/usr/include/libMems-1.6/libMems/Islands.h is in libmems-1.6-dev 1.6.0+4725-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 | /*******************************************************************************
* $Id: Islands.h,v 1.7 2004/03/01 02:40:08 darling Exp $
* This file is copyright 2002-2007 Aaron Darling and authors listed in the AUTHORS file.
* This file is licensed under the GPL.
* Please see the file called COPYING for licensing details.
* **************
******************************************************************************/
#ifndef __Islands_h__
#define __Islands_h__
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libGenome/gnSequence.h"
#include "libMems/SubstitutionMatrix.h"
#include "libMems/IntervalList.h"
#include "libMems/NumericMatrix.h"
#include "libMems/MatchList.h"
#include "libMems/GappedAlignment.h"
#include "libMems/CompactGappedAlignment.h"
#include "libMems/Aligner.h"
#include <boost/multi_array.hpp>
#include "libMems/HomologyHMM/homology.h"
#include "libMems/Scoring.h"
namespace mems {
/**
* A class to represent an island in an alignment. Islands are generally
* large insertions of a region of sequence relative to
* another sequence.
*/
class Island{
public:
uint seqI;
uint seqJ;
int64 leftI;
int64 leftJ;
int64 rightI;
int64 rightJ;
};
/**
* Identifies gaps in the alignment between pairs of sequences that are longer than
* some number of base pairs in length. Prints islands to an output stream
*/
void simpleFindIslands( IntervalList& iv_list, uint island_size, std::ostream& island_out );
void findIslandsBetweenLCBs( IntervalList& iv_list, uint island_size, std::ostream& island_out );
void simpleFindIslands( IntervalList& iv_list, uint island_size, std::vector< Island >& island_list );
class HssCols{
public:
uint seqI;
uint seqJ;
size_t left_col;
size_t right_col;
};
typedef std::vector< HssCols > hss_list_t;
typedef boost::multi_array< hss_list_t, 3 > hss_array_t;
typedef HssCols IslandCols; // use the same structure for island segs
template<typename MatchVector>
void hssColsToIslandCols( const MatchVector& iv_list, std::vector< genome::gnSequence* >& seq_table, std::vector< HssCols >& hss_list, std::vector< IslandCols >& island_col_list );
/**
* Find regions in each sequence that do not belong to any LCB, add them to their own
* Interval (LCB) in the IntervalList.
*/
void addUnalignedIntervals( IntervalList& iv_list, std::set< uint > seq_set = std::set< uint >(), std::vector<gnSeqI> seq_lengths = std::vector<gnSeqI>() );
/**
* Identifies stretches of alignment existing in all sequences that doesn't
* contain a gap larger than a particular size. Such regions are considered
* the backbone of the alignment.
*/
void simpleFindBackbone( IntervalList& iv_list, uint backbone_size, uint max_gap_size, std::vector< GappedAlignment >& backbone_regions );
/**
* writes out a list of backbone regions
*/
void outputBackbone( const std::vector< GappedAlignment >& backbone_regions, std::ostream& backbone_out );
void getGapBounds( std::vector<gnSeqI>& seq_lengths, std::vector< LCB >& adjacencies, uint seqJ, int leftI, int rightI, int64& left_start, int64& right_start );
static char charmap[128];
inline
char* getCharmap()
{
static bool initialized = false;
if(initialized)
return charmap;
memset(charmap, 0, 128);
charmap['a'] = 0;
charmap['c'] = 1;
charmap['g'] = 2;
charmap['t'] = 3;
charmap['-'] = 4;
charmap['A'] = 0;
charmap['C'] = 1;
charmap['G'] = 2;
charmap['T'] = 3;
charmap['-'] = 4;
initialized = true;
return charmap;
}
// a mapping from pairwise alignment columns to HomologyHMM emission codes
// row/column indices are as given by the charmap above (ACGT- == 01234).
static char colmap[5][5] = {
// A C G T -
{'1','3','4','5','7'}, // A
{'3','2','6','4','7'}, // C
{'4','6','2','3','7'}, // G
{'5','4','3','1','7'}, // T
{'7','7','7','7','\0'}, // -
};
inline
void findHssHomologyHMM( std::vector< std::string >& aln_table, hss_list_t& hss_list, uint seqI, uint seqJ, const Params& hmm_params,
boolean left_homologous, boolean right_homologous )
{
static char* charmap = getCharmap();
// encode the alignment as column states
std::string column_states(aln_table[0].size(),'q');
vector< size_t > col_reference(column_states.size(), (std::numeric_limits<size_t>::max)() );
size_t refI = 0;
for( size_t colI = 0; colI < column_states.size(); colI++ )
{
char a = charmap[aln_table[seqI][colI]];
char b = charmap[aln_table[seqJ][colI]];
column_states[colI] = colmap[a][b];
if(column_states[colI] != 0 )
col_reference[refI++] = colI;
}
// filter out the gap/gap cols
std::string::iterator sitr = std::remove(column_states.begin(), column_states.end(), 0);
column_states.resize(sitr - column_states.begin());
for( size_t colI = 2; colI < column_states.size(); colI++ )
{
if( column_states[colI] == '7' &&
column_states[colI-1] == '7' &&
(column_states[colI-2] == '7' || column_states[colI-2] == '8') )
column_states[colI-1] = '8';
}
if( column_states.size() > 1 && column_states[0] == '7' && (column_states[1] == '7' || column_states[1] == '8'))
column_states[0] = '8';
if( column_states.size() > 1 && column_states[column_states.size()-1] == '7' && (column_states[column_states.size()-2] == '7'|| column_states[column_states.size()-2] == '8') )
column_states[column_states.size()-1] = '8';
// now feed it to the Homology prediction HMM
string prediction;
if( right_homologous && !left_homologous )
std::reverse(column_states.begin(), column_states.end());
run(column_states, prediction, hmm_params);
if( right_homologous && !left_homologous )
std::reverse(prediction.begin(), prediction.end());
size_t prev_h = 0;
size_t i = 1;
for( ; i < prediction.size(); i++ )
{
if( prediction[i] == 'H' && prediction[i-1] == 'N' )
{
prev_h = i;
}
if( prediction[i] == 'N' && prediction[i-1] == 'H' )
{
HssCols hc;
hc.seqI = seqI;
hc.seqJ = seqJ;
hc.left_col = col_reference[prev_h];
hc.right_col = col_reference[i-1];
hss_list.push_back(hc);
prev_h = i;
}
}
// get the last one
if( prediction[i-1] == 'H' )
{
HssCols hc;
hc.seqI = seqI;
hc.seqJ = seqJ;
hc.left_col = col_reference[prev_h];
hc.right_col = col_reference[i-1];
hss_list.push_back(hc);
}
}
template< typename MatchVector >
void findHssHomologyHMM( const MatchVector& iv_list, std::vector< genome::gnSequence* >& seq_table, hss_array_t& hss_array, const Params& hmm_params, boolean left_homologous, boolean right_homologous )
{
typedef typename MatchVector::value_type MatchType;
if( iv_list.size() == 0 )
return;
uint seq_count = seq_table.size();
hss_array.resize( boost::extents[seq_count][seq_count][iv_list.size()] );
for( uint iv_listI = 0; iv_listI < iv_list.size(); iv_listI++ ){
const MatchType& iv = iv_list[ iv_listI ];
std::vector< std::string > aln_table;
GetAlignment( *iv, seq_table, aln_table );
for( uint seqI = 0; seqI < seq_count; seqI++ ){
uint seqJ;
for( seqJ = seqI + 1; seqJ < seq_count; seqJ++ ){
hss_list_t& hss_list = hss_array[seqI][seqJ][iv_listI];
hss_list.clear();
findHssHomologyHMM( aln_table, hss_list, seqI, seqJ, hmm_params, left_homologous, right_homologous );
}
}
}
}
template< typename MatchVector >
void HssColsToIslandCols( const MatchVector& iv_list, std::vector< genome::gnSequence* >& seq_table, hss_array_t& hss_array, hss_array_t& island_col_array )
{
typedef typename MatchVector::value_type MatchType;
uint seq_count = seq_table.size();
island_col_array.resize( boost::extents[seq_count][seq_count][iv_list.size()] );
for( uint iv_listI = 0; iv_listI < iv_list.size(); iv_listI++ ){
const MatchType& iv = iv_list[ iv_listI ];
for( uint seqI = 0; seqI < seq_count; seqI++ ){
uint seqJ;
for( seqJ = seqI + 1; seqJ < seq_count; seqJ++ ){
hss_list_t& hss_list = hss_array[seqI][seqJ][iv_listI];
hss_list_t& island_col_list = island_col_array[seqI][seqJ][iv_listI];
ComplementHss(iv_list[iv_listI]->AlignmentLength(),hss_list,island_col_list,seqI,seqJ);
}
}
}
}
inline
void ComplementHss( const size_t alignment_length, hss_list_t& hss_list, hss_list_t& island_col_list, uint seqI=0, uint seqJ=0 )
{
size_t left_col = 0;
for( size_t hssI = 0; hssI < hss_list.size(); ++hssI )
{
if( left_col >= hss_list[hssI].left_col )
{
left_col = hss_list[hssI].right_col + 1;
continue; // handle the case where the HSS starts at col 0
}
// ending an island
IslandCols isle;
isle.seqI = seqI;
isle.seqJ = seqJ;
isle.left_col = left_col;
isle.right_col = hss_list[hssI].left_col;
island_col_list.push_back(isle);
left_col = hss_list[hssI].right_col + 1;
}
if( left_col < alignment_length )
{
// add the last island
IslandCols isle;
isle.seqI = seqI;
isle.seqJ = seqJ;
isle.left_col = left_col;
isle.right_col = alignment_length-1;
island_col_list.push_back(isle);
}
}
template< typename MatchVector >
void HssArrayToCga( const MatchVector& iv_list, std::vector< genome::gnSequence* >& seq_table, hss_array_t& hss_array, std::vector< CompactGappedAlignment<>* >& cga_list )
{
typedef typename MatchVector::value_type MatchType;
uint seq_count = seq_table.size();
for( uint iv_listI = 0; iv_listI < iv_list.size(); iv_listI++ ){
const MatchType& iv = iv_list[ iv_listI ];
CompactGappedAlignment<>* iv_cga = dynamic_cast< CompactGappedAlignment<>* >(iv);
bool allocated = false;
if( iv_cga == NULL )
{
CompactGappedAlignment<> tmp_cga;
iv_cga = tmp_cga.Copy();
new (iv_cga) CompactGappedAlignment<>(*iv);
allocated = true;
}
for( uint seqI = 0; seqI < seq_count; seqI++ ){
for( uint seqJ = seqI + 1; seqJ < seq_count; seqJ++ ){
hss_list_t& isle_list = hss_array[seqI][seqJ][iv_listI];
for( size_t curI = 0; curI < isle_list.size(); ++curI )
{
// extract a cga
CompactGappedAlignment<> tmp_cga;
cga_list.push_back( tmp_cga.Copy() );
iv_cga->copyRange( *(cga_list.back()), isle_list[curI].left_col, isle_list[curI].right_col - isle_list[curI].left_col + 1 );
if( cga_list.back()->LeftEnd(0) == NO_MATCH )
{
// this one must have been covering an invalid region (gaps aligned to gaps)
cga_list.back()->Free();
cga_list.erase( cga_list.end()-1 );
}
}
}
}
if( allocated )
iv_cga->Free();
}
}
template< class IntervalListType >
void addUnalignedRegions( IntervalListType& iv_list)
{
std::vector< AbstractMatch* > new_ivs;
std::vector< AbstractMatch* > iv_ptrs(iv_list.size());
for( size_t i = 0; i < iv_list.size(); ++i )
iv_ptrs[i] = &iv_list[i];
for( size_t seqI = 0; seqI < iv_list.seq_table.size(); ++seqI )
{
SingleStartComparator< AbstractMatch > ssc( seqI );
std::sort( iv_ptrs.begin(), iv_ptrs.end(), ssc );
size_t ivI = 0;
for( ; ivI < iv_ptrs.size(); ++ivI )
if( iv_ptrs[ivI]->LeftEnd(seqI) != NO_MATCH )
break;
std::list< AbstractMatch* > iv_ptr_list;
iv_ptr_list.insert( iv_ptr_list.end(), iv_ptrs.begin()+ivI, iv_ptrs.end() );
AddGapMatches( iv_ptr_list, iv_ptr_list.begin(), iv_ptr_list.end(), seqI, 1, iv_list.seq_table[seqI]->length()+1, AbstractMatch::forward, iv_list.seq_table.size() );
std::list< AbstractMatch* >::iterator iter = iv_ptr_list.begin();
while( ivI != iv_ptrs.size() && iter != iv_ptr_list.end() )
{
if( iv_ptrs[ivI] == *iter )
ivI++;
else
new_ivs.push_back( *iter );
++iter;
}
while( iter != iv_ptr_list.end() )
{
new_ivs.push_back( *iter );
++iter;
}
}
// now add all the new intervals to iv_list
size_t prev_size = iv_list.size();
iv_list.resize( iv_list.size() + new_ivs.size() );
for( size_t newI = 0; newI < new_ivs.size(); ++newI )
{
Interval iv( new_ivs.begin() + newI, new_ivs.begin() + newI + 1 );
iv_list[prev_size + newI] = iv;
new_ivs[newI]->Free();
}
}
template< typename MatchVector >
void findBigGaps( const MatchVector& iv_list, std::vector< genome::gnSequence* >& seq_table, hss_array_t& hss_array, size_t big_gap_size )
{
typedef typename MatchVector::value_type MatchType;
if( iv_list.size() == 0 )
return;
uint seq_count = seq_table.size();
hss_array.resize( boost::extents[seq_count][seq_count][iv_list.size()] );
for( uint iv_listI = 0; iv_listI < iv_list.size(); iv_listI++ ){
const MatchType& iv = iv_list[ iv_listI ];
std::vector< std::string > aln_table;
GetAlignment( *iv, seq_table, aln_table );
for( uint seqI = 0; seqI < seq_count; seqI++ ){
uint seqJ;
for( seqJ = seqI + 1; seqJ < seq_count; seqJ++ )
{
if( iv->LeftEnd(seqI) == NO_MATCH || iv->LeftEnd(seqJ) == NO_MATCH )
continue;
hss_list_t& hss_list = hss_array[seqI][seqJ][iv_listI];
hss_list.clear();
size_t gap_count = 0;
size_t gap_lend = 0;
for( size_t cI = 0; cI < aln_table[seqI].size(); cI++ )
{
if( aln_table[seqI][cI] == '-' || aln_table[seqJ][cI] == '-' )
{
if( aln_table[seqI][cI] == '-' ^ aln_table[seqJ][cI] == '-' )
{
if( gap_count == 0 )
gap_lend = cI;
gap_count++;
}
}else if( gap_count >= big_gap_size )
{
HssCols hc;
hc.seqI = seqI;
hc.seqJ = seqJ;
hc.left_col = gap_lend;
hc.right_col = cI-1;
hss_list.push_back( hc );
gap_count = 0;
}else
gap_count = 0;
}
}
}
}
}
}
#endif // __Islands_h__
|