpl::at_c<Events, i>::type>& deque = boost::get<i>(deques_);
    std::vector<typename mpl::at_c<Events, i>::type>& v = boost::get<i>(past_);
    ROS_ASSERT(!deque.empty());
    const typename mpl::at_c<Messages, i>::type &msg = *(deque.back()).getMessage();
    ros::Time msg_time = mt::TimeStamp<typename mpl::at_c<Messages, i>::type>::value(msg);
    ros::Time previous_msg_time;
    if (deque.size() == (size_t) 1)
    {
      if (v.empty())
      {
	// We have already published (or have never received) the previous message, we cannot check the bound
	return;
      }
      const typename mpl::at_c<Messages, i>::type &previous_msg = *(v.back()).getMessage();
      previous_msg_time = mt::TimeStamp<typename mpl::at_c<Messages, i>::type>::value(previous_msg);
    }
    else
    {
      // There are at least 2 elements in the deque. Check that the gap respects the bound if it was provided.
      const typename mpl::at_c<Messages, i>::type &previous_msg = *(deque[deque.size()-2]).getMessage();
      previous_msg_time =  mt::TimeStamp<typename mpl::at_c<Messages, i>::type>::value(previous_msg);
    }
    if (msg_time < previous_msg_time)
    {
      ROS_WARN_STREAM("Messages of type " << i << " arrived out of order (will print only once)");
      warned_about_incorrect_bound_[i] = true;
    }
    else if ((msg_time - previous_msg_time) < inter_message_lower_bounds_[i])
    {
      ROS_WARN_STREAM("Messages of type " << i << " arrived closer (" << (msg_time - previous_msg_time)
		      << ") than the lower bound you provided (" << inter_message_lower_bounds_[i]
		      << ") (will print only once)");
      warned_about_incorrect_bound_[i] = true;
    }
  }


  template<int i>
  void add(const typename mpl::at_c<Events, i>::type& evt)
  {
    boost::mutex::scoped_lock lock(data_mutex_);

    std::deque<typename mpl::at_c<Events, i>::type>& deque = boost::get<i>(deques_);
    deque.push_back(evt);
    if (deque.size() == (size_t)1) {
      // We have just added the first message, so it was empty before
      ++num_non_empty_deques_;
      if (num_non_empty_deques_ == (uint32_t)RealTypeCount::value)
      {
        // All deques have messages
        process();
      }
    }
    else
    {
      checkInterMessageBound<i>();
    }
    // Check whether we have more messages than allowed in the queue.
    // Note that during the above call to process(), queue i may contain queue_size_+1 messages.
    std::vector<typename mpl::at_c<Events, i>::type>& past = boost::get<i>(past_);
    if (deque.size() + past.size() > queue_size_)
    {
      // Cancel ongoing candidate search, if any:
      num_non_empty_deques_ = 0; // We will recompute it from scratch
      recover<0>();
      recover<1>();
      recover<2>();
      recover<3>();
      recover<4>();
      recover<5>();
      recover<6>();
      recover<7>();
      recover<8>();
      // Drop the oldest message in the offending topic
      ROS_ASSERT(!deque.empty());
      deque.pop_front();
      has_dropped_messages_[i] = true;
      if (pivot_ != NO_PIVOT)
      {
	// The candidate is no longer valid. Destroy it.
	candidate_ = Tuple();
	pivot_ = NO_PIVOT;
	// There might still be enough messages to create a new candidate:
	process();
      }
    }
  }

  void setAgePenalty(double age_penalty)
  {
    // For correctness we only need age_penalty > -1.0, but most likely a negative age_penalty is a mistake.
    ROS_ASSERT(age_penalty >= 0);
    age_penalty_ = age_penalty;
  }

  void setInterMessageLowerBound(int i, ros::Duration lower_bound) {
    // For correctness we only need age_penalty > -1.0, but most likely a negative age_penalty is a mistake.
    ROS_ASSERT(lower_bound >= ros::Duration(0,0));
    inter_message_lower_bounds_[i] = lower_bound;
  }

  void setMaxIntervalDuration(ros::Duration max_interval_duration) {
    // For correctness we only need age_penalty > -1.0, but most likely a negative age_penalty is a mistake.
    ROS_ASSERT(max_interval_duration >= ros::Duration(0,0));
    max_interval_duration_ = max_interval_duration;
  }

private:
  // Assumes that deque number <index> is non empty
  template<int i>
  void dequeDeleteFront()
  {
    std::deque<typename mpl::at_c<Events, i>::type>& deque = boost::get<i>(deques_);
    ROS_ASSERT(!deque.empty());
    deque.pop_front();
    if (deque.empty())
    {
      --num_non_empty_deques_;
    }
  }

  // Assumes that deque number <index> is non empty
  void dequeDeleteFront(uint32_t index)
  {
    switch (index)
    {
    case 0:
      dequeDeleteFront<0>();
      break;
    case 1:
      dequeDeleteFront<1>();
      break;
    case 2:
      dequeDeleteFront<2>();
      break;
    case 3:
      dequeDeleteFront<3>();
      break;
    case 4:
      dequeDeleteFront<4>();
      break;
    case 5:
      dequeDeleteFront<5>();
      break;
    case 6:
      dequeDeleteFront<6>();
      break;
    case 7:
      dequeDeleteFront<7>();
      break;
    case 8:
      dequeDeleteFront<8>();
      break;
    default:
      ROS_BREAK();
    }
  }

  // Assumes that deque number <index> is non empty
  template<int i>
  void dequeMoveFrontToPast()
  {
    std::deque<typename mpl::at_c<Events, i>::type>& deque = boost::get<i>(deques_);
    std::vector<typename mpl::at_c<Events, i>::type>& vector = boost::get<i>(past_);
    ROS_ASSERT(!deque.empty());
    vector.push_back(deque.front());
    deque.pop_front();
    if (deque.empty())
    {
      --num_non_empty_deques_;
    }
  }
  // Assumes that deque number <index> is non empty
  void dequeMoveFrontToPast(uint32_t index)
  {
    switch (index)
    {
    case 0:
      dequeMoveFrontToPast<0>();
      break;
    case 1:
      dequeMoveFrontToPast<1>();
      break;
    case 2:
      dequeMoveFrontToPast<2>();
      break;
    case 3:
      dequeMoveFrontToPast<3>();
      break;
    case 4:
      dequeMoveFrontToPast<4>();
      break;
    case 5:
      dequeMoveFrontToPast<5>();
      break;
    case 6:
      dequeMoveFrontToPast<6>();
      break;
    case 7:
      dequeMoveFrontToPast<7>();
      break;
    case 8:
      dequeMoveFrontToPast<8>();
      break;
    default:
      ROS_BREAK();
    }
  }

  void makeCandidate()
  {
    //printf("Creating candidate\n");
    // Create candidate tuple
    candidate_ = Tuple(); // Discards old one if any
    boost::get<0>(candidate_) = boost::get<0>(deques_).front();
    boost::get<1>(candidate_) = boost::get<1>(deques_).front();
    if (RealTypeCount::value > 2)
    {
      boost::get<2>(candidate_) = boost::get<2>(deques_).front();
      if (RealTypeCount::value > 3)
      {
	boost::get<3>(candidate_) = boost::get<3>(deques_).front();
	if (RealTypeCount::value > 4)
	{
	  boost::get<4>(candidate_) = boost::get<4>(deques_).front();
	  if (RealTypeCount::value > 5)
	  {
	    boost::get<5>(candidate_) = boost::get<5>(deques_).front();
	    if (RealTypeCount::value > 6)
	    {
	      boost::get<6>(candidate_) = boost::get<6>(deques_).front();
	      if (RealTypeCount::value > 7)
	      {
		boost::get<7>(candidate_) = boost::get<7>(deques_).front();
		if (RealTypeCount::value > 8)
		{
		  boost::get<8>(candidate_) = boost::get<8>(deques_).front();
		}
	      }
	    }
	  }
	}
      }
    }
    // Delete all past messages, since we have found a better candidate
    boost::get<0>(past_).clear();
    boost::get<1>(past_).clear();
    boost::get<2>(past_).clear();
    boost::get<3>(past_).clear();
    boost::get<4>(past_).clear();
    boost::get<5>(past_).clear();
    boost::get<6>(past_).clear();
    boost::get<7>(past_).clear();
    boost::get<8>(past_).clear();
    //printf("Candidate created\n");
  }


  // ASSUMES: num_messages <= past_[i].size()
  template<int i>
  void recover(size_t num_messages)
  {
    if (i >= RealTypeCount::value)
    {
      return;
    }

    std::vector<typename mpl::at_c<Events, i>::type>& v = boost::get<i>(past_);
    std::deque<typename mpl::at_c<Events, i>::type>& q = boost::get<i>(deques_);
    ROS_ASSERT(num_messages <= v.size());
    while (num_messages > 0)
    {
      q.push_front(v.back());
      v.pop_back();
      num_messages--;
    }

    if (!q.empty())
    {
      ++num_non_empty_deques_;
    }
  }


  template<int i>
  void recover()
  {
    if (i >= RealTypeCount::value)
    {
      return;
    }

    std::vector<typename mpl::at_c<Events, i>::type>& v = boost::get<i>(past_);
    std::deque<typename mpl::at_c<Events, i>::type>& q = boost::get<i>(deques_);
    while (!v.empty())
    {
      q.push_front(v.back());
      v.pop_back();
    }

    if (!q.empty())
    {
      ++num_non_empty_deques_;
    }
  }


  template<int i>
  void recoverAndDelete()
  {
    if (i >= RealTypeCount::value)
    {
      return;
    }

    std::vector<typename mpl::at_c<Events, i>::type>& v = boost::get<i>(past_);
    std::deque<typename mpl::at_c<Events, i>::type>& q = boost::get<i>(deques_);
    while (!v.empty())
    {
      q.push_front(v.back());
      v.pop_back();
    }

    ROS_ASSERT(!q.empty());

    q.pop_front();
    if (!q.empty())
    {
      ++num_non_empty_deques_;
    }
  }

  // Assumes: all deques are non empty, i.e. num_non_empty_deques_ == RealTypeCount::value
  void publishCandidate()
  {
    //printf("Publishing candidate\n");
    // Publish
    parent_->signal(boost::get<0>(candidate_), boost::get<1>(candidate_), boost::get<2>(candidate_), boost::get<3>(candidate_),
                    boost::get<4>(candidate_), boost::get<5>(candidate_), boost::get<6>(candidate_), boost::get<7>(candidate_),
                    boost::get<8>(candidate_));
    // Delete this candidate
    candidate_ = Tuple();
    pivot_ = NO_PIVOT;

    // Recover hidden messages, and delete the ones corresponding to the candidate
    num_non_empty_deques_ = 0; // We will recompute it from scratch
    recoverAndDelete<0>();
    recoverAndDelete<1>();
    recoverAndDelete<2>();
    recoverAndDelete<3>();
    recoverAndDelete<4>();
    recoverAndDelete<5>();
    recoverAndDelete<6>();
    recoverAndDelete<7>();
    recoverAndDelete<8>();
  }

  // Assumes: all deques are non empty, i.e. num_non_empty_deques_ == RealTypeCount::value
  // Returns: the oldest message on the deques
  void getCandidateStart(uint32_t &start_index, ros::Time &start_time)
  {
    return getCandidateBoundary(start_index, start_time, false);
  }

  // Assumes: all deques are non empty, i.e. num_non_empty_deques_ == RealTypeCount::value
  // Returns: the latest message among the heads of the deques, i.e. the minimum
  //          time to end an interval started at getCandidateStart_index()
  void getCandidateEnd(uint32_t &end_index, ros::Time &end_time)
  {
    return getCandidateBoundary(end_index, end_time, true);
  }

  // ASSUMES: all deques are non-empty
  // end = true: look for the latest head of deque
  //       false: look for the earliest head of deque
  void getCandidateBoundary(uint32_t &index, ros::Time &time, bool end)
  {
    namespace mt = ros::message_traits;

    M0Event& m0 = boost::get<0>(deques_).front();
    time = mt::TimeStamp<M0>::value(*m0.getMessage());
    index = 0;
    if (RealTypeCount::value > 1)
    {
      M1Event& m1 = boost::get<1>(deques_).front();
      if ((mt::TimeStamp<M1>::value(*m1.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M1>::value(*m1.getMessage());
        index = 1;
      }
    }
    if (RealTypeCount::value > 2)
    {
      M2Event& m2 = boost::get<2>(deques_).front();
      if ((mt::TimeStamp<M2>::value(*m2.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M2>::value(*m2.getMessage());
        index = 2;
      }
    }
    if (RealTypeCount::value > 3)
    {
      M3Event& m3 = boost::get<3>(deques_).front();
      if ((mt::TimeStamp<M3>::value(*m3.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M3>::value(*m3.getMessage());
        index = 3;
      }
    }
    if (RealTypeCount::value > 4)
    {
      M4Event& m4 = boost::get<4>(deques_).front();
      if ((mt::TimeStamp<M4>::value(*m4.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M4>::value(*m4.getMessage());
        index = 4;
      }
    }
    if (RealTypeCount::value > 5)
    {
      M5Event& m5 = boost::get<5>(deques_).front();
      if ((mt::TimeStamp<M5>::value(*m5.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M5>::value(*m5.getMessage());
        index = 5;
      }
    }
    if (RealTypeCount::value > 6)
    {
      M6Event& m6 = boost::get<6>(deques_).front();
      if ((mt::TimeStamp<M6>::value(*m6.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M6>::value(*m6.getMessage());
        index = 6;
      }
    }
    if (RealTypeCount::value > 7)
    {
      M7Event& m7 = boost::get<7>(deques_).front();
      if ((mt::TimeStamp<M7>::value(*m7.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M7>::value(*m7.getMessage());
        index = 7;
      }
    }
    if (RealTypeCount::value > 8)
    {
      M8Event& m8 = boost::get<8>(deques_).front();
      if ((mt::TimeStamp<M8>::value(*m8.getMessage()) < time) ^ end)
      {
        time = mt::TimeStamp<M8>::value(*m8.getMessage());
        index = 8;
      }
    }
  }


  // ASSUMES: we have a pivot and candidate
  template<int i>
  ros::Time getVirtualTime()
  {
    namespace mt = ros::message_traits;

    if (i >= RealTypeCount::value)
    {
      return ros::Time(0,0);  // Dummy return value
    }
    ROS_ASSERT(pivot_ != NO_PIVOT);

    std::vector<typename mpl::at_c<Events, i>::type>& v = boost::get<i>(past_);
    std::deque<typename mpl::at_c<Events, i>::type>& q = boost::get<i>(deques_);
    if (q.empty())
    {
      ROS_ASSERT(!v.empty());  // Because we have a candidate
      ros::Time last_msg_time = mt::TimeStamp<typename mpl::at_c<Messages, i>::type>::value(*(v.back()).getMessage());
      ros::Time msg_time_lower_bound = last_msg_time + inter_message_lower_bounds_[i];
      if (msg_time_lower_bound > pivot_time_)  // Take the max
      {
        return msg_time_lower_bound;
      }
      return pivot_time_;
    }
    ros::Time current_msg_time = mt::TimeStamp<typename mpl::at_c<Messages, i>::type>::value(*(q.front()).getMessage());
    return current_msg_time;
  }


  // ASSUMES: we have a pivot and candidate
  void getVirtualCandidateStart(uint32_t &start_index, ros::Time &start_time)
  {
    return getVirtualCandidateBoundary(start_index, start_time, false);
  }

  // ASSUMES: we have a pivot and candidate
  void getVirtualCandidateEnd(uint32_t &end_index, ros::Time &end_time)
  {
    return getVirtualCandidateBoundary(end_index, end_time, true);
  }

  // ASSUMES: we have a pivot and candidate
  // end = true: look for the latest head of deque
  //       false: look for the earliest head of deque
  void getVirtualCandidateBoundary(uint32_t &index, ros::Time &time, bool end)
  {
    namespace mt = ros::message_traits;

    std::vector<ros::Time> virtual_times(9);
    virtual_times[0] = getVirtualTime<0>();
    virtual_times[1] = getVirtualTime<1>();
    virtual_times[2] = getVirtualTime<2>();
    virtual_times[3] = getVirtualTime<3>();
    virtual_times[4] = getVirtualTime<4>();
    virtual_times[5] = getVirtualTime<5>();
    virtual_times[6] = getVirtualTime<6>();
    virtual_times[7] = getVirtualTime<7>();
    virtual_times[8] = getVirtualTime<8>();
 
    time = virtual_times[0];
    index = 0;
    for (int i = 0; i < RealTypeCount::value; i++)
    {
      if ((virtual_times[i] < time) ^ end)
      {
	time = virtual_times[i];
	index = i;
      }
    }
  }


  // assumes data_mutex_ is already locked
  void process()
  {
    // While no deque is empty
    while (num_non_empty_deques_ == (uint32_t)RealTypeCount::value)
    {
      // Find the start and end of the current interval
      //printf("Entering while loop in this state [\n");
      //show_internal_state();
      //printf("]\n");
      ros::Time end_time, start_time;
      uint32_t end_index, start_index;
      getCandidateEnd(end_index, end_time);
      getCandidateStart(start_index, start_time);
      for (uint32_t i = 0; i < (uint32_t)RealTypeCount::value; i++)
      {
	if (i != end_index)
	{
	  // No dropped message could have been better to use than the ones we have,
	  // so it becomes ok to use this topic as pivot in the future
	  has_dropped_messages_[i] = false;
	}
      }
      if (pivot_ == NO_PIVOT)
      {
        // We do not have a candidate
        // INVARIANT: the past_ vectors are empty
        // INVARIANT: (candidate_ has no filled members)
        if (end_time - start_time > max_interval_duration_)
        {
          // This interval is too big to be a valid candidate, move to the next
          dequeDeleteFront(start_index);
          continue;
        }
	if (has_dropped_messages_[end_index])
	{
	  // The topic that would become pivot has dropped messages, so it is not a good pivot
	  dequeDeleteFront(start_index);
	  continue;
	}
	// This is a valid candidate, and we don't have any, so take it
	makeCandidate();
	candidate_start_ = start_time;
	candidate_end_ = end_time;
	pivot_ = end_index;
	pivot_time_ = end_time;
	dequeMoveFrontToPast(start_index);
      }
      else
      {
        // We already have a candidate
        // Is this one better than the current candidate?
        // INVARIANT: has_dropped_messages_ is all false
        if ((end_time - candidate_end_) * (1 + age_penalty_) >= (start_time - candidate_start_))
        {
          // This is not a better candidate, move to the next
          dequeMoveFrontToPast(start_index);
        }
        else
        {
          // This is a better candidate
          makeCandidate();
          candidate_start_ = start_time;
          candidate_end_ = end_time;
          dequeMoveFrontToPast(start_index);
          // Keep the same pivot (and pivot time)
        }
      }
      // INVARIANT: we have a candidate and pivot
      ROS_ASSERT(pivot_ != NO_PIVOT);
      //printf("start_index == %d, pivot_ == %d\n", start_index, pivot_);
      if (start_index == pivot_)  // TODO: replace with start_time == pivot_time_
      {
        // We have exhausted all possible candidates for this pivot, we now can output the best one
        publishCandidate();
      }
      else if ((end_time - candidate_end_) * (1 + age_penalty_) >= (pivot_time_ - candidate_start_))
      {
        // We have not exhausted all candidates, but this candidate is already provably optimal
        // Indeed, any future candidate must contain the interval [pivot_time_ end_time], which
        // is already too big.
        // Note: this case is subsumed by the next, but it may save some unnecessary work and
        //       it makes things (a little) easier to understand
        publishCandidate();
      }
      else if (num_non_empty_deques_ < (uint32_t)RealTypeCount::value)
      {
        uint32_t num_non_empty_deques_before_virtual_search = num_non_empty_deques_;

        // Before giving up, use the rate bounds, if provided, to further try to prove optimality
        std::vector<int> num_virtual_moves(9,0);
        while (1)
        {
          ros::Time end_time, start_time;
          uint32_t end_index, start_index;
          getVirtualCandidateEnd(end_index, end_time);
          getVirtualCandidateStart(start_index, start_time);
          if ((end_time - candidate_end_) * (1 + age_penalty_) >= (pivot_time_ - candidate_start_))
          {
            // We have proved optimality
            // As above, any future candidate must contain the interval [pivot_time_ end_time], which
            // is already too big.
            publishCandidate();  // This cleans up the virtual moves as a byproduct
            break;  // From the while(1) loop only
          }
          if ((end_time - candidate_end_) * (1 + age_penalty_) < (start_time - candidate_start_))
          {
            // We cannot prove optimality
            // Indeed, we have a virtual (i.e. optimistic) candidate that is better than the current
            // candidate
            // Cleanup the virtual search:
            num_non_empty_deques_ = 0; // We will recompute it from scratch
	    recover<0>(num_virtual_moves[0]);
	    recover<1>(num_virtual_moves[1]);
	    recover<2>(num_virtual_moves[2]);
	    recover<3>(num_virtual_moves[3]);
	    recover<4>(num_virtual_moves[4]);
	    recover<5>(num_virtual_moves[5]);
	    recover<6>(num_virtual_moves[6]);
	    recover<7>(num_virtual_moves[7]);
	    recover<8>(num_virtual_moves[8]);
            (void)num_non_empty_deques_before_virtual_search; // unused variable warning stopper
            ROS_ASSERT(num_non_empty_deques_before_virtual_search == num_non_empty_deques_);
            break;
          }
          // Note: we cannot reach this point with start_index == pivot_ since in that case we would
          //       have start_time == pivot_time, in which case the two tests above are the negation
          //       of each other, so that one must be true. Therefore the while loop always terminates.
	  ROS_ASSERT(start_index != pivot_);
	  ROS_ASSERT(start_time < pivot_time_);
          dequeMoveFrontToPast(start_index);
          num_virtual_moves[start_index]++;
        } // while(1)
      }
    } // while(num_non_empty_deques_ == (uint32_t)RealTypeCount::value)
  }

  Sync* parent_;
  uint32_t queue_size_;

  static const uint32_t NO_PIVOT = 9;  // Special value for the pivot indicating that no pivot has been selected

  DequeTuple deques_;
  uint32_t num_non_empty_deques_;
  VectorTuple past_;
  Tuple candidate_;  // NULL if there is no candidate, in which case there is no pivot.
  ros::Time candidate_start_;
  ros::Time candidate_end_;
  ros::Time pivot_time_;
  uint32_t pivot_;  // Equal to NO_PIVOT if there is no candidate
  boost::mutex data_mutex_;  // Protects all of the above

  ros::Duration max_interval_duration_; // TODO: initialize with a parameter
  double age_penalty_;

  std::vector<bool> has_dropped_messages_;
  std::vector<ros::Duration> inter_message_lower_bounds_;
  std::vector<bool> warned_about_incorrect_bound_;
};

} // namespace sync
} // namespace message_filters

#endif // MESSAGE_FILTERS_SYNC_APPROXIMATE_TIME_H