This file is indexed.

/usr/include/madness/mra/funcimpl.h is in libmadness-dev 0.10-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
/*
  This file is part of MADNESS.

  Copyright (C) 2007,2010 Oak Ridge National Laboratory

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

  For more information please contact:

  Robert J. Harrison
  Oak Ridge National Laboratory
  One Bethel Valley Road
  P.O. Box 2008, MS-6367

  email: harrisonrj@ornl.gov
  tel:   865-241-3937
  fax:   865-572-0680
*/

#ifndef MADNESS_MRA_FUNCIMPL_H__INCLUDED
#define MADNESS_MRA_FUNCIMPL_H__INCLUDED

/// \file funcimpl.h
/// \brief Provides FunctionCommonData, FunctionImpl and FunctionFactory

#include <iostream>
#include <type_traits>
#include <madness/world/MADworld.h>
#include <madness/world/print.h>
#include <madness/misc/misc.h>
#include <madness/tensor/tensor.h>
#include <madness/tensor/gentensor.h>

#include <madness/mra/function_common_data.h>
#include <madness/mra/indexit.h>
#include <madness/mra/key.h>
#include <madness/mra/funcdefaults.h>
#include <madness/mra/function_factory.h>

namespace madness {
    template <typename T, std::size_t NDIM>
    class DerivativeBase;

    template<typename T, std::size_t NDIM>
    class FunctionImpl;

    template<typename T, std::size_t NDIM>
    class FunctionNode;

    template<typename T, std::size_t NDIM>
    class Function;

    template<typename T, std::size_t NDIM>
    class FunctionFactory;

    template<typename T, std::size_t NDIM, std::size_t MDIM>
    class CompositeFunctorInterface;

    template<int D>
    class LoadBalImpl;

}

namespace madness {


    /// A simple process map
    template<typename keyT>
    class SimplePmap : public WorldDCPmapInterface<keyT> {
    private:
        const int nproc;
        const ProcessID me;

    public:
        SimplePmap(World& world) : nproc(world.nproc()), me(world.rank())
        { }

        ProcessID owner(const keyT& key) const {
            if (key.level() == 0)
                return 0;
            else
                return key.hash() % nproc;
        }
    };

    /// A pmap that locates children on odd levels with their even level parents
    template <typename keyT>
    class LevelPmap : public WorldDCPmapInterface<keyT> {
    private:
        const int nproc;
    public:
        LevelPmap() : nproc(0) {};

        LevelPmap(World& world) : nproc(world.nproc()) {}

        /// Find the owner of a given key
        ProcessID owner(const keyT& key) const {
            Level n = key.level();
            if (n == 0) return 0;
            hashT hash;
            if (n <= 3 || (n&0x1)) hash = key.hash();
            else hash = key.parent().hash();
            return hash%nproc;
        }
    };


    /// FunctionNode holds the coefficients, etc., at each node of the 2^NDIM-tree
    template<typename T, std::size_t NDIM>
    class FunctionNode {
    public:
    	typedef GenTensor<T> coeffT;
    	typedef Tensor<T> tensorT;
    private:
        // Should compile OK with these volatile but there should
        // be no need to set as volatile since the container internally
        // stores the entire entry as volatile

        coeffT _coeffs; ///< The coefficients, if any
        double _norm_tree; ///< After norm_tree will contain norm of coefficients summed up tree
        bool _has_children; ///< True if there are children
        coeffT buffer; ///< The coefficients, if any

    public:
        typedef WorldContainer<Key<NDIM> , FunctionNode<T, NDIM> > dcT; ///< Type of container holding the nodes
        /// Default constructor makes node without coeff or children
        FunctionNode() :
            _coeffs(), _norm_tree(1e300), _has_children(false) {
        }

        /// Constructor from given coefficients with optional children

        /// Note that only a shallow copy of the coeff are taken so
        /// you should pass in a deep copy if you want the node to
        /// take ownership.
        explicit
        FunctionNode(const coeffT& coeff, bool has_children = false) :
            _coeffs(coeff), _norm_tree(1e300), _has_children(has_children) {
        }

        explicit
        FunctionNode(const coeffT& coeff, double norm_tree, bool has_children) :
            _coeffs(coeff), _norm_tree(norm_tree), _has_children(has_children) {
        }

        FunctionNode(const FunctionNode<T, NDIM>& other) {
            *this = other;
        }

        FunctionNode<T, NDIM>&
        operator=(const FunctionNode<T, NDIM>& other) {
            if (this != &other) {
                coeff() = copy(other.coeff());
                _norm_tree = other._norm_tree;
                _has_children = other._has_children;
            }
            return *this;
        }

        /// Copy with possible type conversion of coefficients, copying all other state

        /// Choose to not overload copy and type conversion operators
        /// so there are no automatic type conversions.
        template<typename Q>
        FunctionNode<Q, NDIM>
        convert() const {
            return FunctionNode<Q, NDIM> (copy(coeff()), _has_children);
        }

        /// Returns true if there are coefficients in this node
        bool
        has_coeff() const {
            return _coeffs.has_data();
        }


        /// Returns true if this node has children
        bool
        has_children() const {
            return _has_children;
        }

        /// Returns true if this does not have children
        bool
        is_leaf() const {
            return !_has_children;
        }

        /// Returns true if this node is invalid (no coeffs and no children)
        bool
        is_invalid() const {
            return !(has_coeff() || has_children());
        }

        /// Returns a non-const reference to the tensor containing the coeffs

        /// Returns an empty tensor if there are no coefficients.
        coeffT&
        coeff() {
            MADNESS_ASSERT(_coeffs.ndim() == -1 || (_coeffs.dim(0) <= 2
                                                    * MAXK && _coeffs.dim(0) >= 0));
            return const_cast<coeffT&>(_coeffs);
        }

        /// Returns a const reference to the tensor containing the coeffs

        /// Returns an empty tensor if there are no coefficeints.
        const coeffT&
        coeff() const {
            return const_cast<const coeffT&>(_coeffs);
        }

        /// Returns the number of coefficients in this node
        size_t size() const {
            return _coeffs.size();
        }

    public:

        /// reduces the rank of the coefficients (if applicable)
        void reduceRank(const double& eps) {
            _coeffs.reduce_rank(eps);
        }

        /// Sets \c has_children attribute to value of \c flag.
        void set_has_children(bool flag) {
            _has_children = flag;
        }

        /// Sets \c has_children attribute to true recurring up to ensure connected
        void set_has_children_recursive(const typename FunctionNode<T,NDIM>::dcT& c,const Key<NDIM>& key) {
            //madness::print("   set_chi_recu: ", key, *this);
            //PROFILE_MEMBER_FUNC(FunctionNode); // Too fine grain for routine profiling
            if (!(has_children() || has_coeff() || key.level()==0)) {
                // If node already knows it has children or it has
                // coefficients then it must already be connected to
                // its parent.  If not, the node was probably just
                // created for this operation and must be connected to
                // its parent.
                Key<NDIM> parent = key.parent();
                // Task on next line used to be TaskAttributes::hipri()) ... but deferring execution of this
                // makes sense since it is not urgent and lazy connection will likely mean that less forwarding
                // will happen since the upper level task will have already made the connection.
                const_cast<dcT&>(c).task(parent, &FunctionNode<T,NDIM>::set_has_children_recursive, c, parent);
                //madness::print("   set_chi_recu: forwarding",key,parent);
            }
            _has_children = true;
        }

        /// Sets \c has_children attribute to value of \c !flag
        void set_is_leaf(bool flag) {
            _has_children = !flag;
        }

        /// Takes a \em shallow copy of the coeff --- same as \c this->coeff()=coeff
        void set_coeff(const coeffT& coeffs) {
            coeff() = coeffs;
            if ((_coeffs.has_data()) and ((_coeffs.dim(0) < 0) || (_coeffs.dim(0)>2*MAXK))) {
                print("set_coeff: may have a problem");
                print("set_coeff: coeff.dim[0] =", coeffs.dim(0), ", 2* MAXK =", 2*MAXK);
            }
            MADNESS_ASSERT(coeffs.dim(0)<=2*MAXK && coeffs.dim(0)>=0);
        }

        /// Clears the coefficients (has_coeff() will subsequently return false)
        void clear_coeff() {
            coeff()=coeffT();
        }

        /// Scale the coefficients of this node
        template <typename Q>
        void scale(Q a) {
            _coeffs.scale(a);
        }

        /// Sets the value of norm_tree
        void set_norm_tree(double norm_tree) {
            _norm_tree = norm_tree;
        }

        /// Gets the value of norm_tree
        double get_norm_tree() const {
            return _norm_tree;
        }


        /// General bi-linear operation --- this = this*alpha + other*beta

        /// This/other may not have coefficients.  Has_children will be
        /// true in the result if either this/other have children.
        template <typename Q, typename R>
        void gaxpy_inplace(const T& alpha, const FunctionNode<Q,NDIM>& other, const R& beta) {
            //PROFILE_MEMBER_FUNC(FuncNode);  // Too fine grain for routine profiling
            if (other.has_children())
                _has_children = true;
            if (has_coeff()) {
                if (other.has_coeff()) {
                    coeff().gaxpy(alpha,other.coeff(),beta);
                }
                else {
                    coeff().scale(alpha);
                }
            }
            else if (other.has_coeff()) {
                coeff() = other.coeff()*beta; //? Is this the correct type conversion?
            }
        }

        /// Accumulate inplace and if necessary connect node to parent
        double accumulate2(const tensorT& t, const typename FunctionNode<T,NDIM>::dcT& c,
                           const Key<NDIM>& key) {
            double cpu0=cpu_time();
            if (has_coeff()) {
            	MADNESS_ASSERT(coeff().tensor_type()==TT_FULL);
                //            	if (coeff().type==TT_FULL) {
                coeff() += coeffT(t,-1.0,TT_FULL);
                //            	} else {
                //            		tensorT cc=coeff().full_tensor_copy();;
                //            		cc += t;
                //            		coeff()=coeffT(cc,args);
                //            	}
            }
            else {
                // No coeff and no children means the node is newly
                // created for this operation and therefore we must
                // tell its parent that it exists.
            	coeff() = coeffT(t,-1.0,TT_FULL);
                //                coeff() = copy(t);
                //                coeff() = coeffT(t,args);
                if ((!_has_children) && key.level()> 0) {
                    Key<NDIM> parent = key.parent();
                    const_cast<dcT&>(c).task(parent, &FunctionNode<T,NDIM>::set_has_children_recursive, c, parent);
                }
            }
            double cpu1=cpu_time();
            return cpu1-cpu0;
        }


        /// Accumulate inplace and if necessary connect node to parent
        double accumulate(const coeffT& t, const typename FunctionNode<T,NDIM>::dcT& c,
                          const Key<NDIM>& key, const TensorArgs& args) {
            double cpu0=cpu_time();
            if (has_coeff()) {

#if 1
                coeff().add_SVD(t,args.thresh);
                if (buffer.rank()<coeff().rank()) {
                    if (buffer.has_data()) {
                        buffer.add_SVD(coeff(),args.thresh);
                    } else {
                        buffer=copy(coeff());
                    }
                    coeff()=coeffT();
                }

#else
                // always do low rank
                coeff().add_SVD(t,args.thresh);

#endif

            } else {
                // No coeff and no children means the node is newly
                // created for this operation and therefore we must
                // tell its parent that it exists.
            	coeff() = copy(t);
                if ((!_has_children) && key.level()> 0) {
                    Key<NDIM> parent = key.parent();
                    const_cast<dcT&>(c).task(parent, &FunctionNode<T,NDIM>::set_has_children_recursive, c, parent);
                }
            }
            double cpu1=cpu_time();
            return cpu1-cpu0;
        }

        void consolidate_buffer(const TensorArgs& args) {
            if ((coeff().has_data()) and (buffer.has_data())) {
                coeff().add_SVD(buffer,args.thresh);
            } else if (buffer.has_data()) {
                coeff()=buffer;
            }
            buffer=coeffT();
        }

        T trace_conj(const FunctionNode<T,NDIM>& rhs) const {
            return this->_coeffs.trace_conj((rhs._coeffs));
        }

        template <typename Archive>
        void serialize(Archive& ar) {
            ar & coeff() & _has_children & _norm_tree;
        }

    };

    template <typename T, std::size_t NDIM>
    std::ostream& operator<<(std::ostream& s, const FunctionNode<T,NDIM>& node) {
        s << "(has_coeff=" << node.has_coeff() << ", has_children=" << node.has_children() << ", norm=";
        double norm = node.has_coeff() ? node.coeff().normf() : 0.0;
        if (norm < 1e-12)
            norm = 0.0;
        double nt = node.get_norm_tree();
        if (nt == 1e300) nt = 0.0;
        s << norm << ", norm_tree=" << nt << "), rank="<< node.coeff().rank()<<")";
        return s;
    }



    /// returns true if the function has a leaf node at key (works only locally)
    template<typename T, std::size_t NDIM>
    struct leaf_op {
        typedef FunctionImpl<T,NDIM> implT;
        const implT* f;
        bool do_error_leaf_op() const {return false;}

        leaf_op() {}
        leaf_op(const implT* f) : f(f) {}

        /// pre/post-determination is the same here
        bool operator()(const Key<NDIM>& key, const GenTensor<T>& coeff=GenTensor<T>()) const {
            MADNESS_ASSERT(f->get_coeffs().is_local(key));
            return (not f->get_coeffs().find(key).get()->second.has_children());
        }

        template <typename Archive> void serialize (Archive& ar) {
            ar & f;
        }
    };


    /// returns true if the node is well represented compared to its parent
    template<typename T, std::size_t NDIM>
    struct error_leaf_op {
        typedef FunctionImpl<T,NDIM> implT;
        typedef GenTensor<T> coeffT;
        const implT* f;

        bool do_error_leaf_op() const {return true;}	// no double call
        error_leaf_op() {}
        error_leaf_op(const implT* f) : f(f) {}

        /// no pre-determination
        bool operator()(const Key<NDIM>& key) const {return true;}

        /// no post-determination
        bool operator()(const Key<NDIM>& key, const GenTensor<T>& coeff) const {return false;}

        /// post-determination

        /// @param[in]  key the FunctionNode which we want to determine if it's a leaf node
        /// @param[in]  coeff   the coeffs of key
        /// @param[in]  parent  the coeffs of key's parent node
        /// @return is the FunctionNode of key a leaf node?
        bool operator()(const Key<NDIM>& key, const coeffT& coeff, const coeffT& parent) const {
            if (parent.has_no_data()) return false;
            if (key.level()<2) return false;
            coeffT upsampled=f->upsample(key,parent);
            upsampled.scale(-1.0);
            upsampled+=coeff;
            const double dnorm=upsampled.normf();
            const bool is_leaf=(dnorm<f->truncate_tol(f->get_thresh(),key.level()));
            return is_leaf;
        }

        template <typename Archive> void serialize (Archive& ar) {ar & f;}
    };

    /// returns true if the result of a hartree_product is a leaf node (compute norm & error)
    template<typename T, size_t NDIM>
    struct hartree_leaf_op {

        typedef FunctionImpl<T,NDIM> implT;
        const FunctionImpl<T,NDIM>* f;
        long k;
        bool do_error_leaf_op() const {return false;}

        hartree_leaf_op() {}
        hartree_leaf_op(const implT* f, const long& k) : f(f), k(k) {}

        /// no pre-determination
        bool operator()(const Key<NDIM>& key) const {return false;}

        /// no post-determination
        bool operator()(const Key<NDIM>& key, const GenTensor<T>& coeff) const {
            MADNESS_EXCEPTION("no post-determination in hartree_leaf_op",1);
            return true;
        }

        /// post-determination: true if f is a leaf and the result is well-represented

        /// @param[in]  key the hi-dimensional key (breaks into keys for f and g)
        /// @param[in]  fcoeff coefficients of f of its appropriate key in NS form
        /// @param[in]  gcoeff coefficients of g of its appropriate key in NS form
        bool operator()(const Key<NDIM>& key, const Tensor<T>& fcoeff, const Tensor<T>& gcoeff) const {

            if (key.level()<2) return false;
            Slice s = Slice(0,k-1);
            std::vector<Slice> s0(NDIM/2,s);

            const double tol=f->get_thresh();
            const double thresh=f->truncate_tol(tol, key);
            // include the wavelets in the norm, makes it much more accurate
            const double fnorm=fcoeff.normf();
            const double gnorm=gcoeff.normf();

            // if the final norm is small, perform the hartree product and return
            const double norm=fnorm*gnorm;  // computing the outer product
            if (norm < thresh) return true;

            // norm of the scaling function coefficients
            const double sfnorm=fcoeff(s0).normf();
            const double sgnorm=gcoeff(s0).normf();

            // get the error of both functions and of the pair function;
            // need the abs for numerics: sfnorm might be equal fnorm.
            const double ferror=sqrt(std::abs(fnorm*fnorm-sfnorm*sfnorm));
            const double gerror=sqrt(std::abs(gnorm*gnorm-sgnorm*sgnorm));

            // if the expected error is small, perform the hartree product and return
            const double error=fnorm*gerror + ferror*gnorm + ferror*gerror;
            //            const double error=sqrt(fnorm*fnorm*gnorm*gnorm - sfnorm*sfnorm*sgnorm*sgnorm);

            if (error < thresh) return true;
            return false;
        }
        template <typename Archive> void serialize (Archive& ar) {
            ar & f & k;
        }
    };

    /// returns true if the result of the convolution operator op with some provided
    /// coefficients will be small
    template<typename T, size_t NDIM, typename opT>
    struct op_leaf_op {
        typedef FunctionImpl<T,NDIM> implT;

        const opT* op;    ///< the convolution operator
        const implT* f;   ///< the source or result function, needed for truncate_tol
        bool do_error_leaf_op() const {return true;}

        op_leaf_op() {}
        op_leaf_op(const opT* op, const implT* f) : op(op), f(f) {}

        /// pre-determination: we can't know if this will be a leaf node before we got the final coeffs
        bool operator()(const Key<NDIM>& key) const {return true;}

        /// post-determination: return true if operator and coefficient norms are small
        bool operator()(const Key<NDIM>& key, const GenTensor<T>& coeff) const {
            if (key.level()<2) return false;
            const double cnorm=coeff.normf();
            return this->operator()(key,cnorm);
        }

        /// post-determination: return true if operator and coefficient norms are small
        bool operator()(const Key<NDIM>& key, const double& cnorm) const {
            if (key.level()<2) return false;

            typedef Key<opT::opdim> opkeyT;
            const opkeyT source=op->get_source_key(key);

            const double thresh=f->truncate_tol(f->get_thresh(),key);
            const std::vector<opkeyT>& disp = op->get_disp(key.level());
            const opkeyT& d = *disp.begin();         // use the zero-displacement for screening
            const double opnorm = op->norm(key.level(), d, source);
            const double norm=opnorm*cnorm;
            return norm<thresh;

        }

        template <typename Archive> void serialize (Archive& ar) {
            ar & op & f;
        }

    };


    /// returns true if the result of a hartree_product is a leaf node
    /// criteria are error, norm and its effect on a convolution operator
    template<typename T, size_t NDIM, size_t LDIM, typename opT>
    struct hartree_convolute_leaf_op {

        typedef FunctionImpl<T,NDIM> implT;
        typedef FunctionImpl<T,LDIM> implL;

        const FunctionImpl<T,NDIM>* f;
        const implL* g;     // for use of its cdata only
        const opT* op;
        bool do_error_leaf_op() const {return false;}

        hartree_convolute_leaf_op() {}
        hartree_convolute_leaf_op(const implT* f, const implL* g, const opT* op)
            : f(f), g(g), op(op) {}

        /// no pre-determination
        bool operator()(const Key<NDIM>& key) const {return true;}

        /// no post-determination
        bool operator()(const Key<NDIM>& key, const GenTensor<T>& coeff) const {
            MADNESS_EXCEPTION("no post-determination in hartree_convolute_leaf_op",1);
            return true;
        }

        /// post-determination: true if f is a leaf and the result is well-represented

        /// @param[in]  key the hi-dimensional key (breaks into keys for f and g)
        /// @param[in]  fcoeff coefficients of f of its appropriate key in NS form
        /// @param[in]  gcoeff coefficients of g of its appropriate key in NS form
        bool operator()(const Key<NDIM>& key, const Tensor<T>& fcoeff, const Tensor<T>& gcoeff) const {
            //        bool operator()(const Key<NDIM>& key, const GenTensor<T>& coeff) const {

            if (key.level()<2) return false;

            const double tol=f->get_thresh();
            const double thresh=f->truncate_tol(tol, key);
            // include the wavelets in the norm, makes it much more accurate
            const double fnorm=fcoeff.normf();
            const double gnorm=gcoeff.normf();

            // norm of the scaling function coefficients
            const double sfnorm=fcoeff(g->get_cdata().s0).normf();
            const double sgnorm=gcoeff(g->get_cdata().s0).normf();

            // if the final norm is small, perform the hartree product and return
            const double norm=fnorm*gnorm;  // computing the outer product
            if (norm < thresh) return true;

            // get the error of both functions and of the pair function
            const double ferror=sqrt(fnorm*fnorm-sfnorm*sfnorm);
            const double gerror=sqrt(gnorm*gnorm-sgnorm*sgnorm);

            // if the expected error is small, perform the hartree product and return
            const double error=fnorm*gerror + ferror*gnorm + ferror*gerror;
            if (error < thresh) return true;

            // now check if the norm of this and the norm of the operator are significant
            const std::vector<Key<NDIM> >& disp = op->get_disp(key.level());
            const Key<NDIM>& d = *disp.begin();         // use the zero-displacement for screening
            const double opnorm = op->norm(key.level(), d, key);
            const double final_norm=opnorm*sfnorm*sgnorm;
            if (final_norm < thresh) return true;

            return false;
        }
        template <typename Archive> void serialize (Archive& ar) {
            ar & f & op;
        }
    };

    template<typename T, size_t NDIM>
    struct noop {
    	void operator()(const Key<NDIM>& key, const GenTensor<T>& coeff, const bool& is_leaf) const {}
        bool operator()(const Key<NDIM>& key, const GenTensor<T>& fcoeff, const GenTensor<T>& gcoeff) const {
            MADNESS_EXCEPTION("in noop::operator()",1);
            return true;
        }
        template <typename Archive> void serialize (Archive& ar) {}

    };

    template<typename T, std::size_t NDIM>
    struct insert_op {
    	typedef FunctionImpl<T,NDIM> implT;
    	typedef Key<NDIM> keyT;
    	typedef GenTensor<T> coeffT;
    	typedef FunctionNode<T,NDIM> nodeT;

    	implT* impl;
    	insert_op() : impl() {}
    	insert_op(implT* f) : impl(f) {}
    	insert_op(const insert_op& other) : impl(other.impl) {}
    	void operator()(const keyT& key, const coeffT& coeff, const bool& is_leaf) const {
            impl->get_coeffs().replace(key,nodeT(coeff,not is_leaf));
    	}
        template <typename Archive> void serialize (Archive& ar) {
            ar & impl;
        }

    };

    template<size_t NDIM>
    struct true_op {

    	template<typename T>
        bool operator()(const Key<NDIM>& key, const T& t) const {return true;}

    	template<typename T, typename R>
        bool operator()(const Key<NDIM>& key, const T& t, const R& r) const {return true;}
        template <typename Archive> void serialize (Archive& ar) {}

    };

    /// shallow-copy, pared-down version of FunctionNode, for special purpose only
    template<typename T, std::size_t NDIM>
    struct ShallowNode {
        typedef GenTensor<T> coeffT;
        coeffT _coeffs;
        bool _has_children;
        ShallowNode() : _coeffs(), _has_children(false) {}
        ShallowNode(const FunctionNode<T,NDIM>& node)
            : _coeffs(node.coeff()), _has_children(node.has_children()) {}
        ShallowNode(const ShallowNode<T,NDIM>& node)
            : _coeffs(node.coeff()), _has_children(node._has_children) {}

        const coeffT& coeff() const {return _coeffs;}
        coeffT& coeff() {return _coeffs;}
        bool has_children() const {return _has_children;}
        bool is_leaf() const {return not _has_children;}
        template <typename Archive>
        void serialize(Archive& ar) {
            ar & coeff() & _has_children;
        }
    };


    /// a class to track where relevant (parent) coeffs are

    /// E.g. if a 6D function is composed of two 3D functions their coefficients must be tracked.
    /// We might need coeffs from a box that does not exist, and to avoid searching for
    /// parents we track which are their required respective boxes.
    ///  - CoeffTracker will refer either to a requested key, if it exists, or to its
    ///    outermost parent.
    ///  - Children must be made in sequential order to be able to track correctly.
    ///
    /// Usage: 	1. make the child of a given CoeffTracker.
    ///			   If the parent CoeffTracker refers to a leaf node (flag is_leaf)
    ///            the child will refer to the same node. Otherwise it will refer
    ///            to the child node.
    ///			2. retrieve its coefficients (possible communication/ returns a Future).
    ///            Member variable key always refers to an existing node,
    ///            so we can fetch it. Once we have the node we can determine
    ///            if it has children which allows us to make a child (see 1. )
    template<typename T, size_t NDIM>
    class CoeffTracker {

    	typedef FunctionImpl<T,NDIM> implT;
    	typedef Key<NDIM> keyT;
    	typedef GenTensor<T> coeffT;
        typedef std::pair<Key<NDIM>,ShallowNode<T,NDIM> > datumT;
        enum LeafStatus {no, yes, unknown};

        /// the funcimpl that has the coeffs
    	const implT* impl;
    	/// the current key, which must exists in impl
    	keyT key_;
    	/// flag if key is a leaf node
    	LeafStatus is_leaf_;
    	/// the coefficients belonging to key
    	coeffT coeff_;
    public:

    	/// default ctor
    	CoeffTracker() : impl(), key_(), is_leaf_(unknown), coeff_() {}

    	/// the initial ctor making the root key
    	CoeffTracker(const implT* impl) : impl(impl), is_leaf_(no) {
            if (impl) key_=impl->get_cdata().key0;
    	}

    	/// ctor with a pair<keyT,nodeT>
    	explicit CoeffTracker(const CoeffTracker& other, const datumT& datum) : impl(other.impl), key_(other.key_),
                                                                                coeff_(datum.second.coeff()) {
            if (datum.second.is_leaf()) is_leaf_=yes;
            else is_leaf_=no;
    	}

    	/// copy ctor
    	CoeffTracker(const CoeffTracker& other) : impl(other.impl), key_(other.key_),
                                                  is_leaf_(other.is_leaf_), coeff_(other.coeff_) {}

    	/// const reference to impl
    	const implT* get_impl() const {return impl;}

    	/// const reference to the coeffs
    	const coeffT& coeff() const {return coeff_;}

    	/// const reference to the key
    	const keyT& key() const {return key_;}

    	/// return the coefficients belonging to the passed-in key

    	/// if key equals tracked key just return the coeffs, otherwise
    	/// make the child coefficients.
    	/// @param[in]	key		return coeffs corresponding to this key
    	/// @return 	coefficients belonging to key
    	coeffT coeff(const keyT& key) const {
            MADNESS_ASSERT(impl);
            if (impl->is_compressed() or impl->is_nonstandard())
                return impl->parent_to_child_NS(key,key_,coeff_);
            return impl->parent_to_child(coeff_,key_,key);
    	}

    	/// const reference to is_leaf flag
    	const LeafStatus& is_leaf() const {return is_leaf_;}

    	/// make a child of this, ignoring the coeffs
    	CoeffTracker make_child(const keyT& child) const {

            // fast return
            if ((not impl) or impl->is_on_demand()) return CoeffTracker(*this);

            // can't make a child without knowing if this is a leaf -- activate first
            MADNESS_ASSERT((is_leaf_==yes) or (is_leaf_==no));

            CoeffTracker result;
            if (impl) {
                result.impl=impl;
                if (is_leaf_==yes) result.key_=key_;
                if (is_leaf_==no) {
                    result.key_=child;
                    // check if child is direct descendent of this, but root node is special case
                    if (child.level()>0) MADNESS_ASSERT(result.key().level()==key().level()+1);
                }
                result.is_leaf_=unknown;
            }
            return result;
    	}

    	/// find the coefficients

    	/// this involves communication to a remote node
    	/// @return	a Future<CoeffTracker> with the coefficients that key refers to
    	Future<CoeffTracker> activate() const {

            // fast return
            if (not impl) return Future<CoeffTracker>(CoeffTracker());
            if (impl->is_on_demand()) return Future<CoeffTracker>(CoeffTracker(impl));

            // this will return a <keyT,nodeT> from a remote node
            ProcessID p=impl->get_coeffs().owner(key());
            Future<datumT> datum1=impl->task(p, &implT::find_datum,key_,TaskAttributes::hipri());

            // construct a new CoeffTracker locally
            return impl->world.taskq.add(*const_cast<CoeffTracker*> (this),
                                         &CoeffTracker::forward_ctor,*this,datum1);
    	}

    private:
    	/// taskq-compatible forwarding to the ctor
    	CoeffTracker forward_ctor(const CoeffTracker& other, const datumT& datum) const {
            return CoeffTracker(other,datum);
    	}

    public:
    	/// serialization
        template <typename Archive> void serialize(const Archive& ar) {
            int il=int(is_leaf_);
            ar & impl & key_ & il & coeff_;
            is_leaf_=LeafStatus(il);
        }
    };

    template<typename T, std::size_t NDIM>
    std::ostream&
    operator<<(std::ostream& s, const CoeffTracker<T,NDIM>& ct) {
        s << ct.key() << ct.is_leaf() << " " << ct.get_impl();
        return s;
    }

    /// FunctionImpl holds all Function state to facilitate shallow copy semantics

    /// Since Function assignment and copy constructors are shallow it
    /// greatly simplifies maintaining consistent state to have all
    /// (permanent) state encapsulated in a single class.  The state
    /// is shared between instances using a shared_ptr<FunctionImpl>.
    ///
    /// The FunctionImpl inherits all of the functionality of WorldContainer
    /// (to store the coefficients) and WorldObject<WorldContainer> (used
    /// for RMI and for its unqiue id).
    ///
    /// The class methods are public to avoid painful multiple friend template
    /// declarations for Function and FunctionImpl ... but this trust should not be
    /// abused ... NOTHING except FunctionImpl methods should mess with FunctionImplData.
    /// The LB stuff might have to be an exception.
    template <typename T, std::size_t NDIM>
    class FunctionImpl : public WorldObject< FunctionImpl<T,NDIM> > {
    private:
        typedef WorldObject< FunctionImpl<T,NDIM> > woT; ///< Base class world object type
    public:
        typedef FunctionImpl<T,NDIM> implT; ///< Type of this class (implementation)
        typedef std::shared_ptr< FunctionImpl<T,NDIM> > pimplT; ///< pointer to this class
        typedef Tensor<T> tensorT; ///< Type of tensor for anything but to hold coeffs
        typedef Vector<Translation,NDIM> tranT; ///< Type of array holding translation
        typedef Key<NDIM> keyT; ///< Type of key
        typedef FunctionNode<T,NDIM> nodeT; ///< Type of node
        typedef GenTensor<T> coeffT; ///< Type of tensor used to hold coeffs
        typedef WorldContainer<keyT,nodeT> dcT; ///< Type of container holding the coefficients
        typedef std::pair<const keyT,nodeT> datumT; ///< Type of entry in container
        typedef Vector<double,NDIM> coordT; ///< Type of vector holding coordinates

        //template <typename Q, int D> friend class Function;
        template <typename Q, std::size_t D> friend class FunctionImpl;

        World& world;

    private:
        int k; ///< Wavelet order
        double thresh; ///< Screening threshold
        int initial_level; ///< Initial level for refinement
        int max_refine_level; ///< Do not refine below this level
        int truncate_mode; ///< 0=default=(|d|<thresh), 1=(|d|<thresh/2^n), 1=(|d|<thresh/4^n);
        bool autorefine; ///< If true, autorefine where appropriate
        bool truncate_on_project; ///< If true projection inserts at level n-1 not n
        bool nonstandard; ///< If true, compress keeps scaling coeff
        TensorArgs targs; ///< type of tensor to be used in the FunctionNodes

        const FunctionCommonData<T,NDIM>& cdata;

        std::shared_ptr< FunctionFunctorInterface<T,NDIM> > functor;

        bool on_demand; ///< does this function have an additional functor?
        bool compressed; ///< Compression status
        bool redundant; ///< If true, function keeps sum coefficients on all levels

        dcT coeffs; ///< The coefficients

        // Disable the default copy constructor
        FunctionImpl(const FunctionImpl<T,NDIM>& p);

    public:
        Timer timer_accumulate;
        Timer timer_lr_result;
        Timer timer_filter;
        Timer timer_compress_svd;
        Timer timer_target_driven;
        bool do_new;
        AtomicInt small;
        AtomicInt large;

        /// Initialize function impl from data in factory
        FunctionImpl(const FunctionFactory<T,NDIM>& factory)
            : WorldObject<implT>(factory._world)
            , world(factory._world)
            , k(factory._k)
            , thresh(factory._thresh)
            , initial_level(factory._initial_level)
            , max_refine_level(factory._max_refine_level)
            , truncate_mode(factory._truncate_mode)
            , autorefine(factory._autorefine)
            , truncate_on_project(factory._truncate_on_project)
            , nonstandard(false)
            , targs(factory._thresh,FunctionDefaults<NDIM>::get_tensor_type())
            , cdata(FunctionCommonData<T,NDIM>::get(k))
            , functor(factory.get_functor())
            , on_demand(factory._is_on_demand)
            , compressed(factory._compressed)
            , redundant(false)
            , coeffs(world,factory._pmap,false)
            //, bc(factory._bc)
        {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // No need to profile this
            // !!! Ensure that all local state is correctly formed
            // before invoking process_pending for the coeffs and
            // for this.  Otherwise, there is a race condition.
            MADNESS_ASSERT(k>0 && k<=MAXK);

            bool empty = (factory._empty or is_on_demand());
            bool do_refine = factory._refine;

            if (do_refine)
                initial_level = std::max(0,initial_level - 1);

            if (empty) { // Do not set any coefficients at all
                // additional functors are only evaluated on-demand
            } else if (functor) { // Project function and optionally refine
                insert_zero_down_to_initial_level(cdata.key0);
                typename dcT::const_iterator end = coeffs.end();
                for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
                    if (it->second.is_leaf())
                        woT::task(coeffs.owner(it->first), &implT::project_refine_op, it->first, do_refine,
                                  functor->special_points());
                }
            }
            else { // Set as if a zero function
                initial_level = 1;
                insert_zero_down_to_initial_level(keyT(0));
            }

            coeffs.process_pending();
            this->process_pending();
            if (factory._fence && functor)
                world.gop.fence();
        }

        /// Copy constructor

        /// Allocates a \em new function in preparation for a deep copy
        ///
        /// By default takes pmap from other but can also specify a different pmap.
        /// Does \em not copy the coefficients ... creates an empty container.
        template <typename Q>
        FunctionImpl(const FunctionImpl<Q,NDIM>& other,
                     const std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >& pmap,
                     bool dozero)
            : WorldObject<implT>(other.world)
            , world(other.world)
            , k(other.k)
            , thresh(other.thresh)
            , initial_level(other.initial_level)
            , max_refine_level(other.max_refine_level)
            , truncate_mode(other.truncate_mode)
                         , autorefine(other.autorefine)
                         , truncate_on_project(other.truncate_on_project)
                         , nonstandard(other.nonstandard)
                         , targs(other.targs)
                         , cdata(FunctionCommonData<T,NDIM>::get(k))
                         , functor()
                         , on_demand(false)	// since functor() is an default ctor
                         , compressed(other.compressed)
                         , redundant(other.redundant)
                         , coeffs(world, pmap ? pmap : other.coeffs.get_pmap())
                         //, bc(other.bc)
        {
            if (dozero) {
                initial_level = 1;
                insert_zero_down_to_initial_level(cdata.key0);
            }
            coeffs.process_pending();
            this->process_pending();
        }

        virtual ~FunctionImpl() { }

        const std::shared_ptr< WorldDCPmapInterface< Key<NDIM> > >& get_pmap() const;

        /// Copy coeffs from other into self
        template <typename Q>
        void copy_coeffs(const FunctionImpl<Q,NDIM>& other, bool fence) {
            typename FunctionImpl<Q,NDIM>::dcT::const_iterator end = other.coeffs.end();
            for (typename FunctionImpl<Q,NDIM>::dcT::const_iterator it=other.coeffs.begin();
                 it!=end; ++it) {
                const keyT& key = it->first;
                const typename FunctionImpl<Q,NDIM>::nodeT& node = it->second;
                coeffs.replace(key,node. template convert<Q>());
            }
            if (fence)
                world.gop.fence();
        }

        /// perform inplace gaxpy: this = alpha*this + beta*other
        /// @param[in]	alpha	prefactor for this
        /// @param[in]	beta	prefactor for other
        /// @param[in]	g       the other function, reconstructed
        template<typename Q, typename R>
        void gaxpy_inplace_reconstructed(const T& alpha, const FunctionImpl<Q,NDIM>& g, const R& beta, const bool fence) {
            // merge g's tree into this' tree
            this->merge_trees(beta,g,alpha,true);

            // sum down the sum coeffs into the leafs
            if (world.rank() == coeffs.owner(cdata.key0)) sum_down_spawn(cdata.key0, coeffT());
            if (fence) world.gop.fence();
        }

        /// merge the trees of this and other, while multiplying them with the alpha or beta, resp

        /// first step in an inplace gaxpy operation for reconstructed functions; assuming the same
        /// distribution for this and other

        /// on output, *this = alpha* *this + beta * other
        /// @param[in]	alpha	prefactor for this
        /// @param[in]	beta	prefactor for other
        /// @param[in]	other	the other function, reconstructed
        template<typename Q, typename R>
        void merge_trees(const T alpha, const FunctionImpl<Q,NDIM>& other, const R beta, const bool fence=true) {
            MADNESS_ASSERT(get_pmap() == other.get_pmap());
            other.flo_unary_op_node_inplace(do_merge_trees<Q,R>(alpha,beta,*this),fence);
            if (fence) world.gop.fence();
        }


        /// perform: this= alpha*f + beta*g, invoked by result

        /// f and g are reconstructed, so we can save on the compress operation,
        /// walk down the joint tree, and add leaf coefficients; effectively refines
        /// to common finest level.

        /// nothing returned, but leaves this's tree reconstructed and as sum of f and g
        /// @param[in]  alpha   prefactor for f
        /// @param[in]  f       first addend
        /// @param[in]  beta    prefactor for g
        /// @param[in]  g       second addend
        void gaxpy_oop_reconstructed(const double alpha, const implT& f,
                                     const double beta, const implT& g, const bool fence);

        /// functor for the gaxpy_inplace method
        template <typename Q, typename R>
        struct do_gaxpy_inplace {
            typedef Range<typename FunctionImpl<Q,NDIM>::dcT::const_iterator> rangeT;
            FunctionImpl<T,NDIM>* f; ///< prefactor for current function impl
            T alpha; ///< the current function impl
            R beta; ///< prefactor for other function impl
            do_gaxpy_inplace() {};
            do_gaxpy_inplace(FunctionImpl<T,NDIM>* f, T alpha, R beta) : f(f), alpha(alpha), beta(beta) {}
            bool operator()(typename rangeT::iterator& it) const {
                const keyT& key = it->first;
                const FunctionNode<Q,NDIM>& other_node = it->second;
                // Use send to get write accessor and automated construction if missing
                f->coeffs.send(key, &nodeT:: template gaxpy_inplace<Q,R>, alpha, other_node, beta);
                return true;
            }
            template <typename Archive>
            void serialize(Archive& ar) {}
        };

        /// Inplace general bilinear operation
        /// @param[in]  alpha   prefactor for the current function impl
        /// @param[in]  other   the other function impl
        /// @param[in]  beta    prefactor for other
        template <typename Q, typename R>
        void gaxpy_inplace(const T& alpha,const FunctionImpl<Q,NDIM>& other, const R& beta, bool fence) {
            MADNESS_ASSERT(get_pmap() == other.get_pmap());
            if (alpha != T(1.0)) scale_inplace(alpha,false);
            typedef Range<typename FunctionImpl<Q,NDIM>::dcT::const_iterator> rangeT;
            typedef do_gaxpy_inplace<Q,R> opT;
            world.taskq.for_each<rangeT,opT>(rangeT(other.coeffs.begin(), other.coeffs.end()), opT(this, T(1.0), beta));
            if (fence)
                world.gop.fence();
        }

        // loads a function impl from persistence
        // @param[in] ar   the archive where the function impl is stored
        template <typename Archive>
        void load(Archive& ar) {
            // WE RELY ON K BEING STORED FIRST
            int kk = 0;
            ar & kk;

            MADNESS_ASSERT(kk==k);

            // note that functor should not be (re)stored
            ar & thresh & initial_level & max_refine_level & truncate_mode
                & autorefine & truncate_on_project & nonstandard & compressed ; //& bc;

            ar & coeffs;
            world.gop.fence();
        }

        // saves a function impl to persistence
        // @param[in] ar   the archive where the function impl is to be stored
        template <typename Archive>
        void store(Archive& ar) {
            // WE RELY ON K BEING STORED FIRST

            // note that functor should not be (re)stored
            ar & k & thresh & initial_level & max_refine_level & truncate_mode
                & autorefine & truncate_on_project & nonstandard & compressed ; //& bc;

            ar & coeffs;
            world.gop.fence();
        }

        /// Returns true if the function is compressed.
        bool is_compressed() const;

        /// Returns true if the function is redundant.
        bool is_redundant() const;

        bool is_nonstandard() const;

        void set_functor(const std::shared_ptr<FunctionFunctorInterface<T,NDIM> > functor1);

        std::shared_ptr<FunctionFunctorInterface<T,NDIM> > get_functor();

        std::shared_ptr<FunctionFunctorInterface<T,NDIM> > get_functor() const;

        void unset_functor();

        bool& is_on_demand(); // ???????????????????? why returning reference

        const bool& is_on_demand() const; // ?????????????????????

        TensorType get_tensor_type() const;

        TensorArgs get_tensor_args() const;

        double get_thresh() const;

        void set_thresh(double value);

        bool get_autorefine() const;

        void set_autorefine(bool value);

        int get_k() const;

        const dcT& get_coeffs() const;

        dcT& get_coeffs();

        const FunctionCommonData<T,NDIM>& get_cdata() const;

        void accumulate_timer(const double time) const; // !!!!!!!!!!!!  REDUNDANT !!!!!!!!!!!!!!!

        void print_timer() const;

        void reset_timer();

        /// Adds a constant to the function.  Local operation, optional fence

        /// In scaling function basis must add value to first polyn in
        /// each box with appropriate scaling for level.  In wavelet basis
        /// need only add at level zero.
        /// @param[in]  t   the scalar to be added
        void add_scalar_inplace(T t, bool fence);

        /// Initialize nodes to zero function at initial_level of refinement.

        /// Works for either basis.  No communication.
        void insert_zero_down_to_initial_level(const keyT& key);

        /// Truncate according to the threshold with optional global fence

        /// If thresh<=0 the default value of this->thresh is used
        /// @param[in]  tol   the truncation tolerance
        void truncate(double tol, bool fence);

        /// Returns true if after truncation this node has coefficients

        /// Assumed to be invoked on process owning key.  Possible non-blocking
        /// communication.
        /// @param[in]  key   the key of the current function node
        Future<bool> truncate_spawn(const keyT& key, double tol);

        /// Actually do the truncate operation
        /// @param[in] key the key to the current function node being evaluated for truncation
        /// @param[in] tol the tolerance for thresholding
        /// @param[in] v vector of Future<bool>'s that specify whether the current nodes children have coeffs
        bool truncate_op(const keyT& key, double tol, const std::vector< Future<bool> >& v);

        /// Evaluate function at quadrature points in the specified box

        /// @param[in] key the key indicating where the quadrature points are located
        /// @param[in] f the interface to the elementary function
        /// @param[in] qx quadrature points on a level=0 box
        /// @param[out] fval values
        void fcube(const keyT& key, const FunctionFunctorInterface<T,NDIM>& f, const Tensor<double>& qx, tensorT& fval) const;

        /// Evaluate function at quadrature points in the specified box

        /// @param[in] key the key indicating where the quadrature points are located
        /// @param[in] f the interface to the elementary function
        /// @param[in] qx quadrature points on a level=0 box
        /// @param[out] fval values
        void fcube(const keyT& key,  T (*f)(const coordT&), const Tensor<double>& qx, tensorT& fval) const;

        /// Returns cdata.key0
        const keyT& key0() const;

        /// Prints the coeffs tree of the current function impl
        /// @param[in] maxlevel the maximum level of the tree for printing
        /// @param[out] os the ostream to where the output is sent
        void print_tree(std::ostream& os = std::cout, Level maxlevel = 10000) const;

        /// Functor for the do_print_tree method
        void do_print_tree(const keyT& key, std::ostream& os, Level maxlevel) const;

        /// Prints the coeffs tree of the current function impl (using GraphViz)
        /// @param[in] maxlevel the maximum level of the tree for printing
        /// @param[out] os the ostream to where the output is sent
        void print_tree_graphviz(std::ostream& os = std::cout, Level maxlevel = 10000) const;

        /// Functor for the do_print_tree method (using GraphViz)
        void do_print_tree_graphviz(const keyT& key, std::ostream& os, Level maxlevel) const;

        /// convert a number [0,limit] to a hue color code [blue,red],
        /// or, if log is set, a number [1.e-10,limit]
        struct do_convert_to_color {
            double limit;
            bool log;
            static double lower() {return 1.e-10;};
            do_convert_to_color() {};
            do_convert_to_color(const double limit, const bool log) : limit(limit), log(log) {}
            double operator()(double val) const {
                double color=0.0;

                if (log) {
                    double val2=log10(val) - log10(lower());        // will yield >0.0
                    double upper=log10(limit) -log10(lower());
                    val2=0.7-(0.7/upper)*val2;
                    color= std::max(0.0,val2);
                    color= std::min(0.7,color);
                } else {
                    double hue=0.7-(0.7/limit)*(val);
                    color= std::max(0.0,hue);
                }
                return color;
            }
        };


        /// Print a plane ("xy", "xz", or "yz") containing the point x to file

        /// works for all dimensions; we walk through the tree, and if a leaf node
        /// inside the sub-cell touches the plane we print it in pstricks format
        void print_plane(const std::string filename, const int xaxis, const int yaxis, const coordT& el2);

        /// collect the data for a plot of the MRA structure locally on each node

        /// @param[in]	xaxis	the x-axis in the plot (can be any axis of the MRA box)
        /// @param[in]	yaxis	the y-axis in the plot (can be any axis of the MRA box)
        /// @param[in]	el2     needs a description
        /// \todo Provide a description for el2
        Tensor<double> print_plane_local(const int xaxis, const int yaxis, const coordT& el2);

        /// Functor for the print_plane method
        /// @param[in] filename the filename for the output
        /// @param[in] plotinfo plotting parameters
        /// @param[in]	xaxis	the x-axis in the plot (can be any axis of the MRA box)
        /// @param[in]	yaxis	the y-axis in the plot (can be any axis of the MRA box)
        void do_print_plane(const std::string filename, std::vector<Tensor<double> > plotinfo,
                            const int xaxis, const int yaxis, const coordT el2);

        /// print the grid (the roots of the quadrature of each leaf box)
        /// of this function in user xyz coordinates
        /// @param[in] filename the filename for the output
        void print_grid(const std::string filename) const;

        /// return the keys of the local leaf boxes
        std::vector<keyT> local_leaf_keys() const;

        /// print the grid in xyz format

        /// the quadrature points and the key information will be written to file,
        /// @param[in]	filename	where the quadrature points will be written to
        /// @param[in]	keys		all leaf keys
        void do_print_grid(const std::string filename, const std::vector<keyT>& keys) const;

        /// read data from a grid

        /// @param[in]	keyfile		file with keys and grid points for each key
        /// @param[in]	gridfile 	file with grid points, w/o key, but with same ordering
        /// @param[in]	vnuc_functor	subtract the values of this functor if regularization is needed
        template<size_t FDIM>
        typename std::enable_if<NDIM==FDIM>::type
        read_grid(const std::string keyfile, const std::string gridfile,
                  std::shared_ptr< FunctionFunctorInterface<double,NDIM> > vnuc_functor) {

            std::ifstream kfile(keyfile.c_str());
            std::ifstream gfile(gridfile.c_str());
            std::string line;

            long ndata,ndata1;
            if (not (std::getline(kfile,line))) MADNESS_EXCEPTION("failed reading 1st line of key data",0);
            if (not (std::istringstream(line) >> ndata)) MADNESS_EXCEPTION("failed reading k",0);
            if (not (std::getline(gfile,line))) MADNESS_EXCEPTION("failed reading 1st line of grid data",0);
            if (not (std::istringstream(line) >> ndata1)) MADNESS_EXCEPTION("failed reading k",0);
            MADNESS_ASSERT(ndata==ndata1);
            if (not (std::getline(kfile,line))) MADNESS_EXCEPTION("failed reading 2nd line of key data",0);
            if (not (std::getline(gfile,line))) MADNESS_EXCEPTION("failed reading 2nd line of grid data",0);

            // the quadrature points in simulation coordinates of the root node
            const Tensor<double> qx=cdata.quad_x;
            const size_t npt = qx.dim(0);

            // the number of coordinates (grid point tuples) per box ({x1},{x2},{x3},..,{xNDIM})
            long npoints=power<NDIM>(npt);
            // the number of boxes
            long nboxes=ndata/npoints;
            MADNESS_ASSERT(nboxes*npoints==ndata);
            print("reading ",nboxes,"boxes from file",gridfile,keyfile);

            // these will be the data
            Tensor<T> values(cdata.vk,false);

            int ii=0;
            std::string gline,kline;
            //            while (1) {
            while (std::getline(kfile,kline)) {

                double x,y,z,x1,y1,z1,val;

                // get the key
                //				MADNESS_ASSERT(std::getline(kfile,kline));
                long nn;
                Translation l1,l2,l3;
                // line looks like: # key:      n      l1   l2   l3
                kline.erase(0,7);
                std::stringstream(kline) >>  nn >> l1 >> l2 >> l3;
                //				kfile >> s >>  nn >> l1 >> l2 >> l3;
                const Vector<Translation,3> ll{ l1,l2,l3 };
                Key<3> key(nn,ll);

                // this is borrowed from fcube
                const Vector<Translation,3>& l = key.translation();
                const Level n = key.level();
                const double h = std::pow(0.5,double(n));
                coordT c; // will hold the point in user coordinates
                const Tensor<double>& cell_width = FunctionDefaults<NDIM>::get_cell_width();
                const Tensor<double>& cell = FunctionDefaults<NDIM>::get_cell();


                if (NDIM == 3) {
                    for (int i=0; i<npt; ++i) {
                        c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
                        for (int j=0; j<npt; ++j) {
                            c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
                            for (int k=0; k<npt; ++k) {
                                c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z
                                //								fprintf(pFile,"%18.12f %18.12f %18.12f\n",c[0],c[1],c[2]);
                                MADNESS_ASSERT(std::getline(gfile,gline));
                                MADNESS_ASSERT(std::getline(kfile,kline));
                                std::istringstream(gline) >> x >> y >> z >> val;
                                std::istringstream(kline) >> x1 >> y1 >> z1;
                                MADNESS_ASSERT(std::fabs(x-c[0])<1.e-4);
                                MADNESS_ASSERT(std::fabs(x1-c[0])<1.e-4);
                                MADNESS_ASSERT(std::fabs(y-c[1])<1.e-4);
                                MADNESS_ASSERT(std::fabs(y1-c[1])<1.e-4);
                                MADNESS_ASSERT(std::fabs(z-c[2])<1.e-4);
                                MADNESS_ASSERT(std::fabs(z1-c[2])<1.e-4);

                                // regularize if a functor is given
                                if (vnuc_functor) val-=(*vnuc_functor)(c);
                                values(i,j,k)=val;
                            }
                        }
                    }
                } else {
                    MADNESS_EXCEPTION("only NDIM=3 in print_grid",0);
                }

                // insert the new leaf node
                const bool has_children=false;
                coeffT coeff=coeffT(this->values2coeffs(key,values),targs);
                nodeT node(coeff,has_children);
                coeffs.replace(key,node);
                const_cast<dcT&>(coeffs).task(key.parent(), &FunctionNode<T,NDIM>::set_has_children_recursive, coeffs, key.parent());
                ii++;
            }

            kfile.close();
            gfile.close();
            MADNESS_ASSERT(ii==nboxes);

        }


        /// read data from a grid

        /// @param[in]	gridfile		file with keys and grid points and values for each key
        /// @param[in]	vnuc_functor	subtract the values of this functor if regularization is needed
        template<size_t FDIM>
        typename std::enable_if<NDIM==FDIM>::type
        read_grid2(const std::string gridfile,
                   std::shared_ptr< FunctionFunctorInterface<double,NDIM> > vnuc_functor) {

            std::ifstream gfile(gridfile.c_str());
            std::string line;

            long ndata;
            if (not (std::getline(gfile,line))) MADNESS_EXCEPTION("failed reading 1st line of grid data",0);
            if (not (std::istringstream(line) >> ndata)) MADNESS_EXCEPTION("failed reading k",0);
            if (not (std::getline(gfile,line))) MADNESS_EXCEPTION("failed reading 2nd line of grid data",0);

            // the quadrature points in simulation coordinates of the root node
            const Tensor<double> qx=cdata.quad_x;
            const size_t npt = qx.dim(0);

            // the number of coordinates (grid point tuples) per box ({x1},{x2},{x3},..,{xNDIM})
            long npoints=power<NDIM>(npt);
            // the number of boxes
            long nboxes=ndata/npoints;
            MADNESS_ASSERT(nboxes*npoints==ndata);
            print("reading ",nboxes,"boxes from file",gridfile);

            // these will be the data
            Tensor<T> values(cdata.vk,false);

            int ii=0;
            std::string gline;
            //            while (1) {
            while (std::getline(gfile,gline)) {

                double x1,y1,z1,val;

                // get the key
                long nn;
                Translation l1,l2,l3;
                // line looks like: # key:      n      l1   l2   l3
                gline.erase(0,7);
                std::stringstream(gline) >>  nn >> l1 >> l2 >> l3;
                const Vector<Translation,3> ll{ l1,l2,l3 };
                Key<3> key(nn,ll);

                // this is borrowed from fcube
                const Vector<Translation,3>& l = key.translation();
                const Level n = key.level();
                const double h = std::pow(0.5,double(n));
                coordT c; // will hold the point in user coordinates
                const Tensor<double>& cell_width = FunctionDefaults<NDIM>::get_cell_width();
                const Tensor<double>& cell = FunctionDefaults<NDIM>::get_cell();


                if (NDIM == 3) {
                    for (int i=0; i<npt; ++i) {
                        c[0] = cell(0,0) + h*cell_width[0]*(l[0] + qx(i)); // x
                        for (int j=0; j<npt; ++j) {
                            c[1] = cell(1,0) + h*cell_width[1]*(l[1] + qx(j)); // y
                            for (int k=0; k<npt; ++k) {
                                c[2] = cell(2,0) + h*cell_width[2]*(l[2] + qx(k)); // z

                                MADNESS_ASSERT(std::getline(gfile,gline));
                                std::istringstream(gline) >> x1 >> y1 >> z1 >> val;
                                MADNESS_ASSERT(std::fabs(x1-c[0])<1.e-4);
                                MADNESS_ASSERT(std::fabs(y1-c[1])<1.e-4);
                                MADNESS_ASSERT(std::fabs(z1-c[2])<1.e-4);

                                // regularize if a functor is given
                                if (vnuc_functor) val-=(*vnuc_functor)(c);
                                values(i,j,k)=val;
                            }
                        }
                    }
                } else {
                    MADNESS_EXCEPTION("only NDIM=3 in print_grid",0);
                }

                // insert the new leaf node
                const bool has_children=false;
                coeffT coeff=coeffT(this->values2coeffs(key,values),targs);
                nodeT node(coeff,has_children);
                coeffs.replace(key,node);
                const_cast<dcT&>(coeffs).task(key.parent(),
                                              &FunctionNode<T,NDIM>::set_has_children_recursive,
                                              coeffs, key.parent());
                ii++;
            }

            gfile.close();
            MADNESS_ASSERT(ii==nboxes);

        }


        /// Compute by projection the scaling function coeffs in specified box
        /// @param[in] key the key to the current function node (box)
        tensorT project(const keyT& key) const;

        /// Returns the truncation threshold according to truncate_method

        /// here is our handwaving argument:
        /// this threshold will give each FunctionNode an error of less than tol. The
        /// total error can then be as high as sqrt(#nodes) * tol. Therefore in order
        /// to account for higher dimensions: divide tol by about the root of number
        /// of siblings (2^NDIM) that have a large error when we refine along a deep
        /// branch of the tree.
        double truncate_tol(double tol, const keyT& key) const;


        /// Returns patch referring to coeffs of child in parent box
        /// @param[in] child the key to the child function node (box)
        std::vector<Slice> child_patch(const keyT& child) const;

        /// Projection with optional refinement w/ special points
        /// @param[in] key the key to the current function node (box)
        /// @param[in] do_refine should we continue refinement?
        /// @param[in] specialpts vector of special points in the function where we need
        ///            to refine at a much finer level
        void project_refine_op(const keyT& key, bool do_refine,
                               const std::vector<Vector<double,NDIM> >& specialpts);

        /// Compute the Legendre scaling functions for multiplication

        /// Evaluate parent polyn at quadrature points of a child.  The prefactor of
        /// 2^n/2 is included.  The tensor must be preallocated as phi(k,npt).
        /// Refer to the implementation notes for more info.
        /// @todo Robert please verify this comment. I don't understand this method.
        /// @param[in] np level of the parent function node (box)
        /// @param[in] nc level of the child function node (box)
        /// @param[in] lp translation of the parent function node (box)
        /// @param[in] lc translation of the child function node (box)
        /// @param[out] phi tensor of the legendre scaling functions
        void phi_for_mul(Level np, Translation lp, Level nc, Translation lc, Tensor<double>& phi) const;

        /// Directly project parent coeffs to child coeffs

        /// Currently used by diff, but other uses can be anticipated

        /// @todo is this documentation correct?
        /// @param[in]	child	the key whose coeffs we are requesting
        /// @param[in]	parent	the (leaf) key of our function
        /// @param[in]	s	the (leaf) coeffs belonging to parent
        /// @return 	coeffs
        const coeffT parent_to_child(const coeffT& s, const keyT& parent, const keyT& child) const;

        /// Directly project parent NS coeffs to child NS coeffs

        /// return the NS coefficients if parent and child are the same,
        /// or construct sum coeffs from the parents and "add" zero wavelet coeffs
        /// @param[in]	child	the key whose coeffs we are requesting
        /// @param[in]	parent	the (leaf) key of our function
        /// @param[in]	coeff	the (leaf) coeffs belonging to parent
        /// @return 	coeffs in NS form
        coeffT parent_to_child_NS(const keyT& child, const keyT& parent,
                                  const coeffT& coeff) const;

        /// Returns the box at level n that contains the given point in simulation coordinates
        /// @param[in] pt point in simulation coordinates
        /// @param[in] n the level of the box
        Key<NDIM> simpt2key(const coordT& pt, Level n) const;

        /// Get the scaling function coeffs at level n starting from NS form
        // N=2^n, M=N/q, q must be power of 2
        // q=0 return coeffs [N,k] for direct sum
        // q>0 return coeffs [k,q,M] for fft sum
        tensorT coeffs_for_jun(Level n, long q=0);

        /// Return the values when given the coeffs in scaling function basis
        /// @param[in] key the key of the function node (box)
        /// @param[in] coeff the tensor of scaling function coefficients for function node (box)
        /// @return function values for function node (box)
        template <typename Q>
        GenTensor<Q> coeffs2values(const keyT& key, const GenTensor<Q>& coeff) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            double scale = pow(2.0,0.5*NDIM*key.level())/sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            return transform(coeff,cdata.quad_phit).scale(scale);
        }

        /// convert S or NS coeffs to values on a 2k grid of the children

        /// equivalent to unfiltering the NS coeffs and then converting all child S-coeffs
        /// to values in their respective boxes. If only S coeffs are provided d coeffs are
        /// assumed to be zero. Reverse operation to values2NScoeffs().
        /// @param[in]	key	the key of the current S or NS coeffs, level n
        /// @param[in]	coeff coeffs in S or NS form; if S then d coeffs are assumed zero
        /// @param[in]	s_only	sanity check to avoid unintended discard of d coeffs
        /// @return		function values on the quadrature points of the children of child (!)
        template <typename Q>
        GenTensor<Q> NScoeffs2values(const keyT& key, const GenTensor<Q>& coeff,
                                     const bool s_only) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling

            // sanity checks
            MADNESS_ASSERT((coeff.dim(0)==this->get_k()) == s_only);
            MADNESS_ASSERT((coeff.dim(0)==this->get_k()) or (coeff.dim(0)==2*this->get_k()));

            // this is a block-diagonal matrix with the quadrature points on the diagonal
            Tensor<double> quad_phit_2k(2*cdata.k,2*cdata.npt);
            quad_phit_2k(cdata.s[0],cdata.s[0])=cdata.quad_phit;
            quad_phit_2k(cdata.s[1],cdata.s[1])=cdata.quad_phit;

            // the transformation matrix unfilters (cdata.hg) and transforms to values in one step
            const Tensor<double> transf = (s_only)
                ? inner(cdata.hg(Slice(0,k-1),_),quad_phit_2k)	// S coeffs
                : inner(cdata.hg,quad_phit_2k);					// NS coeffs

            // increment the level since the coeffs2values part happens on level n+1
            const double scale = pow(2.0,0.5*NDIM*(key.level()+1))/
                sqrt(FunctionDefaults<NDIM>::get_cell_volume());

            return transform(coeff,transf).scale(scale);
        }

        /// Compute the function values for multiplication

        /// Given S or NS coefficients from a parent cell, compute the value of
        /// the functions at the quadrature points of a child
        /// currently restricted to special cases
        /// @param[in]	child	key of the box in which we compute values
        /// @param[in]	parent	key of the parent box holding the coeffs
        ///	@param[in]	coeff	coeffs of the parent box
        /// @param[in]	s_only	sanity check to avoid unintended discard of d coeffs
        /// @return		function values on the quadrature points of the children of child (!)
        template <typename Q>
        GenTensor<Q> NS_fcube_for_mul(const keyT& child, const keyT& parent,
                                      const GenTensor<Q>& coeff, const bool s_only) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling

            // sanity checks
            MADNESS_ASSERT((coeff.dim(0)==this->get_k()) == s_only);
            MADNESS_ASSERT((coeff.dim(0)==this->get_k()) or (coeff.dim(0)==2*this->get_k()));

            // fast return if possible
            //            if (child.level()==parent.level()) return NScoeffs2values(child,coeff,s_only);

            if (s_only) {

                Tensor<double> quad_phi[NDIM];
                // tmp tensor
                Tensor<double> phi1(cdata.k,cdata.npt);

                for (std::size_t d=0; d<NDIM; ++d) {

                    // input is S coeffs (dimension k), output is values on 2*npt grid points
                    quad_phi[d]=Tensor<double>(cdata.k,2*cdata.npt);

                    // for both children of "child" evaluate the Legendre polynomials
                    // first the left child on level n+1 and translations 2l
                    phi_for_mul(parent.level(),parent.translation()[d],
                                child.level()+1, 2*child.translation()[d], phi1);
                    quad_phi[d](_,Slice(0,k-1))=phi1;

                    // next the right child on level n+1 and translations 2l+1
                    phi_for_mul(parent.level(),parent.translation()[d],
                                child.level()+1, 2*child.translation()[d]+1, phi1);
                    quad_phi[d](_,Slice(k,2*k-1))=phi1;
                }

                const double scale = 1.0/sqrt(FunctionDefaults<NDIM>::get_cell_volume());
                return general_transform(coeff,quad_phi).scale(scale);
            }
            MADNESS_EXCEPTION("you should not be here in NS_fcube_for_mul",1);
            return GenTensor<Q>();
        }

        /// convert function values of the a child generation directly to NS coeffs

        /// equivalent to converting the function values to 2^NDIM S coeffs and then
        /// filtering them to NS coeffs. Reverse operation to NScoeffs2values().
        /// @param[in]	key		key of the parent of the generation
        /// @param[in]	values	tensor holding function values of the 2^NDIM children of key
        /// @return		NS coeffs belonging to key
        template <typename Q>
        GenTensor<Q> values2NScoeffs(const keyT& key, const GenTensor<Q>& values) const {
            //PROFILE_MEMBER_FUNC(FunctionImpl);  // Too fine grain for routine profiling

            // sanity checks
            MADNESS_ASSERT(values.dim(0)==2*this->get_k());

            // this is a block-diagonal matrix with the quadrature points on the diagonal
            Tensor<double> quad_phit_2k(2*cdata.npt,2*cdata.k);
            quad_phit_2k(cdata.s[0],cdata.s[0])=cdata.quad_phiw;
            quad_phit_2k(cdata.s[1],cdata.s[1])=cdata.quad_phiw;

            // the transformation matrix unfilters (cdata.hg) and transforms to values in one step
            const Tensor<double> transf=inner(quad_phit_2k,cdata.hgT);

            // increment the level since the values2coeffs part happens on level n+1
            const double scale = pow(0.5,0.5*NDIM*(key.level()+1))
                *sqrt(FunctionDefaults<NDIM>::get_cell_volume());

            return transform(values,transf).scale(scale);
        }

        /// Return the scaling function coeffs when given the function values at the quadrature points
        /// @param[in] key the key of the function node (box)
        /// @return function values for function node (box)
        template <typename Q>
        Tensor<Q> coeffs2values(const keyT& key, const Tensor<Q>& coeff) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            double scale = pow(2.0,0.5*NDIM*key.level())/sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            return transform(coeff,cdata.quad_phit).scale(scale);
        }

        template <typename Q>
        GenTensor<Q> values2coeffs(const keyT& key, const GenTensor<Q>& values) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            double scale = pow(0.5,0.5*NDIM*key.level())*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            return transform(values,cdata.quad_phiw).scale(scale);
        }

        template <typename Q>
        Tensor<Q> values2coeffs(const keyT& key, const Tensor<Q>& values) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            double scale = pow(0.5,0.5*NDIM*key.level())*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            return transform(values,cdata.quad_phiw).scale(scale);
        }

        /// Compute the function values for multiplication

        /// Given coefficients from a parent cell, compute the value of
        /// the functions at the quadrature points of a child
        /// @param[in] child the key for the child function node (box)
        /// @param[in] parent the key for the parent function node (box)
        /// @param[in] coeff the coefficients of scaling function basis of the parent box
        template <typename Q>
        Tensor<Q> fcube_for_mul(const keyT& child, const keyT& parent, const Tensor<Q>& coeff) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            if (child.level() == parent.level()) {
                return coeffs2values(parent, coeff);
            }
            else if (child.level() < parent.level()) {
                MADNESS_EXCEPTION("FunctionImpl: fcube_for_mul: child-parent relationship bad?",0);
            }
            else {
                Tensor<double> phi[NDIM];
                for (std::size_t d=0; d<NDIM; ++d) {
                    phi[d] = Tensor<double>(cdata.k,cdata.npt);
                    phi_for_mul(parent.level(),parent.translation()[d],
                                child.level(), child.translation()[d], phi[d]);
                }
                return general_transform(coeff,phi).scale(1.0/sqrt(FunctionDefaults<NDIM>::get_cell_volume()));;
            }
        }


        /// Compute the function values for multiplication

        /// Given coefficients from a parent cell, compute the value of
        /// the functions at the quadrature points of a child
        /// @param[in] child the key for the child function node (box)
        /// @param[in] parent the key for the parent function node (box)
        /// @param[in] coeff the coefficients of scaling function basis of the parent box
        template <typename Q>
        GenTensor<Q> fcube_for_mul(const keyT& child, const keyT& parent, const GenTensor<Q>& coeff) const {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            if (child.level() == parent.level()) {
                return coeffs2values(parent, coeff);
            }
            else if (child.level() < parent.level()) {
                MADNESS_EXCEPTION("FunctionImpl: fcube_for_mul: child-parent relationship bad?",0);
            }
            else {
                Tensor<double> phi[NDIM];
                for (size_t d=0; d<NDIM; d++) {
                    phi[d] = Tensor<double>(cdata.k,cdata.npt);
                    phi_for_mul(parent.level(),parent.translation()[d],
                                child.level(), child.translation()[d], phi[d]);
                }
                return general_transform(coeff,phi).scale(1.0/sqrt(FunctionDefaults<NDIM>::get_cell_volume()));
            }
        }


        /// Functor for the mul method
        template <typename L, typename R>
        void do_mul(const keyT& key, const Tensor<L>& left, const std::pair< keyT, Tensor<R> >& arg) {
            // PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
            const keyT& rkey = arg.first;
            const Tensor<R>& rcoeff = arg.second;
            //madness::print("do_mul: r", rkey, rcoeff.size());
            Tensor<R> rcube = fcube_for_mul(key, rkey, rcoeff);
            //madness::print("do_mul: l", key, left.size());
            Tensor<L> lcube = fcube_for_mul(key, key, left);

            Tensor<T> tcube(cdata.vk,false);
            TERNARY_OPTIMIZED_ITERATOR(T, tcube, L, lcube, R, rcube, *_p0 = *_p1 * *_p2;);
            double scale = pow(0.5,0.5*NDIM*key.level())*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            tcube = transform(tcube,cdata.quad_phiw).scale(scale);
            coeffs.replace(key, nodeT(coeffT(tcube,targs),false));
        }


        /// multiply the values of two coefficient tensors using a custom number of grid points

        /// note both coefficient tensors have to refer to the same key!
        /// @param[in]	c1	a tensor holding coefficients
        /// @param[in]	c2	another tensor holding coeffs
        /// @param[in]	npt	number of grid points (optional, default is cdata.npt)
        /// @return		coefficient tensor holding the product of the values of c1 and c2
        template<typename R>
        Tensor<TENSOR_RESULT_TYPE(T,R)> mul(const Tensor<T>& c1, const Tensor<R>& c2,
                                            const int npt, const keyT& key) const {
            typedef TENSOR_RESULT_TYPE(T,R) resultT;

            const FunctionCommonData<T,NDIM>& cdata2=FunctionCommonData<T,NDIM>::get(npt);

            // construct a tensor with the npt coeffs
            Tensor<T> c11(cdata2.vk), c22(cdata2.vk);
            c11(this->cdata.s0)=c1;
            c22(this->cdata.s0)=c2;

            // it's sufficient to scale once
            double scale = pow(2.0,0.5*NDIM*key.level())/sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            Tensor<T> c1value=transform(c11,cdata2.quad_phit).scale(scale);
            Tensor<R> c2value=transform(c22,cdata2.quad_phit);
            Tensor<resultT> resultvalue(cdata2.vk,false);
            TERNARY_OPTIMIZED_ITERATOR(resultT, resultvalue, T, c1value, R, c2value, *_p0 = *_p1 * *_p2;);

            Tensor<resultT> result=transform(resultvalue,cdata2.quad_phiw);

            // return a copy of the slice to have the tensor contiguous
            return copy(result(this->cdata.s0));
        }


        /// Functor for the binary_op method
        template <typename L, typename R, typename opT>
	  void do_binary_op(const keyT& key, const Tensor<L>& left,
			    const std::pair< keyT, Tensor<R> >& arg,
			    const opT& op) {
            //PROFILE_MEMBER_FUNC(FunctionImpl); // Too fine grain for routine profiling
	  const keyT& rkey = arg.first;
	  const Tensor<R>& rcoeff = arg.second;
	  Tensor<R> rcube = fcube_for_mul(key, rkey, rcoeff);
	  Tensor<L> lcube = fcube_for_mul(key, key, left);

	  Tensor<T> tcube(cdata.vk,false);
	  op(key, tcube, lcube, rcube);
	  double scale = pow(0.5,0.5*NDIM*key.level())*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
	  tcube = transform(tcube,cdata.quad_phiw).scale(scale);
	  coeffs.replace(key, nodeT(coeffT(tcube,targs),false));
	}

        /// Invoked by result to perform result += alpha*left+beta*right in wavelet basis

        /// Does not assume that any of result, left, right have the same distribution.
        /// For most purposes result will start as an empty so actually are implementing
        /// out of place gaxpy.  If all functions have the same distribution there is
        /// no communication except for the optional fence.
        template <typename L, typename R>
        void gaxpy(T alpha, const FunctionImpl<L,NDIM>& left,
                   T beta, const FunctionImpl<R,NDIM>& right, bool fence) {
            // Loop over local nodes in both functions.  Add in left and subtract right.
            // Not that efficient in terms of memory bandwidth but ensures we do
            // not miss any nodes.
            typename FunctionImpl<L,NDIM>::dcT::const_iterator left_end = left.coeffs.end();
            for (typename FunctionImpl<L,NDIM>::dcT::const_iterator it=left.coeffs.begin();
                 it!=left_end;
                 ++it) {
                const keyT& key = it->first;
                const typename FunctionImpl<L,NDIM>::nodeT& other_node = it->second;
                coeffs.send(key, &nodeT:: template gaxpy_inplace<T,L>, 1.0, other_node, alpha);
            }
            typename FunctionImpl<R,NDIM>::dcT::const_iterator right_end = right.coeffs.end();
            for (typename FunctionImpl<R,NDIM>::dcT::const_iterator it=right.coeffs.begin();
                 it!=right_end;
                 ++it) {
                const keyT& key = it->first;
                const typename FunctionImpl<L,NDIM>::nodeT& other_node = it->second;
                coeffs.send(key, &nodeT:: template gaxpy_inplace<T,R>, 1.0, other_node, beta);
            }
            if (fence)
                world.gop.fence();
        }

        /// Unary operation applied inplace to the coefficients WITHOUT refinement, optional fence
        /// @param[in] op the unary operator for the coefficients
        template <typename opT>
        void unary_op_coeff_inplace(const opT& op, bool fence) {
            typename dcT::iterator end = coeffs.end();
            for (typename dcT::iterator it=coeffs.begin(); it!=end; ++it) {
                const keyT& parent = it->first;
                nodeT& node = it->second;
                if (node.has_coeff()) {
                    //                    op(parent, node.coeff());
                    TensorArgs full(-1.0,TT_FULL);
                    change_tensor_type(node.coeff(),full);
                    op(parent, node.coeff().full_tensor());
                    change_tensor_type(node.coeff(),targs);
                    //                	op(parent,node);
                }
            }
            if (fence)
                world.gop.fence();
        }

        /// Unary operation applied inplace to the coefficients WITHOUT refinement, optional fence
        /// @param[in] op the unary operator for the coefficients
        template <typename opT>
        void unary_op_node_inplace(const opT& op, bool fence) {
            typename dcT::iterator end = coeffs.end();
            for (typename dcT::iterator it=coeffs.begin(); it!=end; ++it) {
                const keyT& parent = it->first;
                nodeT& node = it->second;
                op(parent, node);
            }
            if (fence)
                world.gop.fence();
        }

        /// Unary operation applied inplace to the coefficients WITHOUT refinement, optional fence
        /// @param[in] op the unary operator for the coefficients
        template <typename opT>
        void flo_unary_op_node_inplace(const opT& op, bool fence) {
            typedef Range<typename dcT::iterator> rangeT;
            typedef do_unary_op_value_inplace<opT> xopT;
            world.taskq.for_each<rangeT,opT>(rangeT(coeffs.begin(), coeffs.end()), op);
            if (fence)
                world.gop.fence();
        }

        /// Unary operation applied inplace to the coefficients WITHOUT refinement, optional fence
        /// @param[in] op the unary operator for the coefficients
        template <typename opT>
        void flo_unary_op_node_inplace(const opT& op, bool fence) const {
            typedef Range<typename dcT::const_iterator> rangeT;
            typedef do_unary_op_value_inplace<opT> xopT;
            world.taskq.for_each<rangeT,opT>(rangeT(coeffs.begin(), coeffs.end()), op);
            if (fence)
                world.gop.fence();
        }

        /// truncate tree at a certain level
        /// @param[in] max_level truncate tree below this level
        void erase(const Level& max_level);

        /// Returns some asymmetry measure ... no comms
        double check_symmetry_local() const;

        /// given an NS tree resulting from a convolution, truncate leafs if appropriate
        struct do_truncate_NS_leafs {
            typedef Range<typename dcT::iterator> rangeT;
            const implT* f;     // for calling its member functions

            do_truncate_NS_leafs(const implT* f) : f(f) {}

            bool operator()(typename rangeT::iterator& it) const {

                const keyT& key = it->first;
                nodeT& node = it->second;

                if (node.is_leaf() and node.coeff().has_data()) {
                    coeffT d = copy(node.coeff());
                    d(f->cdata.s0)=0.0;
                    const double error=d.normf();
                    const double tol=f->truncate_tol(f->get_thresh(),key);
                    if (error<tol) node.coeff()=copy(node.coeff()(f->cdata.s0));
                }
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}

        };

        /// remove all coefficients of internal nodes
        /// presumably to switch from redundant to reconstructed state
        struct remove_internal_coeffs {
            typedef Range<typename dcT::iterator> rangeT;

            /// constructor need impl for cdata
            remove_internal_coeffs() {}

            bool operator()(typename rangeT::iterator& it) const {

                nodeT& node = it->second;
                if (node.has_children()) node.clear_coeff();
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}

        };


        /// keep only the sum coefficients in each node
        struct do_keep_sum_coeffs {
            typedef Range<typename dcT::iterator> rangeT;
            implT* impl;

            /// constructor need impl for cdata
            do_keep_sum_coeffs(implT* impl) :impl(impl) {}

            bool operator()(typename rangeT::iterator& it) const {

                nodeT& node = it->second;
                coeffT s=copy(node.coeff()(impl->cdata.s0));
                node.coeff()=s;
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}

        };


        /// reduce the rank of the nodes, optional fence
        struct do_reduce_rank {
            typedef Range<typename dcT::iterator> rangeT;

            // threshold for rank reduction / SVD truncation
            TensorArgs args;

            // constructor takes target precision
            do_reduce_rank() {}
            do_reduce_rank(const TensorArgs& targs) : args(targs) {}
            do_reduce_rank(const double& thresh) {
                args.thresh=thresh;
            }

            //
            bool operator()(typename rangeT::iterator& it) const {

                nodeT& node = it->second;
                node.reduceRank(args.thresh);
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}
        };



        /// check symmetry wrt particle exchange
        struct do_check_symmetry_local {
            typedef Range<typename dcT::const_iterator> rangeT;
            const implT* f;
            do_check_symmetry_local() {}
            do_check_symmetry_local(const implT& f) : f(&f) {}

            /// return the norm of the difference of this node and its "mirror" node
            double operator()(typename rangeT::iterator& it) const {

                const keyT& key = it->first;
                const nodeT& fnode = it->second;

                // skip internal nodes
                if (fnode.has_children()) return 0.0;

                if (f->world.size()>1) return 0.0;

                // exchange particles
                std::vector<long> map(NDIM);
                map[0]=3; map[1]=4; map[2]=5;
                map[3]=0; map[4]=1; map[5]=2;

                // make mapped key
                Vector<Translation,NDIM> l;
                for (std::size_t i=0; i<NDIM; ++i) l[map[i]] = key.translation()[i];
                const keyT mapkey(key.level(),l);

                double norm=0.0;


                // hope it's local
                if (f->get_coeffs().probe(mapkey)) {
                    MADNESS_ASSERT(f->get_coeffs().probe(mapkey));
                    const nodeT& mapnode=f->get_coeffs().find(mapkey).get()->second;

                    bool have_c1=fnode.coeff().has_data() and fnode.coeff().config().has_data();
                    bool have_c2=mapnode.coeff().has_data() and mapnode.coeff().config().has_data();

                    if (have_c1 and have_c2) {
                        tensorT c1=fnode.coeff().full_tensor_copy();
                        tensorT c2=mapnode.coeff().full_tensor_copy();
                        c2 = copy(c2.mapdim(map));
                        norm=(c1-c2).normf();
                    } else if (have_c1) {
                        tensorT c1=fnode.coeff().full_tensor_copy();
                        norm=c1.normf();
                    } else if (have_c2) {
                        tensorT c2=mapnode.coeff().full_tensor_copy();
                        norm=c2.normf();
                    } else {
                        norm=0.0;
                    }
                } else {
                    norm=fnode.coeff().normf();
                }
                return norm*norm;
            }

            double operator()(double a, double b) const {
                return (a+b);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                MADNESS_EXCEPTION("no serialization of do_check_symmetry yet",1);
            }


        };

        /// merge the coefficent boxes of this into other's tree

        /// no comm, and the tree should be in an consistent state by virtue
        /// of FunctionNode::gaxpy_inplace
        template<typename Q, typename R>
        struct do_merge_trees {
            typedef Range<typename dcT::const_iterator> rangeT;
            FunctionImpl<Q,NDIM>* other;
            T alpha;
            R beta;
            do_merge_trees() {}
            do_merge_trees(const T alpha, const R beta, FunctionImpl<Q,NDIM>& other)
                : other(&other), alpha(alpha), beta(beta) {}

            /// return the norm of the difference of this node and its "mirror" node
            bool operator()(typename rangeT::iterator& it) const {

                const keyT& key = it->first;
                const nodeT& fnode = it->second;

                // if other's node exists: add this' coeffs to it
                // otherwise insert this' node into other's tree
                typename dcT::accessor acc;
                if (other->get_coeffs().find(acc,key)) {
                    nodeT& gnode=acc->second;
                    gnode.gaxpy_inplace(beta,fnode,alpha);
                } else {
                    nodeT gnode=fnode;
                    gnode.scale(alpha);
                    other->get_coeffs().replace(key,gnode);
                }
                return true;
            }

            template <typename Archive> void serialize(const Archive& ar) {
                MADNESS_EXCEPTION("no serialization of do_merge_trees",1);
            }
        };


        /// map this on f
        struct do_mapdim {
            typedef Range<typename dcT::iterator> rangeT;

            std::vector<long> map;
            implT* f;

            do_mapdim() : f(0) {};
            do_mapdim(const std::vector<long> map, implT& f) : map(map), f(&f) {}

            bool operator()(typename rangeT::iterator& it) const {

                const keyT& key = it->first;
                const nodeT& node = it->second;

                Vector<Translation,NDIM> l;
                for (std::size_t i=0; i<NDIM; ++i) l[map[i]] = key.translation()[i];
                tensorT c = node.coeff().full_tensor_copy();
                if (c.size()) c = copy(c.mapdim(map));
                coeffT cc(c,f->get_tensor_args());
                f->get_coeffs().replace(keyT(key.level(),l), nodeT(cc,node.has_children()));

                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {
                MADNESS_EXCEPTION("no serialization of do_mapdim",1);
            }

        };

        /// "put" this on g
        struct do_average {
            typedef Range<typename dcT::const_iterator> rangeT;

            implT* g;

            do_average() {}
            do_average(implT& g) : g(&g) {}

            /// iterator it points to this
            bool operator()(typename rangeT::iterator& it) const {

                const keyT& key = it->first;
                const nodeT& fnode = it->second;

                // fast return if rhs has no coeff here
                if (fnode.has_coeff()) {

                    // check if there is a node already existing
                    typename dcT::accessor acc;
                    if (g->get_coeffs().find(acc,key)) {
                        nodeT& gnode=acc->second;
                        if (gnode.has_coeff()) gnode.coeff()+=fnode.coeff();
                    } else {
                        g->get_coeffs().replace(key,fnode);
                    }
                }

                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}
        };

        /// change representation of nodes' coeffs to low rank, optional fence
        struct do_change_tensor_type {
            typedef Range<typename dcT::iterator> rangeT;

            // threshold for rank reduction / SVD truncation
            TensorArgs targs;

            // constructor takes target precision
            do_change_tensor_type() {}
            do_change_tensor_type(const TensorArgs& targs) : targs(targs) {}

            //
            bool operator()(typename rangeT::iterator& it) const {

                nodeT& node = it->second;
                change_tensor_type(node.coeff(),targs);
                return true;

            }
            template <typename Archive> void serialize(const Archive& ar) {}
        };

        struct do_consolidate_buffer {
            typedef Range<typename dcT::iterator> rangeT;

            // threshold for rank reduction / SVD truncation
            TensorArgs targs;

            // constructor takes target precision
            do_consolidate_buffer() {}
            do_consolidate_buffer(const TensorArgs& targs) : targs(targs) {}
            bool operator()(typename rangeT::iterator& it) const {
                it->second.consolidate_buffer(targs);
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}
        };



        template <typename opT>
        struct do_unary_op_value_inplace {
            typedef Range<typename dcT::iterator> rangeT;
            implT* impl;
            opT op;
            do_unary_op_value_inplace(implT* impl, const opT& op) : impl(impl), op(op) {}
            bool operator()(typename rangeT::iterator& it) const {
                const keyT& key = it->first;
                nodeT& node = it->second;
                if (node.has_coeff()) {
                    const TensorArgs full_args(-1.0,TT_FULL);
                    change_tensor_type(node.coeff(),full_args);
                    tensorT& t= node.coeff().full_tensor();
                    //double before = t.normf();
                    tensorT values = impl->fcube_for_mul(key, key, t);
                    op(key, values);
                    double scale = pow(0.5,0.5*NDIM*key.level())*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
                    t = transform(values,impl->cdata.quad_phiw).scale(scale);
                    node.coeff()=coeffT(t,impl->get_tensor_args());
                    //double after = t.normf();
                    //madness::print("XOP:", key, before, after);
                }
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {}
        };

        template <typename Q, typename R>
        /// @todo I don't know what this does other than a trasform
        void vtransform_doit(const std::shared_ptr< FunctionImpl<R,NDIM> >& right,
                             const Tensor<Q>& c,
                             const std::vector< std::shared_ptr< FunctionImpl<T,NDIM> > >& vleft,
                             double tol) {
            // To reduce crunch on vectors being transformed each task
            // does them in a random order
            std::vector<unsigned int> ind(vleft.size());
            for (unsigned int i=0; i<vleft.size(); ++i) {
                ind[i] = i;
            }
            for (unsigned int i=0; i<vleft.size(); ++i) {
                unsigned int j = RandomValue<int>()%vleft.size();
                std::swap(ind[i],ind[j]);
            }

            typename FunctionImpl<R,NDIM>::dcT::const_iterator end = right->coeffs.end();
            for (typename FunctionImpl<R,NDIM>::dcT::const_iterator it=right->coeffs.begin(); it != end; ++it) {
                if (it->second.has_coeff()) {
                    const Key<NDIM>& key = it->first;
                    const GenTensor<R>& r = it->second.coeff();
                    double norm = r.normf();
                    double keytol = truncate_tol(tol,key);

                    for (unsigned int j=0; j<vleft.size(); ++j) {
                        unsigned int i = ind[j]; // Random permutation
                        if (std::abs(norm*c(i)) > keytol) {
                            implT* left = vleft[i].get();
                            typename dcT::accessor acc;
                            bool newnode = left->coeffs.insert(acc,key);
                            if (newnode && key.level()>0) {
                                Key<NDIM> parent = key.parent();
                                left->coeffs.task(parent, &nodeT::set_has_children_recursive, left->coeffs, parent);
                            }
                            nodeT& node = acc->second;
                            if (!node.has_coeff())
                                node.set_coeff(coeffT(cdata.v2k,targs));
                            coeffT& t = node.coeff();
                            t.gaxpy(1.0, r, c(i));
                        }
                    }
                }
            }
        }

        /// Refine multiple functions down to the same finest level

        /// @param v the vector of functions we are refining.
        /// @param key the current node.
        /// @param c the vector of coefficients passed from above.
        void refine_to_common_level(const std::vector<FunctionImpl<T,NDIM>*>& v,
                                    const std::vector<tensorT>& c,
                                    const keyT key);

        /// Inplace operate on many functions (impl's) with an operator within a certain box
        /// @param[in] key the key of the current function node (box)
        /// @param[in] op the operator
        /// @param[in] v the vector of function impl's on which to be operated
        template <typename opT>
        void multiop_values_doit(const keyT& key, const opT& op, const std::vector<implT*>& v) {
            std::vector<tensorT> c(v.size());
            for (unsigned int i=0; i<v.size(); i++) {
                c[i] = coeffs2values(key, v[i]->coeffs.find(key).get()->second.coeff().full_tensor_copy()); // !!!!! gack
            }
            tensorT r = op(key, c);
            coeffs.replace(key, nodeT(coeffT(values2coeffs(key, r),targs),false));
        }

        /// Inplace operate on many functions (impl's) with an operator within a certain box
        /// Assumes all functions have been refined down to the same level
        /// @param[in] op the operator
        /// @param[in] v the vector of function impl's on which to be operated
        template <typename opT>
        void multiop_values(const opT& op, const std::vector<implT*>& v) {
            typename dcT::iterator end = v[0]->coeffs.end();
            for (typename dcT::iterator it=v[0]->coeffs.begin(); it!=end; ++it) {
                const keyT& key = it->first;
                if (it->second.has_coeff())
                    world.taskq.add(*this, &implT:: template multiop_values_doit<opT>, key, op, v);
                else
                    coeffs.replace(key, nodeT(coeffT(),true));
            }
            world.gop.fence();
        }

        /// Transforms a vector of functions left[i] = sum[j] right[j]*c[j,i] using sparsity
        /// @param[in] vright vector of functions (impl's) on which to be transformed
        /// @param[in] c the tensor (matrix) transformer
        /// @param[in] vleft vector of of the *newly* transformed functions (impl's)
        template <typename Q, typename R>
        void vtransform(const std::vector< std::shared_ptr< FunctionImpl<R,NDIM> > >& vright,
                        const Tensor<Q>& c,
                        const std::vector< std::shared_ptr< FunctionImpl<T,NDIM> > >& vleft,
                        double tol,
                        bool fence) {
            for (unsigned int j=0; j<vright.size(); ++j) {
                world.taskq.add(*this, &implT:: template vtransform_doit<Q,R>, vright[j], copy(c(j,_)), vleft, tol);
            }
            if (fence)
                world.gop.fence();
        }

        /// Unary operation applied inplace to the values with optional refinement and fence
        /// @param[in] op the unary operator for the values
        template <typename opT>
        void unary_op_value_inplace(const opT& op, bool fence) {
            typedef Range<typename dcT::iterator> rangeT;
            typedef do_unary_op_value_inplace<opT> xopT;
            world.taskq.for_each<rangeT,xopT>(rangeT(coeffs.begin(), coeffs.end()), xopT(this,op));
            if (fence)
                world.gop.fence();
        }

        // Multiplication assuming same distribution and recursive descent
        /// Both left and right functions are in the scaling function basis
        /// @param[in] key the key to the current function node (box)
        /// @param[in] left the function impl associated with the left function
        /// @param[in] lcin the scaling function coefficients associated with the
        ///            current box in the left function
        /// @param[in] vrightin the vector of function impl's associated with
        ///            the vector of right functions
        /// @param[in] vrcin the vector scaling function coefficients associated with the
        ///            current box in the right functions
        /// @param[out] vresultin the vector of resulting functions (impl's)
        template <typename L, typename R>
        void mulXXveca(const keyT& key,
                       const FunctionImpl<L,NDIM>* left, const Tensor<L>& lcin,
                       const std::vector<const FunctionImpl<R,NDIM>*> vrightin,
                       const std::vector< Tensor<R> >& vrcin,
                       const std::vector<FunctionImpl<T,NDIM>*> vresultin,
                       double tol) {
            typedef typename FunctionImpl<L,NDIM>::dcT::const_iterator literT;
            typedef typename FunctionImpl<R,NDIM>::dcT::const_iterator riterT;

            double lnorm = 1e99;
            Tensor<L> lc = lcin;
            if (lc.size() == 0) {
                literT it = left->coeffs.find(key).get();
                MADNESS_ASSERT(it != left->coeffs.end());
                lnorm = it->second.get_norm_tree();
                if (it->second.has_coeff())
                    lc = it->second.coeff().full_tensor_copy();
            }

            // Loop thru RHS functions seeing if anything can be multiplied
            std::vector<FunctionImpl<T,NDIM>*> vresult;
            std::vector<const FunctionImpl<R,NDIM>*> vright;
            std::vector< Tensor<R> > vrc;
            vresult.reserve(vrightin.size());
            vright.reserve(vrightin.size());
            vrc.reserve(vrightin.size());

            for (unsigned int i=0; i<vrightin.size(); ++i) {
                FunctionImpl<T,NDIM>* result = vresultin[i];
                const FunctionImpl<R,NDIM>* right = vrightin[i];
                Tensor<R> rc = vrcin[i];
                double rnorm;
                if (rc.size() == 0) {
                    riterT it = right->coeffs.find(key).get();
                    MADNESS_ASSERT(it != right->coeffs.end());
                    rnorm = it->second.get_norm_tree();
                    if (it->second.has_coeff())
                        rc = it->second.coeff().full_tensor_copy();
                }
                else {
                    rnorm = rc.normf();
                }

                if (rc.size() && lc.size()) { // Yipee!
                    result->task(world.rank(), &implT:: template do_mul<L,R>, key, lc, std::make_pair(key,rc));
                }
                else if (tol && lnorm*rnorm < truncate_tol(tol, key)) {
                    result->coeffs.replace(key, nodeT(coeffT(cdata.vk,targs),false)); // Zero leaf
                }
                else {  // Interior node
                    result->coeffs.replace(key, nodeT(coeffT(),true));
                    vresult.push_back(result);
                    vright.push_back(right);
                    vrc.push_back(rc);
                }
            }

            if (vresult.size()) {
                Tensor<L> lss;
                if (lc.size()) {
                    Tensor<L> ld(cdata.v2k);
                    ld(cdata.s0) = lc(___);
                    lss = left->unfilter(ld);
                }

                std::vector< Tensor<R> > vrss(vresult.size());
                for (unsigned int i=0; i<vresult.size(); ++i) {
                    if (vrc[i].size()) {
                        Tensor<R> rd(cdata.v2k);
                        rd(cdata.s0) = vrc[i](___);
                        vrss[i] = vright[i]->unfilter(rd);
                    }
                }

                for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
                    const keyT& child = kit.key();
                    Tensor<L> ll;

                    std::vector<Slice> cp = child_patch(child);

                    if (lc.size())
                        ll = copy(lss(cp));

                    std::vector< Tensor<R> > vv(vresult.size());
                    for (unsigned int i=0; i<vresult.size(); ++i) {
                        if (vrc[i].size())
                            vv[i] = copy(vrss[i](cp));
                    }

                    woT::task(coeffs.owner(child), &implT:: template mulXXveca<L,R>, child, left, ll, vright, vv, vresult, tol);
                }
            }
        }

        /// Multiplication using recursive descent and assuming same distribution
        /// Both left and right functions are in the scaling function basis
        /// @param[in] key the key to the current function node (box)
        /// @param[in] left the function impl associated with the left function
        /// @param[in] lcin the scaling function coefficients associated with the
        ///            current box in the left function
        /// @param[in] right the function impl associated with the right function
        /// @param[in] rcin the scaling function coefficients associated with the
        ///            current box in the right function
        template <typename L, typename R>
        void mulXXa(const keyT& key,
                    const FunctionImpl<L,NDIM>* left, const Tensor<L>& lcin,
                    const FunctionImpl<R,NDIM>* right,const Tensor<R>& rcin,
                    double tol) {
            typedef typename FunctionImpl<L,NDIM>::dcT::const_iterator literT;
            typedef typename FunctionImpl<R,NDIM>::dcT::const_iterator riterT;

            double lnorm=1e99, rnorm=1e99;

            Tensor<L> lc = lcin;
            if (lc.size() == 0) {
                literT it = left->coeffs.find(key).get();
                MADNESS_ASSERT(it != left->coeffs.end());
                lnorm = it->second.get_norm_tree();
                if (it->second.has_coeff())
                    lc = it->second.coeff().full_tensor_copy();
            }

            Tensor<R> rc = rcin;
            if (rc.size() == 0) {
                riterT it = right->coeffs.find(key).get();
                MADNESS_ASSERT(it != right->coeffs.end());
                rnorm = it->second.get_norm_tree();
                if (it->second.has_coeff())
                    rc = it->second.coeff().full_tensor_copy();
            }

            // both nodes are leaf nodes: multiply and return
            if (rc.size() && lc.size()) { // Yipee!
                do_mul<L,R>(key, lc, std::make_pair(key,rc));
                return;
            }

            if (tol) {
                if (lc.size())
                    lnorm = lc.normf(); // Otherwise got from norm tree above
                if (rc.size())
                    rnorm = rc.normf();
                if (lnorm*rnorm < truncate_tol(tol, key)) {
                    coeffs.replace(key, nodeT(coeffT(cdata.vk,targs),false)); // Zero leaf node
                    return;
                }
            }

            // Recur down
            coeffs.replace(key, nodeT(coeffT(),true)); // Interior node

            Tensor<L> lss;
            if (lc.size()) {
                Tensor<L> ld(cdata.v2k);
                ld(cdata.s0) = lc(___);
                lss = left->unfilter(ld);
            }

            Tensor<R> rss;
            if (rc.size()) {
                Tensor<R> rd(cdata.v2k);
                rd(cdata.s0) = rc(___);
                rss = right->unfilter(rd);
            }

            for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
                const keyT& child = kit.key();
                Tensor<L> ll;
                Tensor<R> rr;
                if (lc.size())
                    ll = copy(lss(child_patch(child)));
                if (rc.size())
                    rr = copy(rss(child_patch(child)));

                woT::task(coeffs.owner(child), &implT:: template mulXXa<L,R>, child, left, ll, right, rr, tol);
            }
        }


        // Binary operation on values using recursive descent and assuming same distribution
        /// Both left and right functions are in the scaling function basis
        /// @param[in] key the key to the current function node (box)
        /// @param[in] left the function impl associated with the left function
        /// @param[in] lcin the scaling function coefficients associated with the
        ///            current box in the left function
        /// @param[in] right the function impl associated with the right function
        /// @param[in] rcin the scaling function coefficients associated with the
        ///            current box in the right function
        /// @param[in] op the binary operator
        template <typename L, typename R, typename opT>
        void binaryXXa(const keyT& key,
                       const FunctionImpl<L,NDIM>* left, const Tensor<L>& lcin,
                       const FunctionImpl<R,NDIM>* right,const Tensor<R>& rcin,
                       const opT& op) {
            typedef typename FunctionImpl<L,NDIM>::dcT::const_iterator literT;
            typedef typename FunctionImpl<R,NDIM>::dcT::const_iterator riterT;

            Tensor<L> lc = lcin;
            if (lc.size() == 0) {
                literT it = left->coeffs.find(key).get();
                MADNESS_ASSERT(it != left->coeffs.end());
                if (it->second.has_coeff())
                    lc = it->second.coeff().full_tensor_copy();
            }

            Tensor<R> rc = rcin;
            if (rc.size() == 0) {
                riterT it = right->coeffs.find(key).get();
                MADNESS_ASSERT(it != right->coeffs.end());
                if (it->second.has_coeff())
                    rc = it->second.coeff().full_tensor_copy();
            }

            if (rc.size() && lc.size()) { // Yipee!
                do_binary_op<L,R>(key, lc, std::make_pair(key,rc), op);
                return;
            }

            // Recur down
            coeffs.replace(key, nodeT(coeffT(),true)); // Interior node

            Tensor<L> lss;
            if (lc.size()) {
                Tensor<L> ld(cdata.v2k);
                ld(cdata.s0) = lc(___);
                lss = left->unfilter(ld);
            }

            Tensor<R> rss;
            if (rc.size()) {
                Tensor<R> rd(cdata.v2k);
                rd(cdata.s0) = rc(___);
                rss = right->unfilter(rd);
            }

            for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
                const keyT& child = kit.key();
                Tensor<L> ll;
                Tensor<R> rr;
                if (lc.size())
                    ll = copy(lss(child_patch(child)));
                if (rc.size())
                    rr = copy(rss(child_patch(child)));

                woT::task(coeffs.owner(child), &implT:: template binaryXXa<L,R,opT>, child, left, ll, right, rr, op);
            }
        }

        template <typename Q, typename opT>
        struct coeff_value_adaptor {
            typedef typename opT::resultT resultT;
            const FunctionImpl<Q,NDIM>* impl_func;
            opT op;

            coeff_value_adaptor() {};
            coeff_value_adaptor(const FunctionImpl<Q,NDIM>* impl_func,
                                const opT& op)
                : impl_func(impl_func), op(op) {}

            Tensor<resultT> operator()(const Key<NDIM>& key, const Tensor<Q>& t) const {
                Tensor<Q> invalues = impl_func->coeffs2values(key, t);

                Tensor<resultT> outvalues = op(key, invalues);

                return impl_func->values2coeffs(key, outvalues);
            }

            template <typename Archive>
            void serialize(Archive& ar) {
                ar & impl_func & op;
            }
        };

        /// Out of place unary operation on function impl
        /// The skeleton algorithm should resemble something like
        ///
        /// *this = op(*func)
        ///
        /// @param[in] key the key of the current function node (box)
        /// @param[in] func the function impl on which to be operated
        /// @param[in] op the unary operator
        template <typename Q, typename opT>
        void unaryXXa(const keyT& key,
                      const FunctionImpl<Q,NDIM>* func, const opT& op) {

            //            const Tensor<Q>& fc = func->coeffs.find(key).get()->second.full_tensor_copy();
            const Tensor<Q> fc = func->coeffs.find(key).get()->second.coeff().full_tensor_copy();

            if (fc.size() == 0) {
                // Recur down
                coeffs.replace(key, nodeT(coeffT(),true)); // Interior node
                for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
                    const keyT& child = kit.key();
                    woT::task(coeffs.owner(child), &implT:: template unaryXXa<Q,opT>, child, func, op);
                }
            }
            else {
                tensorT t=op(key,fc);
                coeffs.replace(key, nodeT(coeffT(t,targs),false)); // Leaf node
            }
        }

        /// Multiplies two functions (impl's) together. Delegates to the mulXXa() method
        /// @param[in] left pointer to the left function impl
        /// @param[in] right pointer to the right function impl
        /// @param[in] tol numerical tolerance
        template <typename L, typename R>
        void mulXX(const FunctionImpl<L,NDIM>* left, const FunctionImpl<R,NDIM>* right, double tol, bool fence) {
            if (world.rank() == coeffs.owner(cdata.key0))
                mulXXa(cdata.key0, left, Tensor<L>(), right, Tensor<R>(), tol);
            if (fence)
                world.gop.fence();

            //verify_tree();
        }

        /// Performs binary operation on two functions (impl's). Delegates to the binaryXXa() method
        /// @param[in] left pointer to the left function impl
        /// @param[in] right pointer to the right function impl
        /// @param[in] op the binary operator
        template <typename L, typename R, typename opT>
        void binaryXX(const FunctionImpl<L,NDIM>* left, const FunctionImpl<R,NDIM>* right,
                      const opT& op, bool fence) {
            if (world.rank() == coeffs.owner(cdata.key0))
                binaryXXa(cdata.key0, left, Tensor<L>(), right, Tensor<R>(), op);
            if (fence)
                world.gop.fence();

            //verify_tree();
        }

        /// Performs unary operation on function impl. Delegates to the unaryXXa() method
        /// @param[in] func function impl of the operand
        /// @param[in] op the unary operator
        template <typename Q, typename opT>
        void unaryXX(const FunctionImpl<Q,NDIM>* func, const opT& op, bool fence) {
            if (world.rank() == coeffs.owner(cdata.key0))
                unaryXXa(cdata.key0, func, op);
            if (fence)
                world.gop.fence();

            //verify_tree();
        }

        /// Performs unary operation on function impl. Delegates to the unaryXXa() method
        /// @param[in] func function impl of the operand
        /// @param[in] op the unary operator
        template <typename Q, typename opT>
        void unaryXXvalues(const FunctionImpl<Q,NDIM>* func, const opT& op, bool fence) {
            if (world.rank() == coeffs.owner(cdata.key0))
                unaryXXa(cdata.key0, func, coeff_value_adaptor<Q,opT>(func,op));
            if (fence)
                world.gop.fence();

            //verify_tree();
        }

        /// Multiplies a function (impl) with a vector of functions (impl's). Delegates to the
        /// mulXXveca() method.
        /// @param[in] left pointer to the left function impl
        /// @param[in] vright vector of pointers to the right function impl's
        /// @param[in] tol numerical tolerance
        /// @param[out] vresult vector of pointers to the resulting function impl's
        template <typename L, typename R>
        void mulXXvec(const FunctionImpl<L,NDIM>* left,
                      const std::vector<const FunctionImpl<R,NDIM>*>& vright,
                      const std::vector<FunctionImpl<T,NDIM>*>& vresult,
                      double tol,
                      bool fence) {
            std::vector< Tensor<R> > vr(vright.size());
            if (world.rank() == coeffs.owner(cdata.key0))
                mulXXveca(cdata.key0, left, Tensor<L>(), vright, vr, vresult, tol);
            if (fence)
                world.gop.fence();
        }

        Future<double> get_norm_tree_recursive(const keyT& key) const;

        mutable long box_leaf[1000];
        mutable long box_interior[1000];

        // horrifically non-scalable
        void put_in_box(ProcessID from, long nl, long ni) const;

        /// Prints summary of data distribution
        void print_info() const;

        /// Verify tree is properly constructed ... global synchronization involved

        /// If an inconsistency is detected, prints a message describing the error and
        /// then throws a madness exception.
        ///
        /// This is a reasonably quick and scalable operation that is
        /// useful for debugging and paranoia.
        void verify_tree() const;

        /// Walk up the tree returning pair(key,node) for first node with coefficients

        /// Three possibilities.
        ///
        /// 1) The coeffs are present and returned with the key of the containing node.
        ///
        /// 2) The coeffs are further up the tree ... the request is forwarded up.
        ///
        /// 3) The coeffs are futher down the tree ... an empty tensor is returned.
        ///
        /// !! This routine is crying out for an optimization to
        /// manage the number of messages being sent ... presently
        /// each parent is fetched 2^(n*d) times where n is the no. of
        /// levels between the level of evaluation and the parent.
        /// Alternatively, reimplement multiply as a downward tree
        /// walk and just pass the parent down.  Slightly less
        /// parallelism but much less communication.
        /// @todo Robert .... help!
        void sock_it_to_me(const keyT& key,
                           const RemoteReference< FutureImpl< std::pair<keyT,coeffT> > >& ref) const;
        /// As above, except
        /// 3) The coeffs are constructed from the avg of nodes further down the tree
        /// @todo Robert .... help!
        void sock_it_to_me_too(const keyT& key,
                               const RemoteReference< FutureImpl< std::pair<keyT,coeffT> > >& ref) const;

        /// @todo help!
        void plot_cube_kernel(archive::archive_ptr< Tensor<T> > ptr,
                              const keyT& key,
                              const coordT& plotlo, const coordT& plothi, const std::vector<long>& npt,
                              bool eval_refine) const;


        /// Evaluate a cube/slice of points ... plotlo and plothi are already in simulation coordinates
        /// No communications
        /// @param[in] plotlo the coordinate of the starting point
        /// @param[in] plothi the coordinate of the ending point
        /// @param[in] npt the number of points in each dimension
        Tensor<T> eval_plot_cube(const coordT& plotlo,
                                 const coordT& plothi,
                                 const std::vector<long>& npt,
                                 const bool eval_refine = false) const;


        /// Evaluate function only if point is local returning (true,value); otherwise return (false,0.0)

        /// maxlevel is the maximum depth to search down to --- the max local depth can be
        /// computed with max_local_depth();
        std::pair<bool,T> eval_local_only(const Vector<double,NDIM>& xin, Level maxlevel) ;


        /// Evaluate the function at a point in \em simulation coordinates

        /// Only the invoking process will get the result via the
        /// remote reference to a future.  Active messages may be sent
        /// to other nodes.
        void eval(const Vector<double,NDIM>& xin,
                  const keyT& keyin,
                  const typename Future<T>::remote_refT& ref);

        /// Get the depth of the tree at a point in \em simulation coordinates

        /// Only the invoking process will get the result via the
        /// remote reference to a future.  Active messages may be sent
        /// to other nodes.
        ///
        /// This function is a minimally-modified version of eval()
        void evaldepthpt(const Vector<double,NDIM>& xin,
                         const keyT& keyin,
                         const typename Future<Level>::remote_refT& ref);

        /// Get the rank of leaf box of the tree at a point in \em simulation coordinates

        /// Only the invoking process will get the result via the
        /// remote reference to a future.  Active messages may be sent
        /// to other nodes.
        ///
        /// This function is a minimally-modified version of eval()
        void evalR(const Vector<double,NDIM>& xin,
                   const keyT& keyin,
                   const typename Future<long>::remote_refT& ref);


        /// Computes norm of low/high-order polyn. coeffs for autorefinement test

        /// t is a k^d tensor.  In order to screen the autorefinement
        /// during multiplication compute the norms of
        /// ... lo ... the block of t for all polynomials of order < k/2
        /// ... hi ... the block of t for all polynomials of order >= k/2
        ///
        /// k=5   0,1,2,3,4     --> 0,1,2 ... 3,4
        /// k=6   0,1,2,3,4,5   --> 0,1,2 ... 3,4,5
        ///
        /// k=number of wavelets, so k=5 means max order is 4, so max exactly
        /// representable squarable polynomial is of order 2.
        void tnorm(const tensorT& t, double* lo, double* hi) const;

        // This invoked if node has not been autorefined
        void do_square_inplace(const keyT& key);

        // This invoked if node has been autorefined
        void do_square_inplace2(const keyT& parent, const keyT& child, const tensorT& parent_coeff);

        /// Always returns false (for when autorefine is not wanted)
        bool noautorefine(const keyT& key, const tensorT& t) const;

        /// Returns true if this block of coeffs needs autorefining
        bool autorefine_square_test(const keyT& key, const nodeT& t) const;

        /// Pointwise squaring of function with optional global fence

        /// If not autorefining, local computation only if not fencing.
        /// If autorefining, may result in asynchronous communication.
        void square_inplace(bool fence);
        void abs_inplace(bool fence);
        void abs_square_inplace(bool fence);

        /// is this the same as trickle_down() ?
        void sum_down_spawn(const keyT& key, const coeffT& s);

        /// After 1d push operator must sum coeffs down the tree to restore correct scaling function coefficients
        void sum_down(bool fence);

        /// perform this multiplication: h(1,2) = f(1,2) * g(1)
        template<size_t LDIM>
        struct multiply_op {

            static bool randomize() {return false;}
            typedef CoeffTracker<T,NDIM> ctT;
            typedef CoeffTracker<T,LDIM> ctL;
            typedef multiply_op<LDIM> this_type;

            implT* h;     ///< the result function h(1,2) = f(1,2) * g(1)
            ctT f;
            ctL g;
            int particle;       ///< if g is g(1) or g(2)

            multiply_op() : particle(1) {}

            multiply_op(implT* h, const ctT& f, const ctL& g, const int particle)
                : h(h), f(f), g(g), particle(particle) {};

            /// return true if this will be a leaf node

            /// use generalization of tnorm for a GenTensor
            bool screen(const coeffT& fcoeff, const coeffT& gcoeff, const keyT& key) const {
                double glo=0.0, ghi=0.0, flo=0.0, fhi=0.0;
                MADNESS_ASSERT(gcoeff.tensor_type()==TT_FULL);
                g.get_impl()->tnorm(gcoeff.full_tensor(), &glo, &ghi);

                // this assumes intimate knowledge of how a GenTensor is organized!
                MADNESS_ASSERT(fcoeff.tensor_type()==TT_2D);
                const long rank=fcoeff.rank();
                const long maxk=fcoeff.dim(0);
                tensorT vec=fcoeff.config().ref_vector(particle-1).reshape(rank,maxk,maxk,maxk);
                for (long i=0; i<rank; ++i) {
                    double lo,hi;
                    tensorT c=vec(Slice(i,i),_,_,_).reshape(maxk,maxk,maxk);
                    g.get_impl()->tnorm(c, &lo, &hi);        // note we use g instead of h, since g is 3D
                    flo+=lo*fcoeff.config().weights(i);
                    fhi+=hi*fcoeff.config().weights(i);
                }
                double total_hi=glo*fhi + ghi*flo + fhi*ghi;
                return (total_hi<h->truncate_tol(h->get_thresh(),key));

            }

            /// apply this on a FunctionNode of f and g of Key key

            /// @param[in]  key key for FunctionNode in f and g, (g: broken into particles)
            /// @return <this node is a leaf, coefficients of this node>
            std::pair<bool,coeffT> operator()(const Key<NDIM>& key) const {

                //                bool is_leaf=(not fdatum.second.has_children());
                //                if (not is_leaf) return std::pair<bool,coeffT> (is_leaf,coeffT());

                // break key into particles (these are the child keys, with f/gdatum come the parent keys)
                Key<LDIM> key1,key2;
                key.break_apart(key1,key2);
                const Key<LDIM> gkey= (particle==1) ? key1 : key2;

                // get coefficients of the actual FunctionNode
                coeffT coeff1=f.get_impl()->parent_to_child(f.coeff(),f.key(),key);
                coeff1.normalize();
                const coeffT coeff2=g.get_impl()->parent_to_child(g.coeff(),g.key(),gkey);

                coeffT hcoeff;

                bool is_leaf=screen(coeff1,coeff2,key);
                if (key.level()<2) is_leaf=false;

                if (is_leaf) {

                    // convert coefficients to values
                    coeffT hvalues=f.get_impl()->coeffs2values(key,coeff1);
                    coeffT gvalues=g.get_impl()->coeffs2values(gkey,coeff2);

                    // multiply one of the two vectors of f with g
                    // note shallow copy of Tensor<T>
                    MADNESS_ASSERT(hvalues.tensor_type()==TT_2D);
                    MADNESS_ASSERT(gvalues.tensor_type()==TT_FULL);
                    const long rank=hvalues.rank();
                    const long maxk=h->get_k();
                    MADNESS_ASSERT(maxk==coeff1.dim(0));
                    tensorT vec=hvalues.config().ref_vector(particle-1).reshape(rank,maxk,maxk,maxk);
                    for (long i=0; i<rank; ++i) {
                        tensorT c=vec(Slice(i,i),_,_,_);
                        c.emul(gvalues.full_tensor());
                    }

                    // convert values back to coefficients
                    hcoeff=h->values2coeffs(key,hvalues);
                }

                return std::pair<bool,coeffT> (is_leaf,hcoeff);
            }

            this_type make_child(const keyT& child) const {

                // break key into particles
                Key<LDIM> key1, key2;
                child.break_apart(key1,key2);
                const Key<LDIM> gkey= (particle==1) ? key1 : key2;

                return this_type(h,f.make_child(child),g.make_child(gkey),particle);
            }

            Future<this_type> activate() const {
            	Future<ctT> f1=f.activate();
            	Future<ctL> g1=g.activate();
                return h->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                          &this_type::forward_ctor),h,f1,g1,particle);
            }

            this_type forward_ctor(implT* h1, const ctT& f1, const ctL& g1, const int particle) {
            	return this_type(h1,f1,g1,particle);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                ar & h & f & g;
            }
        };


        /// add two functions f and g: result=alpha * f  +  beta * g
        struct add_op {

            typedef CoeffTracker<T,NDIM> ctT;
            typedef add_op this_type;

            bool randomize() const {return false;}

            /// tracking coeffs of first and second addend
            ctT f,g;
            /// prefactor for f, g
            double alpha, beta;

            add_op() {};
            add_op(const ctT& f, const ctT& g, const double alpha, const double beta)
                : f(f), g(g), alpha(alpha), beta(beta){}

            /// if we are at the bottom of the trees, return the sum of the coeffs
            std::pair<bool,coeffT> operator()(const keyT& key) const {

                bool is_leaf=(f.is_leaf() and g.is_leaf());
                if (not is_leaf) return std::pair<bool,coeffT> (is_leaf,coeffT());

                coeffT fcoeff=f.get_impl()->parent_to_child(f.coeff(),f.key(),key);
                coeffT gcoeff=g.get_impl()->parent_to_child(g.coeff(),g.key(),key);
                coeffT hcoeff=copy(fcoeff);
                hcoeff.gaxpy(alpha,gcoeff,beta);
                hcoeff.reduce_rank(f.get_impl()->get_tensor_args().thresh);
                return std::pair<bool,coeffT> (is_leaf,hcoeff);
            }

            this_type make_child(const keyT& child) const {
                return this_type(f.make_child(child),g.make_child(child),alpha,beta);
            }

            /// retrieve the coefficients (parent coeffs might be remote)
            Future<this_type> activate() const {
            	Future<ctT> f1=f.activate();
            	Future<ctT> g1=g.activate();
                return f.get_impl()->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                                     &this_type::forward_ctor),f1,g1,alpha,beta);
            }

            /// taskq-compatible ctor
            this_type forward_ctor(const ctT& f1, const ctT& g1, const double alpha, const double beta) {
            	return this_type(f1,g1,alpha,beta);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                ar & f & g & alpha & beta;
            }

        };

        /// multiply f (a pair function of NDIM) with an orbital g (LDIM=NDIM/2)

        /// as in (with h(1,2)=*this) : h(1,2) = g(1) * f(1,2)
        /// use tnorm as a measure to determine if f (=*this) must be refined
        /// @param[in]  f           the NDIM function f=f(1,2)
        /// @param[in]  g           the LDIM function g(1) (or g(2))
        /// @param[in]  particle    1 or 2, as in g(1) or g(2)
        template<size_t LDIM>
        void multiply(const implT* f, const FunctionImpl<T,LDIM>* g, const int particle) {

            keyT key0=f->cdata.key0;

            if (world.rank() == coeffs.owner(key0)) {

                CoeffTracker<T,NDIM> ff(f);
                CoeffTracker<T,LDIM> gg(g);

                typedef multiply_op<LDIM> coeff_opT;
                coeff_opT coeff_op(this,ff,gg,particle);

                typedef insert_op<T,NDIM> apply_opT;
                apply_opT apply_op(this);

                ProcessID p= coeffs.owner(key0);
                woT::task(p, &implT:: template forward_traverse<coeff_opT,apply_opT>, coeff_op, apply_op, key0);
            }

            this->compressed=false;
        }

        /// Hartree product of two LDIM functions to yield a NDIM = 2*LDIM function
        template<size_t LDIM, typename leaf_opT>
        struct hartree_op {
            bool randomize() const {return false;}

            typedef hartree_op<LDIM,leaf_opT> this_type;
            typedef CoeffTracker<T,LDIM> ctL;

            implT* result; 	    ///< where to construct the pair function
            ctL p1, p2;			///< tracking coeffs of the two lo-dim functions
            leaf_opT leaf_op;   ///< determine if a given node will be a leaf node

            // ctor
            hartree_op() {}
            hartree_op(implT* result, const ctL& p11, const ctL& p22, const leaf_opT& leaf_op)
                : result(result), p1(p11), p2(p22), leaf_op(leaf_op) {
                MADNESS_ASSERT(LDIM+LDIM==NDIM);
            }

            std::pair<bool,coeffT> operator()(const Key<NDIM>& key) const {

                // break key into particles (these are the child keys, with datum1/2 come the parent keys)
                Key<LDIM> key1,key2;
                key.break_apart(key1,key2);

                // this returns the appropriate NS coeffs for key1 and key2 resp.
            	const coeffT fcoeff=p1.coeff(key1);
                const coeffT gcoeff=p2.coeff(key2);
                bool is_leaf=leaf_op(key,fcoeff.full_tensor(),gcoeff.full_tensor());
                if (not is_leaf) return std::pair<bool,coeffT> (is_leaf,coeffT());

                // extract the sum coeffs from the NS coeffs
                const coeffT s1=fcoeff(p1.get_impl()->cdata.s0);
                const coeffT s2=gcoeff(p2.get_impl()->cdata.s0);

                // new coeffs are simply the hartree/kronecker/outer product --
                coeffT coeff=outer(s1,s2);
                change_tensor_type(coeff,result->get_tensor_args());
                // no post-determination
                //                is_leaf=leaf_op(key,coeff);
                return std::pair<bool,coeffT>(is_leaf,coeff);
            }

            this_type make_child(const keyT& child) const {

                // break key into particles
                Key<LDIM> key1, key2;
                child.break_apart(key1,key2);

                return this_type(result,p1.make_child(key1),p2.make_child(key2),leaf_op);
            }

            Future<this_type> activate() const {
            	Future<ctL> p11=p1.activate();
            	Future<ctL> p22=p2.activate();
                return result->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                               &this_type::forward_ctor),result,p11,p22,leaf_op);
            }

            this_type forward_ctor(implT* result1, const ctL& p11, const ctL& p22, const leaf_opT& leaf_op) {
            	return this_type(result1,p11,p22,leaf_op);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                ar & result & p1 & p2 & leaf_op;
            }
        };

        /// traverse a non-existing tree

        /// part II: activate coeff_op, i.e. retrieve all the necessary remote boxes (communication)
        /// @param[in]	coeff_op	operator making the coefficients that needs activation
        /// @param[in]	apply_op	just passing thru
        /// @param[in]	key			the key we are working on
        template<typename coeff_opT, typename apply_opT>
        void forward_traverse(const coeff_opT& coeff_op, const apply_opT& apply_op, const keyT& key) const {
            MADNESS_ASSERT(coeffs.is_local(key));
            Future<coeff_opT> active_coeff=coeff_op.activate();
            woT::task(world.rank(), &implT:: template traverse_tree<coeff_opT,apply_opT>, active_coeff, apply_op, key);
        }


        /// traverse a non-existing tree

        /// part I: make the coefficients, process them and continue the recursion if necessary
        /// @param[in]	coeff_op	operator making the coefficients and determining them being leaves
        /// @param[in]	apply_op	operator processing the coefficients
        /// @param[in]	key			the key we are currently working on
        template<typename coeff_opT, typename apply_opT>
        void traverse_tree(const coeff_opT& coeff_op, const apply_opT& apply_op, const keyT& key) const {
            MADNESS_ASSERT(coeffs.is_local(key));

            typedef typename std::pair<bool,coeffT> argT;
            const argT arg=coeff_op(key);
            apply_op.operator()(key,arg.second,arg.first);

            const bool has_children=(not arg.first);
            if (has_children) {
                for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
                    const keyT& child=kit.key();
                    coeff_opT child_op=coeff_op.make_child(child);
                    // spawn activation where child is local
                    ProcessID p=coeffs.owner(child);

                    void (implT::*ft)(const coeff_opT&, const apply_opT&, const keyT&) const = &implT::forward_traverse<coeff_opT,apply_opT>;

                    woT::task(p, ft, child_op, apply_op, child);
                }
            }
        }


        /// given two functions of LDIM, perform the Hartree/Kronecker/outer product

        /// |Phi(1,2)> = |phi(1)> x |phi(2)>
        /// @param[in]	p1	FunctionImpl of particle 1
        /// @param[in]	p2	FunctionImpl of particle 2
        /// @param[in]	leaf_op	operator determining of a given box will be a leaf
        template<std::size_t LDIM, typename leaf_opT>
        void hartree_product(const FunctionImpl<T,LDIM>* p1, const FunctionImpl<T,LDIM>* p2,
                             const leaf_opT& leaf_op, bool fence) {
            MADNESS_ASSERT(p1->is_nonstandard());
            MADNESS_ASSERT(p2->is_nonstandard());

            const keyT key0=cdata.key0;

            if (world.rank() == this->get_coeffs().owner(key0)) {

                // prepare the CoeffTracker
                CoeffTracker<T,LDIM> iap1(p1);
                CoeffTracker<T,LDIM> iap2(p2);

                // the operator making the coefficients
                typedef hartree_op<LDIM,leaf_opT> coeff_opT;
                coeff_opT coeff_op(this,iap1,iap2,leaf_op);

                // this operator simply inserts the coeffs into this' tree
                typedef insert_op<T,NDIM> apply_opT;
                apply_opT apply_op(this);

                woT::task(world.rank(), &implT:: template forward_traverse<coeff_opT,apply_opT>,
                          coeff_op, apply_op, cdata.key0);

            }

            this->compressed=false;
            if (fence) world.gop.fence();
        }


        template <typename opT, typename R>
        void
        apply_1d_realspace_push_op(const archive::archive_ptr<const opT>& pop, int axis, const keyT& key, const Tensor<R>& c) {
            const opT* op = pop.ptr;
            const Level n = key.level();
            const double cnorm = c.normf();
            const double tol = truncate_tol(thresh, key)*0.1; // ??? why this value????

            Vector<Translation,NDIM> lnew(key.translation());
            const Translation lold = lnew[axis];
            const Translation maxs = Translation(1)<<n;

            int nsmall = 0; // Counts neglected blocks to terminate s loop
            for (Translation s=0; s<maxs; ++s) {
                int maxdir = s ? 1 : -1;
                for (int direction=-1; direction<=maxdir; direction+=2) {
                    lnew[axis] = lold + direction*s;
                    if (lnew[axis] >= 0 && lnew[axis] < maxs) { // NON-ZERO BOUNDARY CONDITIONS IGNORED HERE !!!!!!!!!!!!!!!!!!!!
                        const Tensor<typename opT::opT>& r = op->rnlij(n, s*direction, true);
                        double Rnorm = r.normf();

                        if (Rnorm == 0.0) {
                            return; // Hard zero means finished!
                        }

                        if (s <= 1  ||  r.normf()*cnorm > tol) { // Always do kernel and neighbor
                            nsmall = 0;
                            tensorT result = transform_dir(c,r,axis);

                            if (result.normf() > tol*0.3) {
                                Key<NDIM> dest(n,lnew);
                                coeffs.task(dest, &nodeT::accumulate2, result, coeffs, dest, TaskAttributes::hipri());
                            }
                        }
                        else {
                            ++nsmall;
                        }
                    }
                    else {
                        ++nsmall;
                    }
                }
                if (nsmall >= 4) {
                    // If have two negligble blocks in
                    // succession in each direction interpret
                    // this as the operator being zero beyond
                    break;
                }
            }
        }

        template <typename opT, typename R>
        void
        apply_1d_realspace_push(const opT& op, const FunctionImpl<R,NDIM>* f, int axis, bool fence) {
            MADNESS_ASSERT(!f->is_compressed());

            typedef typename FunctionImpl<R,NDIM>::dcT::const_iterator fiterT;
            typedef FunctionNode<R,NDIM> fnodeT;
            fiterT end = f->coeffs.end();
            ProcessID me = world.rank();
            for (fiterT it=f->coeffs.begin(); it!=end; ++it) {
                const fnodeT& node = it->second;
                if (node.has_coeff()) {
                    const keyT& key = it->first;
                    const Tensor<R>& c = node.coeff().full_tensor_copy();
                    woT::task(me, &implT:: template apply_1d_realspace_push_op<opT,R>,
                              archive::archive_ptr<const opT>(&op), axis, key, c);
                }
            }
            if (fence) world.gop.fence();
        }

        void forward_do_diff1(const DerivativeBase<T,NDIM>* D,
                              const implT* f,
                              const keyT& key,
                              const std::pair<keyT,coeffT>& left,
                              const std::pair<keyT,coeffT>& center,
                              const std::pair<keyT,coeffT>& right);

        void do_diff1(const DerivativeBase<T,NDIM>* D,
                      const implT* f,
                      const keyT& key,
                      const std::pair<keyT,coeffT>& left,
                      const std::pair<keyT,coeffT>& center,
                      const std::pair<keyT,coeffT>& right);

        // Called by result function to differentiate f
        void diff(const DerivativeBase<T,NDIM>* D, const implT* f, bool fence);

        /// Returns key of general neighbor enforcing BC

        /// Out of volume keys are mapped to enforce the BC as follows.
        ///   * Periodic BC map back into the volume and return the correct key
        ///   * Zero BC - returns invalid() to indicate out of volume
        keyT neighbor(const keyT& key, const keyT& disp, const std::vector<bool>& is_periodic) const;

        /// find_me. Called by diff_bdry to get coefficients of boundary function
        Future< std::pair<keyT,coeffT> > find_me(const keyT& key) const;

        /// return the a std::pair<key, node>, which MUST exist
        std::pair<Key<NDIM>,ShallowNode<T,NDIM> > find_datum(keyT key) const;

        /// multiply the ket with a one-electron potential rr(1,2)= f(1,2)*g(1)

        /// @param[in]	val_ket	function values of f(1,2)
        /// @param[in]	val_pot	function values of g(1)
        /// @param[in]	particle	if 0 then g(1), if 1 then g(2)
        /// @return		the resulting function values
        coeffT multiply(const coeffT& val_ket, const coeffT& val_pot, int particle) const;


        /// given several coefficient tensors, assemble a result tensor

        /// the result looks like: 	(v(1,2) + v(1) + v(2)) |ket(1,2)>
        /// or 						(v(1,2) + v(1) + v(2)) |p(1) p(2)>
        /// i.e. coefficients for the ket and coefficients for the two particles are
        /// mutually exclusive. All potential terms are optional, just pass in empty coeffs.
        /// @param[in]	key			the key of the FunctionNode to which these coeffs belong
        /// @param[in]	coeff_ket	coefficients of the ket
        /// @param[in]	vpotential1	function values of the potential for particle 1
        /// @param[in]	vpotential2	function values of the potential for particle 2
        /// @param[in]	veri		function values for the 2-particle potential
        coeffT assemble_coefficients(const keyT& key, const coeffT& coeff_ket,
                                     const coeffT& vpotential1, const coeffT& vpotential2,
                                     const tensorT& veri) const;

        /// given a ket and the 1- and 2-electron potentials, construct the function V phi

        /// small memory footstep version of Vphi_op: use the NS form to have information
        /// about parent and children to determine if a box is a leaf. This will require
        /// compression of the constituent functions, which will lead to more memory usage
        /// there, but will avoid oversampling of the result function.
        template<typename opT, size_t LDIM>
        struct Vphi_op_NS {

            bool randomize() const {return true;}

            typedef Vphi_op_NS<opT,LDIM> this_type;
            typedef CoeffTracker<T,NDIM> ctT;
            typedef CoeffTracker<T,LDIM> ctL;

            implT* result;  		///< where to construct Vphi, no need to track parents
            opT leaf_op;    	    ///< deciding if a given FunctionNode will be a leaf node
            ctT iaket;				///< the ket of a pair function (exclusive with p1, p2)
            ctL iap1, iap2;			///< the particles 1 and 2 (exclusive with ket)
            ctL iav1, iav2;			///< potentials for particles 1 and 2
            const implT* eri;		///< 2-particle potential, must be on-demand

            // ctor
            Vphi_op_NS() {}
            Vphi_op_NS(implT* result, const opT& leaf_op, const ctT& iaket,
                       const ctL& iap1, const ctL& iap2, const ctL& iav1, const ctL& iav2,
                       const implT* eri)
                : result(result), leaf_op(leaf_op), iaket(iaket), iap1(iap1), iap2(iap2)
                , iav1(iav1), iav2(iav2), eri(eri) {

            	// 2-particle potential must be on-demand
            	if (eri) MADNESS_ASSERT(eri->is_on_demand());
            }

            /// make and insert the coefficients into result's tree
            std::pair<bool,coeffT> operator()(const Key<NDIM>& key) const {

            	// use an error measure to determine if a box is a leaf
            	const bool do_error_measure=leaf_op.do_error_leaf_op();

                // pre-determination: insert empty node and continue recursion on all children
                bool is_leaf=leaf_op(key);
                if (not is_leaf) {
                    result->get_coeffs().replace(key,nodeT(coeffT(),not is_leaf));
                    return continue_recursion(std::vector<bool>(1<<NDIM,false),tensorT(),key);
                }

            	// make the sum coeffs for this box (the parent box)
                coeffT sum_coeff=make_sum_coeffs(key);

                // post-determination: insert s-coeffs and stop recursion
                is_leaf=leaf_op(key,sum_coeff);
                if (is_leaf) {
                    result->get_coeffs().replace(key,nodeT(sum_coeff,not is_leaf));
                    return std::pair<bool,coeffT> (true,coeffT());
                }

                if (do_error_measure) {
                    // make the sum coeffs for all children, accumulated on s_coeffs
                    tensorT s_coeffs=make_childrens_sum_coeffs(key);

                    // now check if sum coeffs are leaves according to the d coefficient norm
                    tensorT d=result->filter(s_coeffs);
                    sum_coeff=coeffT(copy(d(result->get_cdata().s0)),result->get_tensor_args());

                    d(result->get_cdata().s0)=0.0;
                    double error=d.normf();
                    is_leaf=(error<result->truncate_tol(result->get_thresh(),key));

                    // if this is a leaf insert sum coeffs and stop recursion
                    if (is_leaf) {
                        result->get_coeffs().replace(key,nodeT(sum_coeff,not is_leaf));
                        result->large++;
                        //						print("is leaf acc to d coeffs",key);
                        return std::pair<bool,coeffT> (true,coeffT());
                    } else {

                        // determine for each child if it is a leaf by comparing to the sum coeffs
                        std::vector<bool> child_is_leaf(1<<NDIM);
                        std::size_t i=0;
                        for (KeyChildIterator<NDIM> kit(key); kit; ++kit, ++i) {
                            // post-determination for this child's coeffs
                            coeffT child_coeff=coeffT(copy(s_coeffs(result->child_patch(kit.key()))),
                                                      result->get_tensor_args());
                            child_is_leaf[i]=leaf_op(kit.key(),child_coeff);

                            // compare to parent sum coeffs
                            error_leaf_op<T,NDIM> elop(result);
                            child_is_leaf[i]=child_is_leaf[i] or elop(kit.key(),child_coeff,sum_coeff);
                            if (child_is_leaf[i]) result->small++;
                            //							else result->large++;
                        }
                        // insert empty sum coeffs for this box and
                        // send off the tasks for those children that might not be leaves;
                        result->get_coeffs().replace(key,nodeT(coeffT(),not is_leaf));
                        if (not is_leaf) return continue_recursion(child_is_leaf,s_coeffs,key);
                    }
                } else {
                    return continue_recursion(std::vector<bool>(1<<NDIM,false),tensorT(),key);
                }
                MADNESS_EXCEPTION("you should not be here",1);
                return std::pair<bool,coeffT> (true,coeffT());
            }


            /// loop over all children and either insert their sum coeffs or continue the recursion

            /// @param[in]	child_is_leaf	for each child: is it a leaf?
            /// @param[in]	coeffs	coefficient tensor with 2^N sum coeffs (=unfiltered NS coeffs)
            /// @param[in]	key		the key for the NS coeffs (=parent key of the children)
            /// @return		to avoid recursion outside this return: std::pair<is_leaf,coeff> = true,coeffT()
            std::pair<bool,coeffT> continue_recursion(const std::vector<bool> child_is_leaf,
                                                      const tensorT& coeffs, const keyT& key) const {
                std::size_t i=0;
                for (KeyChildIterator<NDIM> kit(key); kit; ++kit, ++i) {
                    keyT child=kit.key();
                    bool is_leaf=child_is_leaf[i];

                    if (is_leaf) {
                        // insert the sum coeffs
                        insert_op<T,NDIM> iop(result);
                        iop(child,coeffT(copy(coeffs(result->child_patch(child))),result->get_tensor_args()),is_leaf);
                    } else {
                        this_type child_op=this->make_child(child);
                        noop<T,NDIM> no;
                        // spawn activation where child is local
                        ProcessID p=result->get_coeffs().owner(child);

                        void (implT::*ft)(const Vphi_op_NS<opT,LDIM>&, const noop<T,NDIM>&, const keyT&) const = &implT:: template forward_traverse< Vphi_op_NS<opT,LDIM>, noop<T,NDIM> >;
                        result->task(p, ft, child_op, no, child);
                    }
                }
                // return e sum coeffs; also return always is_leaf=true:
                // the recursion is continued within this struct, not outside in traverse_tree!
                return std::pair<bool,coeffT> (true,coeffT());
            }

            /// return the values of the 2-particle potential

            /// @param[in]	key		the key for which the values are requested
            /// @return		val_eri	the values in full tensor form
            tensorT eri_values(const keyT& key) const {
                tensorT val_eri;
                if (eri and eri->is_on_demand()) {
                    if (eri->get_functor()->provides_coeff()) {
                        val_eri=eri->coeffs2values(
                                                   key,eri->get_functor()->coeff(key).full_tensor());
                    } else {
                        val_eri=tensorT(eri->cdata.vk);
                        eri->fcube(key,*(eri->get_functor()),eri->cdata.quad_x,val_eri);
                    }
                }
                return val_eri;
            }

            /// make the sum coeffs for key
            coeffT make_sum_coeffs(const keyT& key) const {
            	// break key into particles
                Key<LDIM> key1, key2;
                key.break_apart(key1,key2);

            	// use the ket coeffs if they are there, or make them by hartree product
            	const coeffT coeff_ket_NS = (iaket.get_impl())
                    ? iaket.coeff(key)
                    : outer(iap1.coeff(key1),iap2.coeff(key2));

            	coeffT val_potential1, val_potential2;
            	if (iav1.get_impl()) {
                    coeffT tmp=iav1.coeff(key1)(iav1.get_impl()->get_cdata().s0);
                    val_potential1=iav1.get_impl()->coeffs2values(key1,tmp);
                }
            	if (iav2.get_impl()) {
                    coeffT tmp=iav2.coeff(key2)(iav2.get_impl()->get_cdata().s0);
                    val_potential2=iav2.get_impl()->coeffs2values(key2,tmp);
                }
            	coeffT tmp=coeff_ket_NS(result->get_cdata().s0);

                return result->assemble_coefficients(key,tmp,
                                                     val_potential1,val_potential2,eri_values(key));
            }

            /// make the sum coeffs for all children of key
            tensorT make_childrens_sum_coeffs(const keyT& key) const {
            	// break key into particles
                Key<LDIM> key1, key2;
                key.break_apart(key1,key2);

            	// use the ket coeffs if they are there, or make them by hartree product
            	const coeffT coeff_ket_NS = (iaket.get_impl())
                    ? iaket.coeff(key)
                    : outer(iap1.coeff(key1),iap2.coeff(key2));

                // get the sum coeffs for all children
            	const coeffT coeff_ket_unfiltered=result->unfilter(coeff_ket_NS);
                const coeffT coeff_v1_unfiltered=(iav1.get_impl())
                    ? iav1.get_impl()->unfilter(iav1.coeff(key1)) : coeffT();
                const coeffT coeff_v2_unfiltered=(iav2.get_impl())
                    ? iav2.get_impl()->unfilter(iav2.coeff(key2)) : coeffT();

                // result sum coeffs of all children
                tensorT s_coeffs(result->cdata.v2k);
                for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {

                    // break key into particles
                    Key<LDIM> child1, child2;
                    kit.key().break_apart(child1,child2);

                    // make the values of the potentials for each child
                    // transform the child patch of s coeffs to values
                    coeffT val_potential1, val_potential2;
                    if (iav1.get_impl()) {
                        coeffT tmp=coeff_v1_unfiltered(iav1.get_impl()->child_patch(child1));
                        val_potential1=iav1.get_impl()->coeffs2values(child1,tmp);
                    }
                    if (iav2.get_impl()) {
                        coeffT tmp=coeff_v2_unfiltered(iav2.get_impl()->child_patch(child2));
                        val_potential2=iav2.get_impl()->coeffs2values(child2,tmp);
                    }
                    const coeffT coeff_ket=coeff_ket_unfiltered(result->child_patch(kit.key()));

                    // the sum coeffs for this child
                    const tensorT val_eri=eri_values(kit.key());
                    const coeffT coeff_result=result->assemble_coefficients(kit.key(),coeff_ket,
                                                                            val_potential1,val_potential2,val_eri);

                    // accumulate the sum coeffs of the children here
                    s_coeffs(result->child_patch(kit.key()))+=coeff_result.full_tensor_copy();
                }
                return s_coeffs;

            }

            this_type make_child(const keyT& child) const {

                // break key into particles
                Key<LDIM> key1, key2;
                child.break_apart(key1,key2);

                return this_type(result,leaf_op,iaket.make_child(child),
                                 iap1.make_child(key1),iap2.make_child(key2),
                                 iav1.make_child(key1),iav2.make_child(key2),eri);
            }

            Future<this_type> activate() const {
            	Future<ctT> iaket1=iaket.activate();
            	Future<ctL> iap11=iap1.activate();
            	Future<ctL> iap21=iap2.activate();
            	Future<ctL> iav11=iav1.activate();
            	Future<ctL> iav21=iav2.activate();
                return result->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                               &this_type::forward_ctor),result,leaf_op,
                                               iaket1,iap11,iap21,iav11,iav21,eri);
            }

            this_type forward_ctor(implT* result1, const opT& leaf_op, const ctT& iaket1,
                                   const ctL& iap11, const ctL& iap21, const ctL& iav11, const ctL& iav21,
                                   const implT* eri1) {
            	return this_type(result1,leaf_op,iaket1,iap11,iap21,iav11,iav21,eri1);
            }

            /// serialize this (needed for use in recursive_op)
            template <typename Archive> void serialize(const Archive& ar) {
                ar & iaket & eri & result & leaf_op & iap1 & iap2 & iav1 & iav2;
            }
        };

        /// assemble the function V*phi using V and phi given from the functor

        /// this function must have been constructed using the CompositeFunctorInterface.
        /// The interface provides one- and two-electron potentials, and the ket, which are
        /// assembled to give V*phi.
        /// @param[in]  leaf_op  operator to decide if a given node is a leaf node
        /// @param[in]  fence   global fence
        template<typename opT>
        void make_Vphi(const opT& leaf_op, const bool fence=true) {

            const size_t LDIM=3;

            // keep the functor available, but remove it from the result
            // result will return false upon is_on_demand(), which is necessary for the
            // CoeffTracker to track the parent coeffs correctly for error_leaf_op
            std::shared_ptr< FunctionFunctorInterface<T,NDIM> > func2(this->get_functor());
            this->unset_functor();

            CompositeFunctorInterface<T,NDIM,LDIM>* func=
                dynamic_cast<CompositeFunctorInterface<T,NDIM,LDIM>* >(&(*func2));
            MADNESS_ASSERT(func);

            coeffs.clear();
            const keyT& key0=cdata.key0;


            FunctionImpl<T,NDIM>* ket=func->impl_ket.get();
            const FunctionImpl<T,NDIM>* eri=func->impl_eri.get();
            FunctionImpl<T,LDIM>* v1=func->impl_m1.get();
            FunctionImpl<T,LDIM>* v2=func->impl_m2.get();
            FunctionImpl<T,LDIM>* p1=func->impl_p1.get();
            FunctionImpl<T,LDIM>* p2=func->impl_p2.get();

            if (ket) ket->undo_redundant(false);
            if (v1) v1->undo_redundant(false);
            if (v2) v2->undo_redundant(false);
            if (p1) p1->undo_redundant(false);
            if (p2) p2->undo_redundant(false);	// fence here
            world.gop.fence();

            if (ket) ket->compress(true,true,false,false);
            if (v1) v1->compress(true,true,false,false);
            if (v2) v2->compress(true,true,false,false);
            if (p1) p1->compress(true,true,false,false);
            if (p2) p2->compress(true,true,false,false);	// fence here
            world.gop.fence();
            small=0;
            large=0;

            if (world.rank() == coeffs.owner(key0)) {

                // insert an empty internal node for comparison
                this->coeffs.replace(key0,nodeT(coeffT(),true));

                // prepare the CoeffTracker
                CoeffTracker<T,NDIM> iaket(ket);
                CoeffTracker<T,LDIM> iap1(p1);
                CoeffTracker<T,LDIM> iap2(p2);
                CoeffTracker<T,LDIM> iav1(v1);
                CoeffTracker<T,LDIM> iav2(v2);

                // the operator making the coefficients
                typedef Vphi_op_NS<opT,LDIM> coeff_opT;
                coeff_opT coeff_op(this,leaf_op,iaket,iap1,iap2,iav1,iav2,eri);

                // this operator simply inserts the coeffs into this' tree
                typedef noop<T,NDIM> apply_opT;
                apply_opT apply_op;

                woT::task(world.rank(), &implT:: template forward_traverse<coeff_opT,apply_opT>,
                          coeff_op, apply_op, cdata.key0);
            }

            world.gop.fence();

            // remove internal coefficients
            this->redundant=true;
            this->undo_redundant(false);

            // set right state
            this->compressed=false;
            this->on_demand=false;
            this->redundant=false;
            this->nonstandard=false;
            if (fence) world.gop.fence();

        }


        /// Permute the dimensions of f according to map, result on this
        void mapdim(const implT& f, const std::vector<long>& map, bool fence);


        /// take the average of two functions, similar to: this=0.5*(this+rhs)

        /// works in either basis and also in nonstandard form
        void average(const implT& rhs);

        /// change the tensor type of the coefficients in the FunctionNode

        /// @param[in]  targs   target tensor arguments (threshold and full/low rank)
        void change_tensor_type1(const TensorArgs& targs, bool fence);

        /// reduce the rank of the coefficients tensors

        /// @param[in]  targs   target tensor arguments (threshold and full/low rank)
        void reduce_rank(const TensorArgs& targs, bool fence);

        T eval_cube(Level n, coordT& x, const tensorT& c) const;

        /// Transform sum coefficients at level n to sums+differences at level n-1

        /// Given scaling function coefficients s[n][l][i] and s[n][l+1][i]
        /// return the scaling function and wavelet coefficients at the
        /// coarser level.  I.e., decompose Vn using Vn = Vn-1 + Wn-1.
        /// \code
        /// s_i = sum(j) h0_ij*s0_j + h1_ij*s1_j
        /// d_i = sum(j) g0_ij*s0_j + g1_ij*s1_j
        //  \endcode
        /// Returns a new tensor and has no side effects.  Works for any
        /// number of dimensions.
        ///
        /// No communication involved.
        tensorT filter(const tensorT& s) const;

        coeffT filter(const coeffT& s) const;

        ///  Transform sums+differences at level n to sum coefficients at level n+1

        ///  Given scaling function and wavelet coefficients (s and d)
        ///  returns the scaling function coefficients at the next finer
        ///  level.  I.e., reconstruct Vn using Vn = Vn-1 + Wn-1.
        ///  \code
        ///  s0 = sum(j) h0_ji*s_j + g0_ji*d_j
        ///  s1 = sum(j) h1_ji*s_j + g1_ji*d_j
        ///  \endcode
        ///  Returns a new tensor and has no side effects
        ///
        ///  If (sonly) ... then ss is only the scaling function coeff (and
        ///  assume the d are zero).  Works for any number of dimensions.
        ///
        /// No communication involved.
        tensorT unfilter(const tensorT& s) const;

        coeffT unfilter(const coeffT& s) const;

        /// downsample the sum coefficients of level n+1 to sum coeffs on level n

        /// specialization of the filter method, will yield only the sum coefficients
        /// @param[in]  key key of level n
        /// @param[in]  v   vector of sum coefficients of level n+1
        /// @return     sum coefficients on level n in full tensor format
        tensorT downsample(const keyT& key, const std::vector< Future<coeffT > >& v) const;

        /// upsample the sum coefficients of level 1 to sum coeffs on level n+1

        /// specialization of the unfilter method, will transform only the sum coefficients
        /// @param[in]  key     key of level n+1
        /// @param[in]  coeff   sum coefficients of level n (does NOT belong to key!!)
        /// @return     sum     coefficients on level n+1
        coeffT upsample(const keyT& key, const coeffT& coeff) const;

        /// Projects old function into new basis (only in reconstructed form)
        void project(const implT& old, bool fence);

        struct true_refine_test {
            bool operator()(const implT* f, const keyT& key, const nodeT& t) const {
                return true;
            }
            template <typename Archive> void serialize(Archive& ar) {}
        };

        template <typename opT>
        void refine_op(const opT& op, const keyT& key) {
            // Must allow for someone already having autorefined the coeffs
            // and we get a write accessor just in case they are already executing
            typename dcT::accessor acc;
            MADNESS_ASSERT(coeffs.find(acc,key));
            nodeT& node = acc->second;
            if (node.has_coeff() && key.level() < max_refine_level && op(this, key, node)) {
                coeffT d(cdata.v2k,targs);
                d(cdata.s0) += copy(node.coeff());
                d = unfilter(d);
                node.clear_coeff();
                node.set_has_children(true);
                for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
                    const keyT& child = kit.key();
                    coeffT ss = copy(d(child_patch(child)));
                    ss.reduce_rank(targs.thresh);
                    //                    coeffs.replace(child,nodeT(ss,-1.0,false).node_to_low_rank());
                    coeffs.replace(child,nodeT(ss,-1.0,false));
                    // Note value -1.0 for norm tree to indicate result of refinement
                }
            }
        }

        template <typename opT>
        void refine_spawn(const opT& op, const keyT& key) {
            nodeT& node = coeffs.find(key).get()->second;
            if (node.has_children()) {
                for (KeyChildIterator<NDIM> kit(key); kit; ++kit)
                    woT::task(coeffs.owner(kit.key()), &implT:: template refine_spawn<opT>, op, kit.key(), TaskAttributes::hipri());
            }
            else {
                woT::task(coeffs.owner(key), &implT:: template refine_op<opT>, op, key);
            }
        }

        // Refine in real space according to local user-defined criterion
        template <typename opT>
        void refine(const opT& op, bool fence) {
            if (world.rank() == coeffs.owner(cdata.key0))
                woT::task(coeffs.owner(cdata.key0), &implT:: template refine_spawn<opT>, op, cdata.key0, TaskAttributes::hipri());
            if (fence)
                world.gop.fence();
        }

        bool exists_and_has_children(const keyT& key) const;

        bool exists_and_is_leaf(const keyT& key) const;


        void broaden_op(const keyT& key, const std::vector< Future <bool> >& v);

        // For each local node sets value of norm tree to 0.0
        void zero_norm_tree();

        // Broaden tree
        void broaden(std::vector<bool> is_periodic, bool fence);

        /// sum all the contributions from all scales after applying an operator in mod-NS form
        void trickle_down(bool fence);

        /// sum all the contributions from all scales after applying an operator in mod-NS form

        /// cf reconstruct_op
        void trickle_down_op(const keyT& key, const coeffT& s);

        void reconstruct(bool fence);

        // Invoked on node where key is local
        //        void reconstruct_op(const keyT& key, const tensorT& s);
        void reconstruct_op(const keyT& key, const coeffT& s);

        /// compress the wave function

        /// after application there will be sum coefficients at the root level,
        /// and difference coefficients at all other levels; furthermore:
        /// @param[in] nonstandard	keep sum coeffs at all other levels, except leaves
        /// @param[in] keepleaves	keep sum coeffs (but no diff coeffs) at leaves
        /// @param[in] redundant    keep only sum coeffs at all levels, discard difference coeffs
        void compress(bool nonstandard, bool keepleaves, bool redundant, bool fence);

        // Invoked on node where key is local
        Future<coeffT > compress_spawn(const keyT& key, bool nonstandard, bool keepleaves, bool redundant);

        /// convert this to redundant, i.e. have sum coefficients on all levels
        void make_redundant(const bool fence);

        /// convert this from redundant to standard reconstructed form
        void undo_redundant(const bool fence);


        /// compute for each FunctionNode the norm of the function inside that node
        void norm_tree(bool fence);

        double norm_tree_op(const keyT& key, const std::vector< Future<double> >& v);

        Future<double> norm_tree_spawn(const keyT& key);

        /// truncate using a tree in reconstructed form

        /// must be invoked where key is local
        Future<coeffT> truncate_reconstructed_spawn(const keyT& key, const double tol);

        /// given the sum coefficients of all children, truncate or not

        /// @return     new sum coefficients (empty if internal, not empty, if new leaf); might delete its children
        coeffT truncate_reconstructed_op(const keyT& key, const std::vector< Future<coeffT > >& v, const double tol);

        /// calculate the wavelet coefficients using the sum coefficients of all child nodes

        /// @param[in] key 	this's key
        /// @param[in] v 	sum coefficients of the child nodes
        /// @param[in] nonstandard  keep the sum coefficients with the wavelet coefficients
        /// @param[in] redundant    keep only the sum coefficients, discard the wavelet coefficients
        /// @return 		the sum coefficients
        coeffT compress_op(const keyT& key, const std::vector< Future<coeffT > >& v, bool nonstandard, bool redundant);


        /// similar to compress_op, but insert only the sum coefficients in the tree

        /// @param[in] key  this's key
        /// @param[in] v    sum coefficients of the child nodes
        /// @return         the sum coefficients
        coeffT make_redundant_op(const keyT& key, const std::vector< Future<coeffT > >& v);

        /// Changes non-standard compressed form to standard compressed form
        void standard(bool fence);

        /// Changes non-standard compressed form to standard compressed form
        struct do_standard {
            typedef Range<typename dcT::iterator> rangeT;

            // threshold for rank reduction / SVD truncation
            implT* impl;

            // constructor takes target precision
            do_standard() {}
            do_standard(implT* impl) : impl(impl) {}

            //
            bool operator()(typename rangeT::iterator& it) const {

                const keyT& key = it->first;
                nodeT& node = it->second;
                if (key.level()> 0 && node.has_coeff()) {
                    if (node.has_children()) {
                        // Zero out scaling coeffs
                        node.coeff()(impl->cdata.s0)=0.0;
                        node.reduceRank(impl->targs.thresh);
                    } else {
                        // Deleting both scaling and wavelet coeffs
                        node.clear_coeff();
                    }
                }
                return true;
            }
            template <typename Archive> void serialize(const Archive& ar) {
                MADNESS_EXCEPTION("no serialization of do_standard",1);
            }
        };


        /// laziness
        template<size_t OPDIM>
        struct do_op_args {
            Key<OPDIM> key,d;
            keyT dest;
            double tol, fac, cnorm;
            do_op_args() {}
            do_op_args(const Key<OPDIM>& key, const Key<OPDIM>& d, const keyT& dest, double tol, double fac, double cnorm)
                : key(key), d(d), dest(dest), tol(tol), fac(fac), cnorm(cnorm) {}
            template <class Archive>
            void serialize(Archive& ar) {
                ar & archive::wrap_opaque(this,1);
            }
        };

        /// for fine-grain parallelism: call the apply method of an operator in a separate task

        /// @param[in]  op      the operator working on our function
        /// @param[in]  c       full rank tensor holding the NS coefficients
        /// @param[in]  args    laziness holding norm of the coefficients, displacement, destination, ..
        template <typename opT, typename R, size_t OPDIM>
        void do_apply_kernel(const opT* op, const Tensor<R>& c, const do_op_args<OPDIM>& args) {

            tensorT result = op->apply(args.key, args.d, c, args.tol/args.fac/args.cnorm);

            // Screen here to reduce communication cost of negligible data
            // and also to ensure we don't needlessly widen the tree when
            // applying the operator
            if (result.normf()> 0.3*args.tol/args.fac) {
                Future<double> time=coeffs.task(args.dest, &nodeT::accumulate2, result, coeffs, args.dest, TaskAttributes::hipri());
                //woT::task(world.rank(),&implT::accumulate_timer,time,TaskAttributes::hipri());
                // UGLY BUT ADDED THE OPTIMIZATION BACK IN HERE EXPLICITLY/
                if (args.dest == world.rank()) {
                    coeffs.send(args.dest, &nodeT::accumulate, result, coeffs, args.dest);
                }
                else {
                    coeffs.task(args.dest, &nodeT::accumulate, result, coeffs, args.dest, TaskAttributes::hipri());
                }
            }
        }

        /// same as do_apply_kernel, but use full rank tensors as input and low rank tensors as output

        /// @param[in]  op      the operator working on our function
        /// @param[in]  c       full rank tensor holding the NS coefficients
        /// @param[in]  args    laziness holding norm of the coefficients, displacement, destination, ..
        /// @param[in]  apply_targs TensorArgs with tightened threshold for accumulation
        /// @return     nothing, but accumulate the result tensor into the destination node
        template <typename opT, typename R, size_t OPDIM>
        double do_apply_kernel2(const opT* op, const Tensor<R>& c, const do_op_args<OPDIM>& args,
                                const TensorArgs& apply_targs) {

            tensorT result_full = op->apply(args.key, args.d, c, args.tol/args.fac/args.cnorm);
            const double norm=result_full.normf();

            // Screen here to reduce communication cost of negligible data
            // and also to ensure we don't needlessly widen the tree when
            // applying the operator
            // OPTIMIZATION NEEDED HERE ... CHANGING THIS TO TASK NOT SEND REMOVED
            // BUILTIN OPTIMIZATION TO SHORTCIRCUIT MSG IF DATA IS LOCAL
            if (norm > 0.3*args.tol/args.fac) {

                small++;
                //double cpu0=cpu_time();
                coeffT result=coeffT(result_full,apply_targs);
                MADNESS_ASSERT(result.tensor_type()==TT_FULL or result.tensor_type()==TT_2D);
                //double cpu1=cpu_time();
                //timer_lr_result.accumulate(cpu1-cpu0);

                Future<double> time=coeffs.task(args.dest, &nodeT::accumulate, result, coeffs, args.dest, apply_targs,
                                                TaskAttributes::hipri());

                //woT::task(world.rank(),&implT::accumulate_timer,time,TaskAttributes::hipri());
            }
            return norm;
        }



        /// same as do_apply_kernel2, but use low rank tensors as input and low rank tensors as output

        /// @param[in]  op      the operator working on our function
        /// @param[in]  coeff   full rank tensor holding the NS coefficients
        /// @param[in]  args    laziness holding norm of the coefficients, displacement, destination, ..
        /// @param[in]  apply_targs TensorArgs with tightened threshold for accumulation
        /// @return     nothing, but accumulate the result tensor into the destination node
        template <typename opT, typename R, size_t OPDIM>
        double do_apply_kernel3(const opT* op, const GenTensor<R>& coeff, const do_op_args<OPDIM>& args,
                                const TensorArgs& apply_targs) {

            coeffT result;
            if (2*OPDIM==NDIM) result= op->apply2_lowdim(args.key, args.d, coeff, args.tol/args.fac/args.cnorm, args.tol/args.fac);
            if (OPDIM==NDIM) result = op->apply2(args.key, args.d, coeff, args.tol/args.fac/args.cnorm, args.tol/args.fac);
            //            double result_norm=-1.0;
            //            if (result.tensor_type()==TT_2D) result_norm=result.config().svd_normf();
            //            if (result.tensor_type()==TT_FULL) result_norm=result.normf();
            //            MADNESS_ASSERT(result_norm>-0.5);

            const double result_norm=result.svd_normf();

            if (result_norm> 0.3*args.tol/args.fac) {
                small++;

                // accumulate also expects result in SVD form
                Future<double> time=coeffs.task(args.dest, &nodeT::accumulate, result, coeffs, args.dest, apply_targs,
                                                TaskAttributes::hipri());
                //woT::task(world.rank(),&implT::accumulate_timer,time,TaskAttributes::hipri());

            }
            return result_norm;

        }

        /// apply an operator on the coeffs c (at node key)

        /// the result is accumulated inplace to this's tree at various FunctionNodes
        /// @param[in] op	the operator to act on the source function
        /// @param[in] key	key of the source FunctionNode of f which is processed
        /// @param[in] c	coeffs of the FunctionNode of f which is processed
        template <typename opT, typename R>
        void do_apply(const opT* op, const keyT& key, const Tensor<R>& c) {
            PROFILE_MEMBER_FUNC(FunctionImpl);

            typedef typename opT::keyT opkeyT;
            static const size_t opdim=opT::opdim;

            const opkeyT source=op->get_source_key(key);

            // insert timer here
            double fac = 10.0; //3.0; // 10.0 seems good for qmprop ... 3.0 OK for others
            double cnorm = c.normf();
            //const long lmax = 1L << (key.level()-1);

            const std::vector<opkeyT>& disp = op->get_disp(key.level());

            // use to have static in front, but this is not thread-safe
            const std::vector<bool> is_periodic(NDIM,false); // Periodic sum is already done when making rnlp

            for (typename std::vector<opkeyT>::const_iterator it=disp.begin(); it != disp.end(); ++it) {
                //                const opkeyT& d = *it;

                keyT d;
                Key<NDIM-opdim> nullkey(key.level());
                if (op->particle()==1) d=it->merge_with(nullkey);
                if (op->particle()==2) d=nullkey.merge_with(*it);

                keyT dest = neighbor(key, d, is_periodic);

                if (dest.is_valid()) {
                    double opnorm = op->norm(key.level(), *it, source);
                    // working assumption here is that the operator is isotropic and
                    // montonically decreasing with distance
                    double tol = truncate_tol(thresh, key);

                    //print("APP", key, dest, cnorm, opnorm, (cnorm*opnorm> tol/fac));

                    if (cnorm*opnorm> tol/fac) {

                        // // Most expensive part is the kernel ... do it in a separate task
                        // if (d.distsq()==0) {
                        //     // This introduces finer grain parallelism
                        //     ProcessID where = world.rank();
                        //     do_op_args<opdim> args(source, *it, dest, tol, fac, cnorm);
                        //     woT::task(where, &implT:: template do_apply_kernel<opT,R,opdim>, op, c, args);
                        // } else {
                            tensorT result = op->apply(source, *it, c, tol/fac/cnorm);
                            if (result.normf()> 0.3*tol/fac) {
                                coeffs.task(dest, &nodeT::accumulate2, result, coeffs, dest, TaskAttributes::hipri());
                            }
                        // }
                    } else if (d.distsq() >= 1)
                        break; // Assumes monotonic decay beyond nearest neighbor
                }
            }
        }


        /// apply an operator on f to return this
        template <typename opT, typename R>
        void apply(opT& op, const FunctionImpl<R,NDIM>& f, bool fence) {
            PROFILE_MEMBER_FUNC(FunctionImpl);
            MADNESS_ASSERT(!op.modified());
            typename dcT::const_iterator end = f.coeffs.end();
            for (typename dcT::const_iterator it=f.coeffs.begin(); it!=end; ++it) {
                // looping through all the coefficients in the source
                const keyT& key = it->first;
                const FunctionNode<R,NDIM>& node = it->second;
                if (node.has_coeff()) {
                    if (node.coeff().dim(0) != k || op.doleaves) {
                        ProcessID p = FunctionDefaults<NDIM>::get_apply_randomize() ? world.random_proc() : coeffs.owner(key);
//                        woT::task(p, &implT:: template do_apply<opT,R>, &op, key, node.coeff()); //.full_tensor_copy() ????? why copy ????
                        woT::task(p, &implT:: template do_apply<opT,R>, &op, key, node.coeff().reconstruct_tensor());
                    }
                }
            }
            if (fence)
                world.gop.fence();

            this->compressed=true;
            this->nonstandard=true;
            this->redundant=false;

        }

        /// apply an operator on the coeffs c (at node key)

        /// invoked by result; the result is accumulated inplace to this's tree at various FunctionNodes
        /// @param[in] op     the operator to act on the source function
        /// @param[in] key    key of the source FunctionNode of f which is processed (see "source")
        /// @param[in] coeff  coeffs of FunctionNode being processed
        /// @param[in] do_kernel	true: do the 0-disp only; false: do everything but the kernel
        /// @return	   max norm, and will modify or include new nodes in this' tree
        template <typename opT, typename R>
        double do_apply_directed_screening(const opT* op, const keyT& key, const coeffT& coeff,
                                           const bool& do_kernel) {
            PROFILE_MEMBER_FUNC(FunctionImpl);
            // insert timer here
            typedef typename opT::keyT opkeyT;

            // screening: contains all displacement keys that had small result norms
            std::list<opkeyT> blacklist;

            static const size_t opdim=opT::opdim;
            Key<NDIM-opdim> nullkey(key.level());

            // source is that part of key that corresponds to those dimensions being processed
            const opkeyT source=op->get_source_key(key);

            const double tol = truncate_tol(thresh, key);

            // fac is the root of the number of contributing neighbors (1st shell)
            double fac=std::pow(3,NDIM*0.5);
            double cnorm = coeff.normf();

            // for accumulation: keep slightly tighter TensorArgs
            TensorArgs apply_targs(targs);
            apply_targs.thresh=tol/fac*0.03;

            double maxnorm=0.0;
            // for the kernel it may be more efficient to do the convolution in full rank
            tensorT coeff_full;

            const std::vector<opkeyT>& disp = op->get_disp(key.level());
            const std::vector<bool> is_periodic(NDIM,false); // Periodic sum is already done when making rnlp

            for (typename std::vector<opkeyT>::const_iterator it=disp.begin(); it != disp.end(); ++it) {
                const opkeyT& d = *it;

                const int shell=d.distsq();
                if (do_kernel and (shell>0)) break;
                if ((not do_kernel) and (shell==0)) continue;

                keyT disp1;
                if (op->particle()==1) disp1=it->merge_with(nullkey);
                else if (op->particle()==2) disp1=nullkey.merge_with(*it);
                else {
                    MADNESS_EXCEPTION("confused particle in operato??",1);
                }

                keyT dest = neighbor(key, disp1, is_periodic);

                if (not dest.is_valid()) continue;

                // directed screening
                // working assumption here is that the operator is isotropic and
                // monotonically decreasing with distance
                bool screened=false;
                typename std::list<opkeyT>::const_iterator it2;
                for (it2=blacklist.begin(); it2!=blacklist.end(); it2++) {
                    if (d.is_farther_out_than(*it2)) {
                        screened=true;
                        break;
                    }
                }
                if (not screened) {

                    double opnorm = op->norm(key.level(), d, source);
                    double norm=0.0;

                    if (cnorm*opnorm> tol/fac) {

                        double cost_ratio=op->estimate_costs(source, d, coeff, tol/fac/cnorm, tol/fac);
                        //                        cost_ratio=1.5;     // force low rank
                        //                        cost_ratio=0.5;     // force full rank

                        if (cost_ratio>0.0) {

                            do_op_args<opdim> args(source, d, dest, tol, fac, cnorm);
                            norm=0.0;
                            if (cost_ratio<1.0) {
                                if (not coeff_full.has_data()) coeff_full=coeff.full_tensor_copy();
                                norm=do_apply_kernel2(op, coeff_full,args,apply_targs);
                            } else {
                                norm=do_apply_kernel3(op,coeff,args,apply_targs);
                            }
                            maxnorm=std::max(norm,maxnorm);
                        }

                    } else if (shell >= 12) {
                        break; // Assumes monotonic decay beyond nearest neighbor
                    }
                    if (norm<0.3*tol/fac) blacklist.push_back(d);
                }
            }
            return maxnorm;
        }


        /// similar to apply, but for low rank coeffs
        template <typename opT, typename R>
        void apply_source_driven(opT& op, const FunctionImpl<R,NDIM>& f, bool fence) {
            PROFILE_MEMBER_FUNC(FunctionImpl);

            MADNESS_ASSERT(not op.modified());
            // looping through all the coefficients of the source f
            typename dcT::const_iterator end = f.get_coeffs().end();
            for (typename dcT::const_iterator it=f.get_coeffs().begin(); it!=end; ++it) {

                const keyT& key = it->first;
                const coeffT& coeff = it->second.coeff();

                if (coeff.has_data() and (coeff.rank()!=0)) {
                    ProcessID p = FunctionDefaults<NDIM>::get_apply_randomize() ? world.random_proc() : coeffs.owner(key);
                    woT::task(p, &implT:: template do_apply_directed_screening<opT,R>, &op, key, coeff, true);
                    woT::task(p, &implT:: template do_apply_directed_screening<opT,R>, &op, key, coeff, false);
                }
            }
            if (fence) world.gop.fence();
        }

        /// after apply we need to do some cleanup;
        double finalize_apply(const bool fence=true);

        /// traverse a non-existing tree, make its coeffs and apply an operator

        /// invoked by result
        /// here we use the fact that the hi-dim NS coefficients on all scales are exactly
        /// the outer product of the underlying low-dim functions (also in NS form),
        /// so we don't need to construct the full hi-dim tree and then turn it into NS form.
        /// @param[in]	apply_op the operator acting on the NS tree
        /// @param[in]	fimpl    the funcimpl of the function of particle 1
        /// @param[in]	gimpl    the funcimpl of the function of particle 2
        template<typename opT, std::size_t LDIM>
        void recursive_apply(opT& apply_op, const FunctionImpl<T,LDIM>* fimpl,
                             const FunctionImpl<T,LDIM>* gimpl, const bool fence) {

            //print("IN RECUR2");
            const keyT& key0=cdata.key0;

            if (world.rank() == coeffs.owner(key0)) {

                CoeffTracker<T,LDIM> ff(fimpl);
                CoeffTracker<T,LDIM> gg(gimpl);

                typedef recursive_apply_op<opT,LDIM> coeff_opT;
                coeff_opT coeff_op(this,ff,gg,&apply_op);

                typedef noop<T,NDIM> apply_opT;
                apply_opT apply_op;

                ProcessID p= coeffs.owner(key0);
                woT::task(p, &implT:: template forward_traverse<coeff_opT,apply_opT>, coeff_op, apply_op, key0);

            }
            if (fence) world.gop.fence();
        }

        /// recursive part of recursive_apply
        template<typename opT, std::size_t LDIM>
        struct recursive_apply_op {
            bool randomize() const {return true;}

            typedef recursive_apply_op<opT,LDIM> this_type;

            implT* result;
            CoeffTracker<T,LDIM> iaf;
            CoeffTracker<T,LDIM> iag;
            opT* apply_op;

            // ctor
            recursive_apply_op() {}
            recursive_apply_op(implT* result,
                               const CoeffTracker<T,LDIM>& iaf, const CoeffTracker<T,LDIM>& iag,
                               const opT* apply_op) : result(result), iaf(iaf), iag(iag), apply_op(apply_op)
            {
                MADNESS_ASSERT(LDIM+LDIM==NDIM);
            }
            recursive_apply_op(const recursive_apply_op& other) : result(other.result), iaf(other.iaf),
                                                                  iag(other.iag), apply_op(other.apply_op) {}


            /// make the NS-coefficients and send off the application of the operator

            /// @return		a Future<bool,coeffT>(is_leaf,coeffT())
            std::pair<bool,coeffT> operator()(const Key<NDIM>& key) const {

                //            	World& world=result->world;
                // break key into particles (these are the child keys, with datum1/2 come the parent keys)
                Key<LDIM> key1,key2;
                key.break_apart(key1,key2);

                // the lo-dim functions should be in full tensor form
                const tensorT fcoeff=iaf.coeff(key1).full_tensor();
                const tensorT gcoeff=iag.coeff(key2).full_tensor();

                // would this be a leaf node? If so, then its sum coeffs have already been
                // processed by the parent node's wavelet coeffs. Therefore we won't
                // process it any more.
                hartree_leaf_op<T,NDIM> leaf_op(result,result->get_k());
                bool is_leaf=leaf_op(key,fcoeff,gcoeff);

                if (not is_leaf) {
                    // new coeffs are simply the hartree/kronecker/outer product --
                    const std::vector<Slice>& s0=iaf.get_impl()->cdata.s0;
                    const coeffT coeff = (apply_op->modified())
                        ? outer_low_rank(copy(fcoeff(s0)),copy(gcoeff(s0)))
                        : outer_low_rank(fcoeff,gcoeff);

                    // now send off the application
                    tensorT coeff_full;
                    ProcessID p=result->world.rank();
                    double norm0=result->do_apply_directed_screening<opT,T>(apply_op, key, coeff, true);

                    result->task(p,&implT:: template do_apply_directed_screening<opT,T>,
                                 apply_op,key,coeff,false);

                    return finalize(norm0,key,coeff);

                } else {
                    return std::pair<bool,coeffT> (is_leaf,coeffT());
                }
            }

            /// sole purpose is to wait for the kernel norm, wrap it and send it back to caller
            std::pair<bool,coeffT> finalize(const double kernel_norm, const keyT& key,
                                            const coeffT& coeff) const {
            	const double thresh=result->get_thresh()*0.1;
            	bool is_leaf=(kernel_norm<result->truncate_tol(thresh,key));
            	if (key.level()<2) is_leaf=false;
            	return std::pair<bool,coeffT> (is_leaf,coeff);
            }


            this_type make_child(const keyT& child) const {

                // break key into particles
                Key<LDIM> key1, key2;
                child.break_apart(key1,key2);

                return this_type(result,iaf.make_child(key1),iag.make_child(key2),apply_op);
            }

            Future<this_type> activate() const {
            	Future<CoeffTracker<T,LDIM> > f1=iaf.activate();
            	Future<CoeffTracker<T,LDIM> > g1=iag.activate();
                return result->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                               &this_type::forward_ctor),result,f1,g1,apply_op);
            }

            this_type forward_ctor(implT* r, const CoeffTracker<T,LDIM>& f1, const CoeffTracker<T,LDIM>& g1,
                                   const opT* apply_op1) {
            	return this_type(r,f1,g1,apply_op1);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                ar & result & iaf & iag & apply_op;
            }
        };

        /// traverse an existing tree and apply an operator

        /// invoked by result
        /// @param[in]	apply_op the operator acting on the NS tree
        /// @param[in]	fimpl    the funcimpl of the source function
        /// @param[in]	rimpl    a dummy function for recursive_op to insert data
        template<typename opT>
        void recursive_apply(opT& apply_op, const implT* fimpl, implT* rimpl, const bool fence) {

            print("IN RECUR1");

            const keyT& key0=cdata.key0;

            if (world.rank() == coeffs.owner(key0)) {

                typedef recursive_apply_op2<opT> coeff_opT;
                coeff_opT coeff_op(this,fimpl,&apply_op);

                typedef noop<T,NDIM> apply_opT;
                apply_opT apply_op;

                woT::task(world.rank(), &implT:: template forward_traverse<coeff_opT,apply_opT>,
                          coeff_op, apply_op, cdata.key0);

            }
            if (fence) world.gop.fence();
        }

        /// recursive part of recursive_apply
        template<typename opT>
        struct recursive_apply_op2 {
            bool randomize() const {return true;}

            typedef recursive_apply_op2<opT> this_type;
            typedef CoeffTracker<T,NDIM> ctT;
            typedef std::pair<bool,coeffT> argT;

            mutable implT* result;
            ctT iaf;			/// need this for randomization
            const opT* apply_op;

            // ctor
            recursive_apply_op2() {}
            recursive_apply_op2(implT* result, const ctT& iaf, const opT* apply_op)
            	: result(result), iaf(iaf), apply_op(apply_op) {}

            recursive_apply_op2(const recursive_apply_op2& other) : result(other.result),
                                                                    iaf(other.iaf), apply_op(other.apply_op) {}


            /// send off the application of the operator

            /// the first (core) neighbor (ie. the box itself) is processed
            /// immediately, all other ones are shoved into the taskq
            /// @return		a pair<bool,coeffT>(is_leaf,coeffT())
            argT operator()(const Key<NDIM>& key) const {

            	const coeffT& coeff=iaf.coeff();

                if (coeff.has_data()) {

                    // now send off the application for all neighbor boxes
                    ProcessID p=result->world.rank();
                    result->task(p,&implT:: template do_apply_directed_screening<opT,T>,
                                 apply_op, key, coeff, false);

                    // process the core box
                    double norm0=result->do_apply_directed_screening<opT,T>(apply_op,key,coeff,true);

                    if (iaf.is_leaf()) return argT(true,coeff);
                    return finalize(norm0,key,coeff,result);

                } else {
                    const bool is_leaf=true;
                    return argT(is_leaf,coeffT());
                }
            }

            /// sole purpose is to wait for the kernel norm, wrap it and send it back to caller
            argT finalize(const double kernel_norm, const keyT& key,
                          const coeffT& coeff, const implT* r) const {
            	const double thresh=r->get_thresh()*0.1;
            	bool is_leaf=(kernel_norm<r->truncate_tol(thresh,key));
            	if (key.level()<2) is_leaf=false;
            	return argT(is_leaf,coeff);
            }


            this_type make_child(const keyT& child) const {
                return this_type(result,iaf.make_child(child),apply_op);
            }

            /// retrieve the coefficients (parent coeffs might be remote)
            Future<this_type> activate() const {
            	Future<ctT> f1=iaf.activate();

//                Future<ctL> g1=g.activate();
//                return h->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
//                                          &this_type::forward_ctor),h,f1,g1,particle);

                return result->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                               &this_type::forward_ctor),result,f1,apply_op);
            }

            /// taskq-compatible ctor
            this_type forward_ctor(implT* result1, const ctT& iaf1, const opT* apply_op1) {
            	return this_type(result1,iaf1,apply_op1);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                ar & result & iaf & apply_op;
            }
        };

        /// Returns the square of the error norm in the box labeled by key

        /// Assumed to be invoked locally but it would be easy to eliminate
        /// this assumption
        template <typename opT>
        double err_box(const keyT& key, const nodeT& node, const opT& func,
                       int npt, const Tensor<double>& qx, const Tensor<double>& quad_phit,
                       const Tensor<double>& quad_phiw) const {

            std::vector<long> vq(NDIM);
            for (std::size_t i=0; i<NDIM; ++i)
                vq[i] = npt;
            tensorT fval(vq,false), work(vq,false), result(vq,false);

            // Compute the "exact" function in this volume at npt points
            // where npt is usually this->npt+1.
            fcube(key, func, qx, fval);

            // Transform into the scaling function basis of order npt
            double scale = pow(0.5,0.5*NDIM*key.level())*sqrt(FunctionDefaults<NDIM>::get_cell_volume());
            fval = fast_transform(fval,quad_phiw,result,work).scale(scale);

            // Subtract to get the error ... the original coeffs are in the order k
            // basis but we just computed the coeffs in the order npt(=k+1) basis
            // so we can either use slices or an iterator macro.
            const tensorT coeff = node.coeff().full_tensor_copy();
            ITERATOR(coeff,fval(IND)-=coeff(IND););
            // flo note: we do want to keep a full tensor here!

            // Compute the norm of what remains
            double err = fval.normf();
            return err*err;
        }

        template <typename opT>
        class do_err_box {
            const implT* impl;
            const opT* func;
            int npt;
            Tensor<double> qx;
            Tensor<double> quad_phit;
            Tensor<double> quad_phiw;
        public:
            do_err_box() {}

            do_err_box(const implT* impl, const opT* func, int npt, const Tensor<double>& qx,
                       const Tensor<double>& quad_phit, const Tensor<double>& quad_phiw)
                : impl(impl), func(func), npt(npt), qx(qx), quad_phit(quad_phit), quad_phiw(quad_phiw) {}

            do_err_box(const do_err_box& e)
                : impl(e.impl), func(e.func), npt(e.npt), qx(e.qx), quad_phit(e.quad_phit), quad_phiw(e.quad_phiw) {}

            double operator()(typename dcT::const_iterator& it) const {
                const keyT& key = it->first;
                const nodeT& node = it->second;
                if (node.has_coeff())
                    return impl->err_box(key, node, *func, npt, qx, quad_phit, quad_phiw);
                else
                    return 0.0;
            }

            double operator()(double a, double b) const {
                return a+b;
            }

            template <typename Archive>
            void serialize(const Archive& ar) {
                throw "not yet";
            }
        };

        /// Returns the sum of squares of errors from local info ... no comms
        template <typename opT>
        double errsq_local(const opT& func) const {
            PROFILE_MEMBER_FUNC(FunctionImpl);
            // Make quadrature rule of higher order
            const int npt = cdata.npt + 1;
            Tensor<double> qx, qw, quad_phi, quad_phiw, quad_phit;
            FunctionCommonData<T,NDIM>::_init_quadrature(k+1, npt, qx, qw, quad_phi, quad_phiw, quad_phit);

            typedef Range<typename dcT::const_iterator> rangeT;
            rangeT range(coeffs.begin(), coeffs.end());
            return world.taskq.reduce< double,rangeT,do_err_box<opT> >(range,
                                                                       do_err_box<opT>(this, &func, npt, qx, quad_phit, quad_phiw));
        }

        /// Returns \c int(f(x),x) in local volume
        T trace_local() const;

        struct do_norm2sq_local {
            double operator()(typename dcT::const_iterator& it) const {
                const nodeT& node = it->second;
                if (node.has_coeff()) {
                    double norm = node.coeff().normf();
                    return norm*norm;
                }
                else {
                    return 0.0;
                }
            }

            double operator()(double a, double b) const {
                return (a+b);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                throw "NOT IMPLEMENTED";
            }
        };


        /// Returns the square of the local norm ... no comms
        double norm2sq_local() const;

        /// compute the inner product of this range with other
        template<typename R>
        struct do_inner_local {
            const FunctionImpl<R,NDIM>* other;
            bool leaves_only;
            typedef TENSOR_RESULT_TYPE(T,R) resultT;

            do_inner_local(const FunctionImpl<R,NDIM>* other, const bool leaves_only)
            	: other(other), leaves_only(leaves_only) {}
            resultT operator()(typename dcT::const_iterator& it) const {

            	TENSOR_RESULT_TYPE(T,R) sum=0.0;
            	const keyT& key=it->first;
                const nodeT& fnode = it->second;
                if (fnode.has_coeff()) {
                    if (other->coeffs.probe(it->first)) {
                        const FunctionNode<R,NDIM>& gnode = other->coeffs.find(key).get()->second;
                        if (gnode.has_coeff()) {
                            if (gnode.coeff().dim(0) != fnode.coeff().dim(0)) {
                                madness::print("INNER", it->first, gnode.coeff().dim(0),fnode.coeff().dim(0));
                                MADNESS_EXCEPTION("functions have different k or compress/reconstruct error", 0);
                            }
                            if (leaves_only) {
                                if (gnode.is_leaf() or fnode.is_leaf()) {
                                    sum += fnode.coeff().trace_conj(gnode.coeff());
                                }
                            } else {
                                sum += fnode.coeff().trace_conj(gnode.coeff());
                            }
                        }
                    }
                }
                return sum;
            }

            resultT operator()(resultT a, resultT b) const {
                return (a+b);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                throw "NOT IMPLEMENTED";
            }
        };

        /// Returns the inner product ASSUMING same distribution

        /// handles compressed and redundant form
        template <typename R>
        TENSOR_RESULT_TYPE(T,R) inner_local(const FunctionImpl<R,NDIM>& g) const {
            PROFILE_MEMBER_FUNC(FunctionImpl);
            typedef Range<typename dcT::const_iterator> rangeT;
            typedef TENSOR_RESULT_TYPE(T,R) resultT;

            // make sure the states of the trees are consistent
            MADNESS_ASSERT(this->is_redundant()==g.is_redundant());
            bool leaves_only=(this->is_redundant());
            return world.taskq.reduce<resultT,rangeT,do_inner_local<R> >
                (rangeT(coeffs.begin(),coeffs.end()),do_inner_local<R>(&g, leaves_only));
        }

        /// Type of the entry in the map returned by make_key_vec_map
        typedef std::vector< std::pair<int,const coeffT*> > mapvecT;

        /// Type of the map returned by make_key_vec_map
        typedef ConcurrentHashMap< keyT, mapvecT > mapT;

        /// Adds keys to union of local keys with specified index
        void add_keys_to_map(mapT* map, int index) const {
            typename dcT::const_iterator end = coeffs.end();
            for (typename dcT::const_iterator it=coeffs.begin(); it!=end; ++it) {
                typename mapT::accessor acc;
                const keyT& key = it->first;
                const FunctionNode<T,NDIM>& node = it->second;
                if (node.has_coeff()) {
                    map->insert(acc,key);
                    acc->second.push_back(std::make_pair(index,&(node.coeff())));
                }
            }
        }

        /// Returns map of union of local keys to vector of indexes of functions containing that key

        /// Local concurrency and synchronization only; no communication
        static
        mapT
        make_key_vec_map(const std::vector<const FunctionImpl<T,NDIM>*>& v) {
            mapT map(100000);
            // This loop must be parallelized
            for (unsigned int i=0; i<v.size(); i++) {
                //v[i]->add_keys_to_map(&map,i);
                v[i]->world.taskq.add(*(v[i]), &FunctionImpl<T,NDIM>::add_keys_to_map, &map, int(i));
            }
            if (v.size()) v[0]->world.taskq.fence();
            return map;
        }


        template <typename R>
        static void do_inner_localX(const typename mapT::iterator lstart,
                                    const typename mapT::iterator lend,
                                    typename FunctionImpl<R,NDIM>::mapT* rmap_ptr,
                                    const bool sym,
                                    Tensor< TENSOR_RESULT_TYPE(T,R) >& result,
                                    Mutex* mutex) {
            Tensor< TENSOR_RESULT_TYPE(T,R) > r(result.dim(0),result.dim(1));
            for (typename mapT::iterator lit=lstart; lit!=lend; ++lit) {
                const keyT& key = lit->first;
                typename FunctionImpl<R,NDIM>::mapT::iterator rit=rmap_ptr->find(key);
                if (rit != rmap_ptr->end()) {
                    const mapvecT& leftv = lit->second;
                    const typename FunctionImpl<R,NDIM>::mapvecT& rightv =rit->second;
                    const int nleft = leftv.size();
                    const int nright= rightv.size();

                    for (int iv=0; iv<nleft; iv++) {
                        const int i = leftv[iv].first;
                        const GenTensor<T>* iptr = leftv[iv].second;

                        for (int jv=0; jv<nright; jv++) {
                            const int j = rightv[jv].first;
                            const GenTensor<R>* jptr = rightv[jv].second;

                            if (!sym || (sym && i<=j))
                                r(i,j) += iptr->trace_conj(*jptr);
                        }
                    }
                }
            }
            mutex->lock();
            result += r;
            mutex->unlock();
        }

        static double conj(double x) {
            return x;
        }

        static double conj(float x) {
            return x;
        }

        static std::complex<double> conj(const std::complex<double> x) {
            return std::conj(x);
        }

        template <typename R>
        static Tensor< TENSOR_RESULT_TYPE(T,R) >
        inner_local(const std::vector<const FunctionImpl<T,NDIM>*>& left,
                    const std::vector<const FunctionImpl<R,NDIM>*>& right,
                    bool sym) {

            // This is basically a sparse matrix^T * matrix product
            // Rij = sum(k) Aki * Bkj
            // where i and j index functions and k index the wavelet coeffs
            // eventually the goal is this structure (don't have jtile yet)
            //
            // do in parallel tiles of k (tensors of coeffs)
            //    do tiles of j
            //       do i
            //          do j in jtile
            //             do k in ktile
            //                Rij += Aki*Bkj

            mapT lmap = make_key_vec_map(left);
            typename FunctionImpl<R,NDIM>::mapT rmap;
            typename FunctionImpl<R,NDIM>::mapT* rmap_ptr = (typename FunctionImpl<R,NDIM>::mapT*)(&lmap);
            if ((std::vector<const FunctionImpl<R,NDIM>*>*)(&left) != &right) {
                rmap = FunctionImpl<R,NDIM>::make_key_vec_map(right);
                rmap_ptr = &rmap;
            }

            size_t chunk = (lmap.size()-1)/(3*4*5)+1;

            Tensor< TENSOR_RESULT_TYPE(T,R) > r(left.size(), right.size());
            Mutex mutex;

            typename mapT::iterator lstart=lmap.begin();
            while (lstart != lmap.end()) {
                typename mapT::iterator lend = lstart;
                advance(lend,chunk);
                left[0]->world.taskq.add(&FunctionImpl<T,NDIM>::do_inner_localX<R>, lstart, lend, rmap_ptr, sym, r, &mutex);
                lstart = lend;
            }
            left[0]->world.taskq.fence();

            if (sym) {
                for (long i=0; i<r.dim(0); i++) {
                    for (long j=0; j<i; j++) {
                        TENSOR_RESULT_TYPE(T,R) sum = r(i,j)+conj(r(j,i));
                        r(i,j) = sum;
                        r(j,i) = conj(sum);
                    }
                }
            }
            return r;
        }

        /// Return the inner product with an external function on a specified function node.
        /// @param[in] key Key of the function node to compute the inner product on. (the domain of integration)
        /// @param[in] c Tensor of coefficients for the function at the function node given by key
        /// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
        /// @return Returns the inner product over the domain of a single function node, no guarantee of accuracy.
        T inner_ext_node(keyT key, tensorT c, const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f) const {
            tensorT fvals = tensorT(this->cdata.vk);
            // Compute the value of the external function at the quadrature points.
            fcube(key, *(f), cdata.quad_x, fvals);
            // Convert quadrature point values to scaling coefficients.
            tensorT fc = tensorT(values2coeffs(key, fvals));
            // Return the inner product of the two functions' scaling coefficients.
            return c.trace_conj(fc);
        }

        /// Call inner_ext_node recursively until convergence.
        /// @param[in] key Key of the function node on which to compute inner product (the domain of integration)
        /// @param[in] c coeffs for the function at the node given by key
        /// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
        /// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
        /// @param[in] old_inner the inner product on the parent function node
        /// @return Returns the inner product over the domain of a single function, checks for convergence.
        T inner_ext_recursive(keyT key, tensorT c, const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f, const bool leaf_refine, T old_inner=T(0)) const {
            int i = 0;
            tensorT c_child, inner_child;
            T new_inner, result = 0.0;

            c_child = tensorT(cdata.v2k); // tensor of child coeffs
            inner_child = Tensor<double>(pow(2, NDIM)); // child inner products

            // If old_inner is default value, assume this is the first call
            // and compute inner product on this node.
            if (old_inner == T(0)) {
                old_inner = inner_ext_node(key, c, f);
            }

            if (coeffs.find(key).get()->second.has_children()) {
                // Since the key has children and we know the func is redundant,
                // Iterate over all children of this compute node, computing
                // the inner product on each child node. new_inner will store
                // the sum of these, yielding a more accurate inner product.
                for (KeyChildIterator<NDIM> it(key); it; ++it, ++i) {
                    const keyT& child = it.key();
                    tensorT cc = coeffs.find(child).get()->second.coeff().full_tensor_copy();
                    inner_child(i) = inner_ext_node(child, cc, f);
                }
                new_inner = inner_child.sum();
            } else if (leaf_refine) {
                // We need the scaling coefficients of the numerical function
                // at each of the children nodes. We can't use project because
                // there is no guarantee that the numerical function will have
                // a functor.  Instead, since we know we are at or below the
                // leaf nodes, the wavelet coefficients are zero (to within the
                // truncate tolerance). Thus, we can use unfilter() to
                // get the scaling coefficients at the next level.
                tensorT d = tensorT(cdata.v2k);
                d = T(0);
                d(cdata.s0) = copy(c);
                c_child = unfilter(d);

                // Iterate over all children of this compute node, computing
                // the inner product on each child node. new_inner will store
                // the sum of these, yielding a more accurate inner product.
                for (KeyChildIterator<NDIM> it(key); it; ++it, ++i) {
                    const keyT& child = it.key();
                    tensorT cc = tensorT(c_child(child_patch(child)));
                    inner_child(i) = inner_ext_node(child, cc, f);
                }
                new_inner = inner_child.sum();
            } else {
                // If we get to here, we are at the leaf nodes and the user has
                // specified that they do not want refinement past leaf nodes.
                new_inner = old_inner;
            }

            // Check for convergence. If converged...yay, we're done. If not,
            // call inner_ext_node_recursive on each child node and accumulate
            // the inner product in result.
            // if (std::abs(new_inner - old_inner) <= truncate_tol(thresh, key)) {
            if (std::abs(new_inner - old_inner) <= thresh) {
                result = new_inner;
            } else {
                i = 0;
                for (KeyChildIterator<NDIM> it(key); it; ++it, ++i) {
                    const keyT& child = it.key();
                    tensorT cc = tensorT(c_child(child_patch(child)));
                    result += inner_ext_recursive(child, cc, f, leaf_refine, inner_child(i));
                }
            }

            return result;
        }

        struct do_inner_ext_local_ffi {
            const std::shared_ptr< FunctionFunctorInterface<T, NDIM> > fref;
            const implT * impl;
            const bool leaf_refine;
            const bool do_leaves;   ///< start with leaf nodes instead of initial_level

            do_inner_ext_local_ffi(const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f,
                    const implT * impl, const bool leaf_refine, const bool do_leaves)
                    : fref(f), impl(impl), leaf_refine(leaf_refine), do_leaves(do_leaves) {};

            T operator()(typename dcT::const_iterator& it) const {
                if (do_leaves and it->second.is_leaf()) {
                    tensorT cc = it->second.coeff().full_tensor();
                    return impl->inner_adaptive_recursive(it->first, cc, fref, leaf_refine, T(0));
                } else if ((not do_leaves) and (it->first.level() == impl->initial_level)) {
                    tensorT cc = it->second.coeff().full_tensor();
                    return impl->inner_ext_recursive(it->first, cc, fref, leaf_refine, T(0));
                } else {
                    return 0.0;
                }
            }

            T operator()(T a, T b) const {
                return (a + b);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                throw "NOT IMPLEMENTED";
            }
        };

        /// Return the local part of inner product with external function ... no communication.
        /// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
        /// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
        /// @return Returns local part of the inner product, i.e. over the domain of all function nodes on this compute node.
        T inner_ext_local(const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f, const bool leaf_refine) const {
            typedef Range<typename dcT::const_iterator> rangeT;

            return world.taskq.reduce<T, rangeT, do_inner_ext_local_ffi>(rangeT(coeffs.begin(),coeffs.end()),
                    do_inner_ext_local_ffi(f, this, leaf_refine, false));
        }

        /// Return the local part of inner product with external function ... no communication.
        /// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
        /// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
        /// @return Returns local part of the inner product, i.e. over the domain of all function nodes on this compute node.
        T inner_adaptive_local(const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f, const bool leaf_refine) const {
            typedef Range<typename dcT::const_iterator> rangeT;

            return world.taskq.reduce<T, rangeT, do_inner_ext_local_ffi>(rangeT(coeffs.begin(),coeffs.end()),
                    do_inner_ext_local_ffi(f, this, leaf_refine, true));
        }

        /// Call inner_ext_node recursively until convergence.
        /// @param[in] key Key of the function node on which to compute inner product (the domain of integration)
        /// @param[in] c coeffs for the function at the node given by key
        /// @param[in] f Reference to FunctionFunctorInterface. This is the externally provided function
        /// @param[in] leaf_refine boolean switch to turn on/off refinement past leaf nodes
        /// @param[in] old_inner the inner product on the parent function node
        /// @return Returns the inner product over the domain of a single function, checks for convergence.
        T inner_adaptive_recursive(keyT key, const tensorT& c,
                const std::shared_ptr< FunctionFunctorInterface<T,NDIM> > f,
                const bool leaf_refine, T old_inner=T(0)) const {

            // the inner product in the current node
            old_inner = inner_ext_node(key, c, f);
            T result=0.0;

            // the inner product in the child nodes

            // compute the sum coefficients of the MRA function
            tensorT d = tensorT(cdata.v2k);
            d = T(0);
            d(cdata.s0) = copy(c);
            tensorT c_child = unfilter(d);

            // compute the inner product in the child nodes
            T new_inner=0.0; // child inner products
            for (KeyChildIterator<NDIM> it(key); it; ++it) {
                const keyT& child = it.key();
                tensorT cc = tensorT(c_child(child_patch(child)));
                new_inner+= inner_ext_node(child, cc, f);
            }

            // continue recursion if needed
            if (leaf_refine and (std::abs(new_inner - old_inner) > thresh)) {
                for (KeyChildIterator<NDIM> it(key); it; ++it) {
                    const keyT& child = it.key();
                    tensorT cc = tensorT(c_child(child_patch(child)));
                    result += inner_adaptive_recursive(child, cc, f, leaf_refine, T(0));
                }
            } else {
                result = new_inner;
            }
            return result;

        }


        /// Return the gaxpy product with an external function on a specified
        /// function node.
        /// @param[in] key Key of the function node on which to compute gaxpy
        /// @param[in] lc Tensor of coefficients for the function at the
        ///            function node given by key
        /// @param[in] f Pointer to function of type T that takes coordT
        ///            arguments. This is the externally provided function and
        ///            the right argument of gaxpy.
        /// @param[in] alpha prefactor of c Tensor for gaxpy
        /// @param[in] beta prefactor of fcoeffs for gaxpy
        /// @return Returns coefficient tensor of the gaxpy product at specified
        ///         key, no guarantee of accuracy.
        template <typename L>
        tensorT gaxpy_ext_node(keyT key, Tensor<L> lc, T (*f)(const coordT&), T alpha, T beta) const {
            // Compute the value of external function at the quadrature points.
            tensorT fvals = madness::fcube(key, f, cdata.quad_x);
            // Convert quadrature point values to scaling coefficients.
            tensorT fcoeffs = values2coeffs(key, fvals);
            // Return the inner product of the two functions' scaling coeffs.
            tensorT c2 = copy(lc);
            c2.gaxpy(alpha, fcoeffs, beta);
            return c2;
        }

        /// Return out of place gaxpy using recursive descent.
        /// @param[in] key Key of the function node on which to compute gaxpy
        /// @param[in] left FunctionImpl, left argument of gaxpy
        /// @param[in] lcin coefficients of left at this node
        /// @param[in] c coefficients of gaxpy product at this node
        /// @param[in] f pointer to function of type T that takes coordT
        ///            arguments. This is the externally provided function and
        ///            the right argument of gaxpy.
        /// @param[in] alpha prefactor of left argument for gaxpy
        /// @param[in] beta prefactor of right argument for gaxpy
        /// @param[in] tol convergence tolerance...when the norm of the gaxpy's
        ///            difference coefficients is less than tol, we are done.
        template <typename L>
        void gaxpy_ext_recursive(const keyT& key, const FunctionImpl<L,NDIM>* left,
                                 Tensor<L> lcin, tensorT c, T (*f)(const coordT&),
                                 T alpha, T beta, double tol, bool below_leaf) {
            typedef typename FunctionImpl<L,NDIM>::dcT::const_iterator literT;

            // If we haven't yet reached the leaf level, check whether the
            // current key is a leaf node of left. If so, set below_leaf to true
            // and continue. If not, make this a parent, recur down, return.
            if (not below_leaf) {
                bool left_leaf = left->coeffs.find(key).get()->second.is_leaf();
                if (left_leaf) {
                    below_leaf = true;
                } else {
                    this->coeffs.replace(key, nodeT(coeffT(), true));
                    for (KeyChildIterator<NDIM> it(key); it; ++it) {
                        const keyT& child = it.key();
                        woT::task(left->coeffs.owner(child), &implT:: template gaxpy_ext_recursive<L>,
                                  child, left, Tensor<L>(), tensorT(), f, alpha, beta, tol, below_leaf);
                    }
                    return;
                }
            }

            // Compute left's coefficients if not provided
            Tensor<L> lc = lcin;
            if (lc.size() == 0) {
                literT it = left->coeffs.find(key).get();
                MADNESS_ASSERT(it != left->coeffs.end());
                if (it->second.has_coeff())
                    lc = it->second.coeff().full_tensor_copy();
            }

            // Compute this node's coefficients if not provided in function call
            if (c.size() == 0) {
                c = gaxpy_ext_node(key, lc, f, alpha, beta);
            }

            // We need the scaling coefficients of the numerical function at
            // each of the children nodes. We can't use project because there
            // is no guarantee that the numerical function will have a functor.
            // Instead, since we know we are at or below the leaf nodes, the
            // wavelet coefficients are zero (to within the truncate tolerance).
            // Thus, we can use unfilter() to get the scaling coefficients at
            // the next level.
            Tensor<L> lc_child = Tensor<L>(cdata.v2k); // left's child coeffs
            Tensor<L> ld = Tensor<L>(cdata.v2k);
            ld = L(0);
            ld(cdata.s0) = copy(lc);
            lc_child = unfilter(ld);

            // Iterate over children of this node,
            // storing the gaxpy coeffs in c_child
            tensorT c_child = tensorT(cdata.v2k); // tensor of child coeffs
            for (KeyChildIterator<NDIM> it(key); it; ++it) {
                const keyT& child = it.key();
                tensorT lcoeff = tensorT(lc_child(child_patch(child)));
                c_child(child_patch(child)) = gaxpy_ext_node(child, lcoeff, f, alpha, beta);
            }

            // Compute the difference coefficients to test for convergence.
            tensorT d = tensorT(cdata.v2k);
            d = filter(c_child);
            // Filter returns both s and d coefficients, so set scaling
            // coefficient part of d to 0 so that we take only the
            // norm of the difference coefficients.
            d(cdata.s0) = T(0);
            double dnorm = d.normf();

            // Small d.normf means we've reached a good level of resolution
            // Store the coefficients and return.
            if (dnorm <= truncate_tol(tol,key)) {
                this->coeffs.replace(key, nodeT(coeffT(c,targs), false));
            } else {
                // Otherwise, make this a parent node and recur down
                this->coeffs.replace(key, nodeT(coeffT(), true)); // Interior node

                for (KeyChildIterator<NDIM> it(key); it; ++it) {
                    const keyT& child = it.key();
                    tensorT child_coeff = tensorT(c_child(child_patch(child)));
                    tensorT left_coeff = tensorT(lc_child(child_patch(child)));
                    woT::task(left->coeffs.owner(child), &implT:: template gaxpy_ext_recursive<L>,
                              child, left, left_coeff, child_coeff, f, alpha, beta, tol, below_leaf);
                }
            }
        }

        template <typename L>
        void gaxpy_ext(const FunctionImpl<L,NDIM>* left, T (*f)(const coordT&), T alpha, T beta, double tol, bool fence) {
            if (world.rank() == coeffs.owner(cdata.key0))
                gaxpy_ext_recursive<L> (cdata.key0, left, Tensor<L>(), tensorT(), f, alpha, beta, tol, false);
            if (fence)
                world.gop.fence();
        }

        /// project the low-dim function g on the hi-dim function f: result(x) = <this(x,y) | g(y)>

        /// invoked by the hi-dim function, a function of NDIM+LDIM

        /// Upon return, result matches this, with contributions on all scales
        /// @param[in]  result  lo-dim function of NDIM-LDIM \todo Should this be param[out]?
        /// @param[in]  gimpl  	lo-dim function of LDIM
        /// @param[in]  dim over which dimensions to be integrated: 0..LDIM or LDIM..LDIM+NDIM-1
        template<size_t LDIM>
        void project_out(FunctionImpl<T,NDIM-LDIM>* result, const FunctionImpl<T,LDIM>* gimpl,
                         const int dim, const bool fence) {

            const keyT& key0=cdata.key0;

            if (world.rank() == coeffs.owner(key0)) {

                // coeff_op will accumulate the result
                typedef project_out_op<LDIM> coeff_opT;
                coeff_opT coeff_op(this,result,CoeffTracker<T,LDIM>(gimpl),dim);

                // don't do anything on this -- coeff_op will accumulate into result
                typedef noop<T,NDIM> apply_opT;
                apply_opT apply_op;

                woT::task(world.rank(), &implT:: template forward_traverse<coeff_opT,apply_opT>,
                          coeff_op, apply_op, cdata.key0);

            }
            if (fence) world.gop.fence();

        }


        /// project the low-dim function g on the hi-dim function f: result(x) = <f(x,y) | g(y)>
        template<size_t LDIM>
        struct project_out_op {
            bool randomize() const {return false;}

            typedef project_out_op<LDIM> this_type;
            typedef CoeffTracker<T,LDIM> ctL;
            typedef FunctionImpl<T,NDIM-LDIM> implL1;
            typedef std::pair<bool,coeffT> argT;

            const implT* fimpl;		///< the hi dim function f
            mutable implL1* result;	///< the low dim result function
            ctL iag;				///< the low dim function g
            int dim;				///< 0: project 0..LDIM-1, 1: project LDIM..NDIM-1

            // ctor
            project_out_op() {}
            project_out_op(const implT* fimpl, implL1* result, const ctL& iag, const int dim)
                : fimpl(fimpl), result(result), iag(iag), dim(dim) {}
            project_out_op(const project_out_op& other)
                : fimpl(other.fimpl), result(other.result), iag(other.iag), dim(other.dim) {}


            /// do the actual contraction
            Future<argT> operator()(const Key<NDIM>& key) const {

            	Key<LDIM> key1,key2,dest;
            	key.break_apart(key1,key2);

            	// make the right coefficients
                coeffT gcoeff;
                if (dim==0) {
                    gcoeff=iag.get_impl()->parent_to_child(iag.coeff(),iag.key(),key1);
                    dest=key2;
                }
                if (dim==1) {
                    gcoeff=iag.get_impl()->parent_to_child(iag.coeff(),iag.key(),key2);
                    dest=key1;
                }

                MADNESS_ASSERT(fimpl->get_coeffs().probe(key));		// must be local!
                const nodeT& fnode=fimpl->get_coeffs().find(key).get()->second;
                const coeffT& fcoeff=fnode.coeff();

                // fast return if possible
                if (fcoeff.has_no_data() or gcoeff.has_no_data())
                    return Future<argT> (argT(fnode.is_leaf(),coeffT()));;

                // let's specialize for the time being on SVD tensors for f and full tensors of half dim for g
                MADNESS_ASSERT(gcoeff.tensor_type()==TT_FULL);
                MADNESS_ASSERT(fcoeff.tensor_type()==TT_2D);
                const tensorT gtensor=gcoeff.full_tensor();
                tensorT final(result->cdata.vk);

                const int otherdim=(dim+1)%2;
                const int k=fcoeff.dim(0);
                std::vector<Slice> s(fcoeff.config().dim_per_vector()+1,_);

                // do the actual contraction
                for (int r=0; r<fcoeff.rank(); ++r) {
                    s[0]=Slice(r,r);
                    const tensorT contracted_tensor=fcoeff.config().ref_vector(dim)(s).reshape(k,k,k);
                    const tensorT other_tensor=fcoeff.config().ref_vector(otherdim)(s).reshape(k,k,k);
                    const double ovlp= gtensor.trace_conj(contracted_tensor);
                    const double fac=ovlp * fcoeff.config().weights(r);
                    final+=fac*other_tensor;
                }

                // accumulate the result
                result->coeffs.task(dest, &FunctionNode<T,LDIM>::accumulate2, final, result->coeffs, dest, TaskAttributes::hipri());

                return Future<argT> (argT(fnode.is_leaf(),coeffT()));
            }

            this_type make_child(const keyT& child) const {
            	Key<LDIM> key1,key2;
            	child.break_apart(key1,key2);
            	const Key<LDIM> gkey = (dim==0) ? key1 : key2;

                return this_type(fimpl,result,iag.make_child(gkey),dim);
            }

            /// retrieve the coefficients (parent coeffs might be remote)
            Future<this_type> activate() const {
            	Future<ctL> g1=iag.activate();
                return result->world.taskq.add(detail::wrap_mem_fn(*const_cast<this_type *> (this),
                                               &this_type::forward_ctor),fimpl,result,g1,dim);
            }

            /// taskq-compatible ctor
            this_type forward_ctor(const implT* fimpl1, implL1* result1, const ctL& iag1, const int dim1) {
            	return this_type(fimpl1,result1,iag1,dim1);
            }

            template <typename Archive> void serialize(const Archive& ar) {
                ar & result & iag & fimpl & dim;
            }

        };


        /// project the low-dim function g on the hi-dim function f: this(x) = <f(x,y) | g(y)>

        /// invoked by result, a function of NDIM

        /// @param[in]  f   hi-dim function of LDIM+NDIM
        /// @param[in]  g   lo-dim function of LDIM
        /// @param[in]  dim over which dimensions to be integrated: 0..LDIM or LDIM..LDIM+NDIM-1
        template<size_t LDIM>
        void project_out2(const FunctionImpl<T,LDIM+NDIM>* f, const FunctionImpl<T,LDIM>* g, const int dim) {

            typedef std::pair< keyT,coeffT > pairT;
            typedef typename FunctionImpl<T,NDIM+LDIM>::dcT::const_iterator fiterator;

            // loop over all nodes of hi-dim f, compute the inner products with all
            // appropriate nodes of g, and accumulate in result
            fiterator end = f->get_coeffs().end();
            for (fiterator it=f->get_coeffs().begin(); it!=end; ++it) {
                const Key<LDIM+NDIM> key=it->first;
                const FunctionNode<T,LDIM+NDIM> fnode=it->second;
                const coeffT& fcoeff=fnode.coeff();

                if (fnode.is_leaf() and fcoeff.has_data()) {

                    // break key into particle: over key1 will be summed, over key2 will be
                    // accumulated, or vice versa, depending on dim
                    if (dim==0) {
                        Key<NDIM> key1;
                        Key<LDIM> key2;
                        key.break_apart(key1,key2);

                        Future<pairT> result;
                        //                        sock_it_to_me(key1, result.remote_ref(world));
                        g->task(coeffs.owner(key1), &implT::sock_it_to_me, key1, result.remote_ref(world), TaskAttributes::hipri());
                        woT::task(world.rank(),&implT:: template do_project_out<LDIM>,fcoeff,result,key1,key2,dim);

                    } else if (dim==1) {
                        Key<LDIM> key1;
                        Key<NDIM> key2;
                        key.break_apart(key1,key2);

                        Future<pairT> result;
                        //                        sock_it_to_me(key2, result.remote_ref(world));
                        g->task(coeffs.owner(key2), &implT::sock_it_to_me, key2, result.remote_ref(world), TaskAttributes::hipri());
                        woT::task(world.rank(),&implT:: template do_project_out<LDIM>,fcoeff,result,key2,key1,dim);

                    } else {
                        MADNESS_EXCEPTION("confused dim in project_out",1);
                    }
                }
            }
            this->compressed=false;
            this->nonstandard=false;
            this->redundant=true;
        }


        /// compute the inner product of two nodes of only some dimensions and accumulate on result

        /// invoked by result
        /// @param[in]  fcoeff  coefficients of high dimension LDIM+NDIM
        /// @param[in]  gpair   key and coeffs of low dimension LDIM (possibly a parent node)
        /// @param[in]  gkey    key of actual low dim node (possibly the same as gpair.first, iff gnode exists)
        /// @param[in]  dest    destination node for the result
        /// @param[in]  dim     which dimensions should be contracted: 0..LDIM-1 or LDIM..NDIM+LDIM-1
        template<size_t LDIM>
        void do_project_out(const coeffT& fcoeff, const std::pair<keyT,coeffT> gpair, const keyT& gkey,
                            const Key<NDIM>& dest, const int dim) const {

            const coeffT gcoeff=parent_to_child(gpair.second,gpair.first,gkey);

            // fast return if possible
            if (fcoeff.has_no_data() or gcoeff.has_no_data()) return;

            // let's specialize for the time being on SVD tensors for f and full tensors of half dim for g
            MADNESS_ASSERT(gcoeff.tensor_type()==TT_FULL);
            MADNESS_ASSERT(fcoeff.tensor_type()==TT_2D);
            const tensorT gtensor=gcoeff.full_tensor();
            tensorT result(cdata.vk);

            const int otherdim=(dim+1)%2;
            const int k=fcoeff.dim(0);
            std::vector<Slice> s(fcoeff.config().dim_per_vector()+1,_);

            // do the actual contraction
            for (int r=0; r<fcoeff.rank(); ++r) {
                s[0]=Slice(r,r);
                const tensorT contracted_tensor=fcoeff.config().ref_vector(dim)(s).reshape(k,k,k);
                const tensorT other_tensor=fcoeff.config().ref_vector(otherdim)(s).reshape(k,k,k);
                const double ovlp= gtensor.trace_conj(contracted_tensor);
                const double fac=ovlp * fcoeff.config().weights(r);
                result+=fac*other_tensor;
            }

            // accumulate the result
            coeffs.task(dest, &nodeT::accumulate2, result, coeffs, dest, TaskAttributes::hipri());
        }




        /// Returns the maximum local depth of the tree ... no communications.
        std::size_t max_local_depth() const;


        /// Returns the maximum depth of the tree ... collective ... global sum/broadcast
        std::size_t max_depth() const;

        /// Returns the max number of nodes on a processor
        std::size_t max_nodes() const;

        /// Returns the min number of nodes on a processor
        std::size_t min_nodes() const;

        /// Returns the size of the tree structure of the function ... collective global sum
        std::size_t tree_size() const;

        /// Returns the number of coefficients in the function ... collective global sum
        std::size_t size() const;

        /// Returns the number of coefficients in the function ... collective global sum
        std::size_t real_size() const;

        /// print tree size and size
        void print_size(const std::string name) const;

        /// print the number of configurations per node
        void print_stats() const;

        /// In-place scale by a constant
        void scale_inplace(const T q, bool fence);

        /// Out-of-place scale by a constant
        template <typename Q, typename F>
        void scale_oop(const Q q, const FunctionImpl<F,NDIM>& f, bool fence) {
            typedef typename FunctionImpl<F,NDIM>::nodeT fnodeT;
            typedef typename FunctionImpl<F,NDIM>::dcT fdcT;
            typename fdcT::const_iterator end = f.coeffs.end();
            for (typename fdcT::const_iterator it=f.coeffs.begin(); it!=end; ++it) {
                const keyT& key = it->first;
                const fnodeT& node = it->second;

                if (node.has_coeff()) {
                    coeffs.replace(key,nodeT(node.coeff()*q,node.has_children()));
                }
                else {
                    coeffs.replace(key,nodeT(coeffT(),node.has_children()));
                }
            }
            if (fence)
                world.gop.fence();
        }
    };

    namespace archive {
        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveLoadImpl<Archive,const FunctionImpl<T,NDIM>*> {
            static void load(const Archive& ar, const FunctionImpl<T,NDIM>*& ptr) {
                bool exists=false;
                ar & exists;
                if (exists) {
                    uniqueidT id;
                    ar & id;
                    World* world = World::world_from_id(id.get_world_id());
                    MADNESS_ASSERT(world);
                    ptr = static_cast< const FunctionImpl<T,NDIM>*>(world->ptr_from_id< WorldObject< FunctionImpl<T,NDIM> > >(id));
                    if (!ptr)
                        MADNESS_EXCEPTION("FunctionImpl: remote operation attempting to use a locally uninitialized object",0);
                } else {
                    ptr=nullptr;
                }
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveStoreImpl<Archive,const FunctionImpl<T,NDIM>*> {
            static void store(const Archive& ar, const FunctionImpl<T,NDIM>*const& ptr) {
                bool exists=(ptr) ? true : false;
                ar & exists;
                if (exists) ar & ptr->id();
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveLoadImpl<Archive, FunctionImpl<T,NDIM>*> {
            static void load(const Archive& ar, FunctionImpl<T,NDIM>*& ptr) {
                bool exists=false;
                ar & exists;
                if (exists) {
                    uniqueidT id;
                    ar & id;
                    World* world = World::world_from_id(id.get_world_id());
                    MADNESS_ASSERT(world);
                    ptr = static_cast< FunctionImpl<T,NDIM>*>(world->ptr_from_id< WorldObject< FunctionImpl<T,NDIM> > >(id));
                    if (!ptr)
                        MADNESS_EXCEPTION("FunctionImpl: remote operation attempting to use a locally uninitialized object",0);
                } else {
                    ptr=nullptr;
                }
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveStoreImpl<Archive, FunctionImpl<T,NDIM>*> {
            static void store(const Archive& ar, FunctionImpl<T,NDIM>*const& ptr) {
                bool exists=(ptr) ? true : false;
                ar & exists;
                if (exists) ar & ptr->id();
                //                ar & ptr->id();
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveLoadImpl<Archive, std::shared_ptr<const FunctionImpl<T,NDIM> > > {
            static void load(const Archive& ar, std::shared_ptr<const FunctionImpl<T,NDIM> >& ptr) {
                const FunctionImpl<T,NDIM>* f = nullptr;
                ArchiveLoadImpl<Archive, const FunctionImpl<T,NDIM>*>::load(ar, f);
                ptr.reset(f, [] (const FunctionImpl<T,NDIM> *p_) -> void {});
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveStoreImpl<Archive, std::shared_ptr<const FunctionImpl<T,NDIM> > > {
            static void store(const Archive& ar, const std::shared_ptr<const FunctionImpl<T,NDIM> >& ptr) {
                ArchiveStoreImpl<Archive, const FunctionImpl<T,NDIM>*>::store(ar, ptr.get());
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveLoadImpl<Archive, std::shared_ptr<FunctionImpl<T,NDIM> > > {
            static void load(const Archive& ar, std::shared_ptr<FunctionImpl<T,NDIM> >& ptr) {
                FunctionImpl<T,NDIM>* f = nullptr;
                ArchiveLoadImpl<Archive, FunctionImpl<T,NDIM>*>::load(ar, f);
                ptr.reset(f, [] (FunctionImpl<T,NDIM> *p_) -> void {});
            }
        };

        template <class Archive, class T, std::size_t NDIM>
        struct ArchiveStoreImpl<Archive, std::shared_ptr<FunctionImpl<T,NDIM> > > {
            static void store(const Archive& ar, const std::shared_ptr<FunctionImpl<T,NDIM> >& ptr) {
                ArchiveStoreImpl<Archive, FunctionImpl<T,NDIM>*>::store(ar, ptr.get());
            }
        };
    }

}

#endif // MADNESS_MRA_FUNCIMPL_H__INCLUDED