This file is indexed.

/usr/include/libMems-1.6/libMems/PhyloTree.h is in libmems-1.6-dev 1.6.0+4725-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#ifndef __PhyloTree_h__
#define __PhyloTree_h__

#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <stack>

//typedef unsigned int node_id_t;
typedef size_t node_id_t;
class TreeNode 
{
public:
	TreeNode() : distance(0) {};
	std::string name;	/**< node name */
	double distance;	/**< distance to parent */
	std::vector< node_id_t > parents;	/**< if parents.size() == 0 this is a root node */
	std::vector< node_id_t > children;	/**< if children.size() == 0 this is a leaf node */
};

template< class T >
class PhyloTree 
{
public:
	PhyloTree();
	PhyloTree( const PhyloTree<T>& pt );
	PhyloTree<T>& operator=( const PhyloTree<T>& pt );
	double weight;	/**< Overall tree weight */
	node_id_t root;	/**< root of the tree */
	std::vector< T > nodes;	/**< nodes of the tree */
	void clear();
	/**
	 * Reads a tree in Newick format.  WARNING:  only reads rooted trees correctly
	 */
	void readTree( std::istream& tree_file );
	/**
	 * Writes a tree in Newick format
	 */
	void writeTree( std::ostream& os ) const;
	/**
	 * Determines the height of the tree along the path from the root to the left-most leaf node
	 */
	double getHeight() const;
	/**
	 * Determines the height of the tree along the path from nodeI to its left-most descendant leaf node
	 */
	double getHeight( node_id_t nodeI ) const;

	T& operator[]( const unsigned i ){ return nodes[i]; }
	const T& operator[]( const unsigned i ) const{ return nodes[i]; }
	size_t size() const{ return nodes.size(); }
	void push_back( T& t ){ nodes.push_back(t); }
	T& back() { return nodes.back(); }
	const T& back() const{ return nodes.back(); }
	void resize( const unsigned s ){ nodes.resize(s); }


	void swap( PhyloTree<T>& other )
	{
		std::swap( weight, other.weight );
		std::swap( root, other.root );
		nodes.swap( other.nodes );
	}
protected:
};


template< class T >
PhyloTree<T>::PhyloTree()
{
	weight = 0;
	root = 0;
}

template< class T >
PhyloTree<T>::PhyloTree( const PhyloTree<T>& pt ) :
nodes( pt.nodes ),
weight( pt.weight ),
root( pt.root )
{}

template< class T >
PhyloTree<T>& PhyloTree<T>::operator=( const PhyloTree<T>& pt )
{
	nodes = pt.nodes;
	weight = pt.weight;
	root = pt.root;
	return *this;
}

template< class T >
void PhyloTree<T>::clear()
{
	nodes.clear();
	weight = 0;
	root = 0;
}


/**
 *  readTree version 2.0: read in a phylogenetic tree in the Newick file format.
 *
 */
template< class T >
void PhyloTree<T>::readTree( std::istream& tree_file )
{
	std::string line;
	clear();
	if( !std::getline( tree_file, line ) )
		return;
	// look for either a ; or a matched number of parenthesis, if
	// not found then read another line
	while(true){
		int paren_count = 0;
		for( size_t charI = 0; charI < line.size(); charI++ )
		{
			if( line[charI] == '(' )
				paren_count++;
			if( line[charI] == ')' )
				paren_count--;
		}
		if( paren_count == 0 )
			break;
		if( paren_count != 0 ){
			std::string another_line;
			if( !std::getline( tree_file, another_line ) )
				return;
			line += another_line;
		}
	}

	std::stringstream line_str( line );

	// look for a weight
	std::string::size_type open_bracket_pos = line.find( "[" );
	std::string::size_type bracket_pos = line.find( "]" );
	if( open_bracket_pos != std::string::npos && bracket_pos != std::string::npos && 
		open_bracket_pos < bracket_pos && bracket_pos < line.find( "(" ) ){
		// read in a weight
		getline( line_str, line, '[' );
		getline( line_str, line, ']' );
		std::stringstream weight_str( line );
		weight_str >> weight;
	}
	
	// ready to begin parsing the tree data.
	std::string tree_line;
	std::getline( line_str, tree_line, ';' );
	size_t read_state = 0;	/**< read_state of 0 indicates nothing has been parsed yet */
	size_t section_start = 0;
	std::stack< node_id_t > node_stack;
	std::stringstream blen_str;
	T new_node;
	new_node.distance = 0;	// default the distance to 0
	bool already_read_name = false;
	bool blen_found = false;
	for( size_t charI = 0; charI < tree_line.size(); charI++ ){
		switch( tree_line[ charI ] ){
			// if this is an open parens then simply create a new
			// parent node and push it on the parent stack
			case '(':
				if( node_stack.size() > 0 ){
					new_node.parents.clear();
					new_node.parents.push_back( node_stack.top() );
					(*this)[ node_stack.top() ].children.push_back( (node_id_t)(*this).size() );
				}
				node_stack.push( (node_id_t)(*this).size() );
				nodes.push_back( new_node );
				read_state = 1;
				section_start = charI + 1;
				break;
			case ')':
				if( blen_found )
				{
					// read off a branch length
					blen_str.clear();
					blen_str.str( tree_line.substr( section_start, charI - section_start ) );
					blen_str >> (*this)[ node_stack.top() ].distance;
				}else{
					// read off a name, if possible
					if( read_state == 1 ){
						new_node.parents.clear();
						new_node.parents.push_back( node_stack.top() );
						(*this)[ node_stack.top() ].children.push_back( (node_id_t)(*this).size() );
						node_stack.push( (node_id_t)(*this).size() );
						nodes.push_back( new_node );
						read_state = 2;	// pop this node after reading its branch length
					}
					(*this)[ node_stack.top() ].name = tree_line.substr( section_start, charI - section_start );
				}
				if( read_state == 2 )
					node_stack.pop();
				section_start = charI + 1;
				blen_found = false;

				// pop off the top of the node stack
				read_state = 2;
				break;
			case ',':
				if( blen_found ){
					// read off a branch length
					blen_str.clear();
					blen_str.str( tree_line.substr( section_start, charI - section_start ) );
					blen_str >> (*this)[ node_stack.top() ].distance;
				}else{
					// read off a name, if possible
					if( read_state == 1 ){
						new_node.parents.clear();
						new_node.parents.push_back( node_stack.top() );
						(*this)[ node_stack.top() ].children.push_back( (node_id_t)(*this).size() );
						node_stack.push( (node_id_t)(*this).size() );
						nodes.push_back( new_node );
						read_state = 2;	// pop this node after reading its name
					}
					(*this)[ node_stack.top() ].name = tree_line.substr( section_start, charI - section_start );
				}
				if( read_state == 2 )
					node_stack.pop();
				section_start = charI + 1;
				read_state = 1;	// indicates that we'll be creating a new node when we hit :
				blen_found = false;
				break;
			case ':':
				// read off a name, if possible
				if( read_state == 1 ){
					new_node.parents.clear();
					new_node.parents.push_back( node_stack.top() );
					(*this)[ node_stack.top() ].children.push_back( (node_id_t)(*this).size() );
					node_stack.push( (node_id_t)(*this).size() );
					nodes.push_back( new_node );
					read_state = 2;	// pop this node after reading its branch length
				}
				(*this)[ node_stack.top() ].name = tree_line.substr( section_start, charI - section_start );
				section_start = charI + 1;
				blen_found = true;
				break;
			default:
				break;
		}
	}

}


template< class T >
void PhyloTree<T>::writeTree( std::ostream& os ) const{
	std::stack< node_id_t > node_stack;
	std::stack< size_t > child_stack;
	node_stack.push( root );
	child_stack.push( 0 );
	bool write_branch_lengths = false;
	for( size_t nodeI = 0; nodeI < this->size(); nodeI++ )
	{
		if( (*this)[nodeI].distance != 0 )
		{
			write_branch_lengths = true;
			break;
		}
	}

	if( (*this).weight != 0 )
		os << "[" << weight << "]";
	os << "(";

	while( node_stack.size() > 0 ) {
		if( (*this)[ node_stack.top() ].children.size() != 0 ){
			// this is a parent node
			// if we have scanned all its children then pop it
			if( child_stack.top() == (*this)[ node_stack.top() ].children.size() ){
				os << ")";
				if( node_stack.size() > 1 && write_branch_lengths )
					os << ":" << (*this)[ node_stack.top() ].distance;
				node_stack.pop();
				child_stack.pop();
				continue;
			}
			// try to recurse to its children
			// if the child is a parent as well spit out a paren
			node_id_t child = (*this)[ node_stack.top() ].children[ child_stack.top() ];
			node_stack.push( child );
			child_stack.top()++;
			// print a comma to separate multiple children
			if( child_stack.top() > 1 )
				os << ",";
			if( (*this)[ child ].children.size() > 0 ){
				child_stack.push( 0 );
				os << "(";
			}
			continue;
		}
		
		// this is a leaf node
		os << (*this)[ node_stack.top() ].name;
		if( write_branch_lengths )
			os << ":" << (*this)[ node_stack.top() ].distance;
		
		// pop the child
		node_stack.pop();
	}
	os << ";" << std::endl;
}


template< class T >
double PhyloTree<T>::getHeight() const
{
	return getHeight( root );
}

template< class T >
double PhyloTree<T>::getHeight( node_id_t nodeI ) const
{
	if( (*this)[ nodeI ].children.size() == 0 )
		return (*this)[ nodeI ].distance;
	return (*this)[ nodeI ].distance + getHeight( (*this)[ nodeI ].children[ 0 ] );
}


/** determine which nodes are descendants of a given node */
template< class TreeType >
void getDescendants( TreeType& alignment_tree, node_id_t node, std::vector< node_id_t >& descendants )
{
	// do a depth first search
	std::stack< node_id_t > node_stack;
	node_stack.push( node );
	descendants.clear();
	while( node_stack.size() > 0 )
	{
		node_id_t cur_node = node_stack.top();
		node_stack.pop();
		if( alignment_tree[cur_node].children.size() > 0 )
		{
			node_stack.push(alignment_tree[cur_node].children[0]);
			node_stack.push(alignment_tree[cur_node].children[1]);
		}
		descendants.push_back(cur_node);
	}
}


/** determine which nodes are leaf nodes below a given node */
template< class TreeType >
void getLeaves( TreeType& tree, node_id_t node, std::vector< node_id_t >& leaves )
{
	// do a depth first search
	std::stack< node_id_t > node_stack;
	node_stack.push( node );
	leaves.clear();
	while( node_stack.size() > 0 )
	{
		node_id_t cur_node = node_stack.top();
		node_stack.pop();
		if( tree[cur_node].children.size() > 0 )
		{
			node_stack.push(tree[cur_node].children[0]);
			node_stack.push(tree[cur_node].children[1]);
		}else
			leaves.push_back(cur_node);
	}
}

namespace std {

template< class T > inline
void swap( PhyloTree<T>& a, PhyloTree<T>& b )
{
	a.swap(b);
}

template<> inline void swap( PhyloTree<TreeNode>& a, PhyloTree<TreeNode>& b){ a.swap(b); }
}

#endif // __PhyloTree_h__