This file is indexed.

/usr/include/mapnik/offset_converter.hpp is in libmapnik-dev 3.0.9+ds-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/*****************************************************************************
 *
 * This file is part of Mapnik (c++ mapping toolkit)
 *
 * Copyright (C) 2015 Artem Pavlenko
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 *
 *****************************************************************************/

#ifndef MAPNIK_OFFSET_CONVERTER_HPP
#define MAPNIK_OFFSET_CONVERTER_HPP

#ifdef MAPNIK_LOG
#include <mapnik/debug.hpp>
#endif
#include <mapnik/global.hpp>
#include <mapnik/config.hpp>
#include <mapnik/vertex.hpp>
#include <mapnik/vertex_cache.hpp>

// stl
#include <cmath>
#include <vector>
#include <cstddef>
#include <algorithm>

namespace mapnik
{

template <typename Geometry>
struct offset_converter
{
    using size_type = std::size_t;

    offset_converter(Geometry & geom)
        : geom_(geom)
        , offset_(0.0)
        , threshold_(5.0)
        , half_turn_segments_(16)
        , status_(initial)
        , pre_first_(vertex2d::no_init)
        , pre_(vertex2d::no_init)
        , cur_(vertex2d::no_init)
    {}

    enum status
    {
        initial,
        process
    };

    unsigned type() const
    {
        return static_cast<unsigned>(geom_.type());
    }

    double get_offset() const
    {
        return offset_;
    }

    double get_threshold() const
    {
        return threshold_;
    }

    void set_offset(double value)
    {
        if (offset_ != value)
        {
            offset_ = value;
            reset();
        }
    }

    void set_threshold(double value)
    {
        threshold_ = value;
        // no need to reset(), since threshold doesn't affect
        // offset vertices' computation, it only controls how
        // far will we be looking for self-intersections
    }

    unsigned vertex(double * x, double * y)
    {
        if (offset_ == 0.0)
        {
            return geom_.vertex(x, y);
        }

        if (status_ == initial)
        {
            init_vertices();
        }

        if (pos_ >= vertices_.size())
        {
            return SEG_END;
        }

        pre_ = (pos_ ? cur_ : pre_first_);
        cur_ = vertices_.at(pos_++);

        if (pos_ == vertices_.size())
        {
            return output_vertex(x, y);
        }

        double const check_dist = offset_ * threshold_;
        double const check_dist2 = check_dist * check_dist;
        double t = 1.0;
        double vt, ut;

        for (size_t i = pos_; i+1 < vertices_.size(); ++i)
        {
            //break; // uncomment this to see all the curls

            vertex2d const& u0 = vertices_[i];
            vertex2d const& u1 = vertices_[i+1];
            double const dx = u0.x - cur_.x;
            double const dy = u0.y - cur_.y;

            if (dx*dx + dy*dy > check_dist2)
            {
                break;
            }

            if (!intersection(pre_, cur_, &vt, u0, u1, &ut))
            {
                continue;
            }

            if (vt < 0.0 || vt > t || ut < 0.0 || ut > 1.0)
            {
                continue;
            }

            t = vt;
            pos_ = i+1;
        }

        cur_.x = pre_.x + t * (cur_.x - pre_.x);
        cur_.y = pre_.y + t * (cur_.y - pre_.y);
        return output_vertex(x, y);
    }

    void reset()
    {
        geom_.rewind(0);
        vertices_.clear();
        status_ = initial;
        pos_ = 0;
    }

    void rewind(unsigned)
    {
        pos_ = 0;
    }

private:

    static double explement_reflex_angle(double angle)
    {
        if (angle > M_PI)
        {
            return angle - 2 * M_PI;
        }
        else if (angle < -M_PI)
        {
            return angle + 2 * M_PI;
        }
        else
        {
            return angle;
        }
    }

    static bool intersection(vertex2d const& u1, vertex2d const& u2, double* ut,
                             vertex2d const& v1, vertex2d const& v2, double* vt)
    {
        double const dx = v1.x - u1.x;
        double const dy = v1.y - u1.y;
        double const ux = u2.x - u1.x;
        double const uy = u2.y - u1.y;
        double const vx = v2.x - v1.x;
        double const vy = v2.y - v1.y;

        // the first line is not vertical
        if (ux < -1e-6 || ux > 1e-6)
        {
            double const up = ux * dy - dx * uy;
            double const dn = vx * uy - ux * vy;

            if (dn > -1e-6 && dn < 1e-6)
            {
                return false; // they are parallel
            }

            *vt = up / dn;
            *ut = (*vt * vx + dx) / ux;
            return true;
        }

        // the first line is not horizontal
        if (uy < -1e-6 || uy > 1e-6)
        {
            double const up = uy * dx - dy * ux;
            double const dn = vy * ux - uy * vx;

            if (dn > -1e-6 && dn < 1e-6)
            {
                return false; // they are parallel
            }

            *vt = up / dn;
            *ut = (*vt * vy + dy) / uy;
            return true;
        }

        // the first line is too short
        return false;
    }

    /**
     *  @brief  Translate (vx, vy) by rotated (dx, dy).
     */
    static void displace(vertex2d & v, double dx, double dy, double a)
    {
        v.x += dx * std::cos(a) - dy * std::sin(a);
        v.y += dx * std::sin(a) + dy * std::cos(a);
    }

    /**
     *  @brief  Translate (vx, vy) by rotated (0, -offset).
     */
    void displace(vertex2d & v, double a) const
    {
        v.x -= offset_ * std::sin(a);
        v.y += offset_ * std::cos(a);
    }

    /**
     *  @brief  (vx, vy) := (ux, uy) + rotated (0, -offset)
     */
    void displace(vertex2d & v, vertex2d const& u, double a) const
    {
        v.x = u.x - offset_ * std::sin(a);
        v.y = u.y + offset_ * std::cos(a);
        v.cmd = u.cmd;
    }

    int point_line_position(vertex2d const& a, vertex2d const& b, vertex2d const& point) const
    {
        double position = (b.x - a.x) * (point.y - a.y) - (b.y - a.y) * (point.x - a.x);
        if (position > 1e-6) return 1;
        if (position < -1e-6) return -1;
        return 0;
    }
    
    void displace2(vertex2d & v1, vertex2d const& v0, vertex2d const& v2, double a, double b) const
    {
        double sa = offset_ * std::sin(a);
        double ca = offset_ * std::cos(a);
        double h = std::tan(0.5 * (b - a));
        double hsa = h * sa;
        double hca = h * ca;
        double abs_offset = std::abs(offset_);
        double hsaca = ca-hsa;
        double hcasa = -sa-hca;
        double abs_hsaca = std::abs(hsaca);
        double abs_hcasa = std::abs(hcasa);
        double abs_hsa = std::abs(hsa);
        double abs_hca = std::abs(hca);
                
        vertex2d v_tmp(vertex2d::no_init);    
        v_tmp.x = v1.x - sa - hca;
        v_tmp.y = v1.y + ca - hsa;
        v_tmp.cmd = v1.cmd;
        
        int same = point_line_position(v0, v2, v_tmp)*point_line_position(v0, v2, v1);
        
        if (same >= 0 && std::abs(h) < 10)
        {
            v1.x = v_tmp.x;
            v1.y = v_tmp.y;
        }
        else if ((v0.x-v1.x)*(v0.x-v1.x) + (v0.y-v1.y)*(v0.y-v1.y) +
                (v0.x-v2.x)*(v0.x-v2.x) + (v0.y-v2.y)*(v0.y-v2.y) > offset_*offset_)
        {
            if (abs_hsa > abs_offset || abs_hca > abs_offset)
            {
                double scale = std::max(abs_hsa,abs_hca);
                scale = scale < 1e-6 ? 1. : abs_offset / scale;
                // interpolate hsa, hca to <0,abs_offset>
                hsa = hsa * scale;
                sa = sa * scale;
                hca = hca * scale;
                ca = ca * scale;
            }
            v1.x = v1.x - sa - hca;
            v1.y = v1.y + ca - hsa;
        }
        else
        {      
            if (abs_hsaca*abs_hsaca + abs_hcasa*abs_hcasa > abs_offset*abs_offset)
            {
                double d = (abs_hsaca*abs_hsaca + abs_hcasa*abs_hcasa);
                d = d < 1e-6 ? 1. : d;
                double scale = (abs_offset*abs_offset)/d;
                v1.x = v1.x + hcasa*scale;
                v1.y = v1.y + hsaca*scale;                
            }
            else
            {
                v1.x = v1.x + hcasa;
                v1.y = v1.y + hsaca;
            }
        }
    }
    
    
    status init_vertices()
    {
        if (status_ != initial) // already initialized
        {
            return status_;
        }
        vertex2d v0(vertex2d::no_init);
        vertex2d v1(vertex2d::no_init);
        vertex2d v2(vertex2d::no_init);
        vertex2d w(vertex2d::no_init);
        vertex2d start(vertex2d::no_init);
        vertex2d start_v2(vertex2d::no_init);
        std::vector<vertex2d> points;
        std::vector<vertex2d> close_points;
        bool is_polygon = false;
        std::size_t cpt = 0;
        v0.cmd = geom_.vertex(&v0.x, &v0.y);
        v1 = v0;
        // PUSH INITIAL
        points.push_back(v0);
        if (v0.cmd == SEG_END) // not enough vertices in source
        {
            return status_ = process;
        }
        start = v0;
        while ((v0.cmd = geom_.vertex(&v0.x, &v0.y)) != SEG_END)
        {
            if (v0.cmd == SEG_CLOSE)
            {
                is_polygon = true;
                auto & prev = points.back();
                if (prev.x == start.x && prev.y == start.y)
                {
                    prev.x = v0.x; // hack
                    prev.y = v0.y;
                    prev.cmd = SEG_CLOSE; // account for dupes (line_to(move_to) + close_path) in agg poly clipper
                    std::size_t size = points.size();
                    if (size > 1) close_points.push_back(points[size - 2]);
                    else close_points.push_back(prev);
                    continue;
                }
                else
                {
                    close_points.push_back(v1);
                }
            }
            else if (v0.cmd == SEG_MOVETO)
            {
                start = v0;
            }
            v1 = v0;
            points.push_back(v0);
        }
        // Push SEG_END
        points.push_back(vertex2d(v0.x,v0.y,SEG_END));
        std::size_t i = 0;
        v1 = points[i++];
        v2 = points[i++];
        v0.cmd = v1.cmd;
        v0.x = v1.x;
        v0.y = v1.y;

        if (v2.cmd == SEG_END) // not enough vertices in source
        {
            return status_ = process;
        }

        double angle_a = 0;
        // The vector parts from v1 to v0.
        double v_x1x0 = 0;
        double v_y1y0 = 0;
        // The vector parts from v1 to v2;
        double v_x1x2 = v2.x - v1.x;
        double v_y1y2 = v2.y - v1.y;

        if (is_polygon)
        {
            v_x1x0 = close_points[cpt].x - v1.x;
            v_y1y0 = close_points[cpt].y - v1.y;
            cpt++;
            angle_a = std::atan2(-v_y1y0, -v_x1x0);
        }
        // dot product
        double dot;
        // determinate
        double det;
        double angle_b = std::atan2(v_y1y2, v_x1x2);
        // Angle between the two vectors
        double joint_angle;
        double curve_angle;

        if (!is_polygon)
        {
            // first vertex
            displace(v1, angle_b);
            push_vertex(v1);
        }
        else
        {
            dot = v_x1x0 * v_x1x2 + v_y1y0 * v_y1y2;      // dot product
            det = v_x1x0 * v_y1y2 - v_y1y0 * v_x1x2;      // determinant

            joint_angle = std::atan2(det, dot);  // atan2(y, x) or atan2(sin, cos)
            if (joint_angle < 0) joint_angle = joint_angle + 2 * M_PI;
            joint_angle = std::fmod(joint_angle, 2 * M_PI);

            if (offset_ > 0.0)
            {
                joint_angle = 2 * M_PI - joint_angle;
            }

            int bulge_steps = 0;

            if (std::abs(joint_angle) > M_PI)
            {
                curve_angle = explement_reflex_angle(angle_b - angle_a);
                // Bulge steps should be determined by the inverse of the joint angle.
                double half_turns = half_turn_segments_ * std::fabs(curve_angle);
                bulge_steps = 1 + static_cast<int>(std::floor(half_turns / M_PI));
            }

            if (bulge_steps == 0)
            {
                displace2(v1, v0, v2, angle_a, angle_b);
                push_vertex(v1);
            }
            else
            {
                displace(v1, angle_b);
                push_vertex(v1);
            }
        }

        // Sometimes when the first segment is too short, it causes ugly
        // curls at the beginning of the line. To avoid this, we make up
        // a fake vertex two offset-lengths before the first, and expect
        // intersection detection smoothes it out.
        if (!is_polygon)
        {
            pre_first_ = v1;
            displace(pre_first_, -2 * std::fabs(offset_), 0, angle_b);
            start_ = pre_first_;
        }
        else
        {
            pre_first_ = v0;
            start_ = pre_first_;
        }
        start_v2.x = v2.x;
        start_v2.y = v2.y;
        bool continue_loop = true;        
        vertex2d tmp_prev(vertex2d::no_init);
        
        while (i < points.size())
        {
            v1 = v2;
            v2 = points[i++];
            if (v1.cmd == SEG_MOVETO)
            {
                if (is_polygon)
                {
                    v1.x = start_.x;
                    v1.y = start_.y;
                    if (cpt < close_points.size())
                    {
                        v_x1x2 = v1.x - close_points[cpt].x;
                        v_y1y2 = v1.y - close_points[cpt].y;
                        cpt++;
                    }
                    start_v2.x = v2.x;
                    start_v2.y = v2.y;
                }
            }
            if (is_polygon && v2.cmd == SEG_MOVETO)
            {
                start_.x = v2.x;
                start_.y = v2.y;
                v2.x = start_v2.x;
                v2.y = start_v2.y;
            }
            else if (v2.cmd == SEG_END)
            {
                if (!is_polygon) break;
                continue_loop = false;
                v2.x = start_v2.x;
                v2.y = start_v2.y;
            }
            else if (v2.cmd == SEG_CLOSE)
            {
                v2.x = start_.x;
                v2.y = start_.y;
            }

            // Switch the previous vector's direction as the origin has changed
            v_x1x0 = -v_x1x2;
            v_y1y0 = -v_y1y2;
            // Calculate new angle_a
            angle_a = std::atan2(v_y1y2, v_x1x2);

            // Calculate the new vector
            v_x1x2 = v2.x - v1.x;
            v_y1y2 = v2.y - v1.y;
            // Calculate the new angle_b
            angle_b = std::atan2(v_y1y2, v_x1x2);

            dot = v_x1x0 * v_x1x2 + v_y1y0 * v_y1y2;      // dot product
            det = v_x1x0 * v_y1y2 - v_y1y0 * v_x1x2;      // determinant

            joint_angle = std::atan2(det, dot);  // atan2(y, x) or atan2(sin, cos)
            if (joint_angle < 0) joint_angle = joint_angle + 2 * M_PI;
            joint_angle = std::fmod(joint_angle, 2 * M_PI);

            if (offset_ > 0.0)
            {
                joint_angle = 2 * M_PI - joint_angle;
            }

            int bulge_steps = 0;

            if (std::abs(joint_angle) > M_PI)
            {
                curve_angle = explement_reflex_angle(angle_b - angle_a);
                // Bulge steps should be determined by the inverse of the joint angle.
                double half_turns = half_turn_segments_ * std::fabs(curve_angle);
                bulge_steps = 1 + static_cast<int>(std::floor(half_turns / M_PI));
            }

            #ifdef MAPNIK_LOG
            if (bulge_steps == 0)
            {
                // inside turn (sharp/obtuse angle)
                MAPNIK_LOG_DEBUG(ctrans) << "offset_converter:"
                    << " Sharp joint [<< inside turn " << int(joint_angle*180/M_PI)
                    << " degrees >>]";
            }
            else
            {
                // outside turn (reflex angle)
                MAPNIK_LOG_DEBUG(ctrans) << "offset_converter:"
                    << " Bulge joint >)) outside turn " << int(joint_angle*180/M_PI)
                    << " degrees ((< with " << bulge_steps << " segments";
            }
            #endif
            tmp_prev.cmd = v1.cmd;
            tmp_prev.x = v1.x;
            tmp_prev.y = v1.y;
            
            if (v1.cmd == SEG_MOVETO)
            {
                if (bulge_steps == 0)
                {
                    displace2(v1, v0, v2, angle_a, angle_b);
                    push_vertex(v1);
                }
                else
                {
                    displace(v1, angle_b);
                    push_vertex(v1);
                }
            }
            else
            {
                if (bulge_steps == 0)
                {
                    displace2(v1, v0, v2, angle_a, angle_b);
                    push_vertex(v1);
                }
                else
                {
                    displace(w, v1, angle_a);
                    w.cmd = SEG_LINETO;
                    push_vertex(w);
                    for (int s = 0; ++s < bulge_steps;)
                    {
                        displace(w, v1, angle_a + (curve_angle * s) / bulge_steps);
                        w.cmd = SEG_LINETO;
                        push_vertex(w);
                    }
                    displace(v1, angle_b);
                    push_vertex(v1);
                }
            }
            v0.cmd = tmp_prev.cmd;
            v0.x = tmp_prev.x;
            v0.y = tmp_prev.y;
        }

        // last vertex
        if (!is_polygon)
        {
            displace(v1, angle_b);
            push_vertex(v1);
        }
        // initialization finished
        return status_ = process;
    }

    unsigned output_vertex(double* px, double* py)
    {
        if (cur_.cmd == SEG_CLOSE) *px = *py = 0.0;
        else
        {
            *px = cur_.x;
            *py = cur_.y;
        }
        return cur_.cmd;
    }

    void push_vertex(vertex2d const& v)
    {
        vertices_.push_back(v);
    }

    Geometry &              geom_;
    double                  offset_;
    double                  threshold_;
    unsigned                half_turn_segments_;
    status                  status_;
    size_t                  pos_;
    std::vector<vertex2d>   vertices_;
    vertex2d                start_;
    vertex2d                pre_first_;
    vertex2d                pre_;
    vertex2d                cur_;
};

}

#endif // MAPNIK_OFFSET_CONVERTER_HPP