/usr/include/madness/mra/derivative.h is in libmadness-dev 0.10-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | /*
This file is part of MADNESS.
Copyright (C) 2007,2010 Oak Ridge National Laboratory
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
For more information please contact:
Robert J. Harrison
Oak Ridge National Laboratory
One Bethel Valley Road
P.O. Box 2008, MS-6367
email: harrisonrj@ornl.gov
tel: 865-241-3937
fax: 865-572-0680
*/
#ifndef MADNESS_DERIVATIVE_H__INCLUDED
#define MADNESS_DERIVATIVE_H__INCLUDED
#include <iostream>
#include <madness/world/MADworld.h>
#include <madness/world/worlddc.h>
#include <madness/world/print.h>
#include <madness/misc/misc.h>
#include <madness/tensor/tensor.h>
#include <madness/tensor/gentensor.h>
#include <madness/mra/key.h>
#include <madness/mra/funcdefaults.h>
/// \file mra/derivative.h
/// \brief Declaration and initialization of tree traversal functions and generic derivative
/// \ingroup mra
namespace madness {
template<typename T, std::size_t NDIM>
class FunctionNode;
template<typename T, std::size_t NDIM>
class Function;
}
namespace madness {
/// Tri-diagonal operator traversing tree primarily for derivative operator
/// \ingroup mra
template <typename T, std::size_t NDIM>
class DerivativeBase : public WorldObject< DerivativeBase<T, NDIM> > {
typedef WorldObject< DerivativeBase<T, NDIM> > woT;
protected:
World& world;
const std::size_t axis ; ///< Axis along which the operation is performed
const int k ; ///< Number of wavelets of the function
const BoundaryConditions<NDIM> bc;
const std::vector<long> vk; ///< (k,...) used to initialize Tensors
public:
friend class FunctionImpl<T, NDIM>;
typedef Tensor<T> tensorT ; ///< regular tensors, like rm, etc
typedef GenTensor<T> coeffT ; ///< holding the node's coeffs (possibly low rank)
typedef Key<NDIM> keyT ;
typedef std::pair<keyT,coeffT> argT ;
typedef FunctionImpl<T,NDIM> implT ;
typedef Function<T,NDIM> functionT;
typedef WorldContainer<Key<NDIM> , FunctionNode<T, NDIM> > dcT;
typedef FunctionNode<T,NDIM> nodeT;
DerivativeBase(World& world, std::size_t axis, int k, BoundaryConditions<NDIM> bc)
: WorldObject< DerivativeBase<T, NDIM> >(world)
, world(world)
, axis(axis)
, k(k)
, bc(bc)
, vk(NDIM,k)
{
// No! Cannot process incoming messages until the *derived* class is constructed.
// this->process_pending();
}
virtual ~DerivativeBase() { }
void forward_do_diff1(const implT* f, implT* df, const keyT& key,
const argT& left,
const argT& center,
const argT& right) const {
const dcT& coeffs = f->get_coeffs();
ProcessID owner = coeffs.owner(key);
if (owner == world.rank()) {
if (!left.second.has_data()) {
woT::task(owner, &madness::DerivativeBase<T,NDIM>::do_diff1,
f, df, key, find_neighbor(f, key,-1), center, right,
TaskAttributes::hipri());
}
else if (!right.second.has_data()) {
woT::task(owner, &madness::DerivativeBase<T,NDIM>::do_diff1,
f, df, key, left, center, find_neighbor(f, key,1),
TaskAttributes::hipri());
}
// Boundary node
else if (left.first.is_invalid() || right.first.is_invalid()) {
woT::task(owner, &madness::DerivativeBase<T,NDIM>::do_diff2b,
f, df, key, left, center, right);
}
// Interior node
else {
woT::task(owner, &madness::DerivativeBase<T,NDIM>::do_diff2i,
f, df, key, left, center, right);
}
}
else {
df->task(owner, &madness::FunctionImpl<T,NDIM>::forward_do_diff1,
this, f, key, left, center, right, TaskAttributes::hipri());
}
}
void do_diff1(const implT* f, implT* df, const keyT& key,
const argT& left,
const argT& center,
const argT& right) const {
MADNESS_ASSERT(axis<NDIM);
// if (left.second.size()==0 || right.second.size()==0) {
if ((!left.second.has_data()) || (!right.second.has_data())) {
// One of the neighbors is below us in the tree ... recur down
df->get_coeffs().replace(key,nodeT(coeffT(),true));
for (KeyChildIterator<NDIM> kit(key); kit; ++kit) {
const keyT& child = kit.key();
if ((child.translation()[axis]&1) == 0) {
// leftmost child automatically has right sibling
forward_do_diff1(f, df, child, left, center, center);
}
else {
// rightmost child automatically has left sibling
forward_do_diff1(f, df, child, center, center, right);
}
}
}
else {
forward_do_diff1(f, df, key, left, center, right);
}
}
virtual void do_diff2b(const implT* f, implT* df, const keyT& key,
const argT& left,
const argT& center,
const argT& right) const = 0;
virtual void do_diff2i(const implT* f, implT* df, const keyT& key,
const argT& left,
const argT& center,
const argT& right) const = 0;
/// Differentiate w.r.t. given coordinate (x=0, y=1, ...) with optional fence
/// Returns a new function with the same distribution
Function<T,NDIM>
operator()(const functionT& f, bool fence=true) const {
if (VERIFY_TREE) f.verify_tree();
if (f.is_compressed()) {
if (fence) {
f.reconstruct();
}
else {
MADNESS_EXCEPTION("diff: trying to diff a compressed function without fencing",0);
}
}
functionT df;
df.set_impl(f,false);
df.get_impl()->diff(this, f.get_impl().get(), fence);
return df;
}
static bool enforce_bc(int bc_left, int bc_right, Level n, Translation& l) {
Translation two2n = 1ul << n;
if (l < 0) {
if (bc_left == BC_ZERO || bc_left == BC_FREE || bc_left == BC_DIRICHLET || bc_left == BC_ZERONEUMANN || bc_left == BC_NEUMANN) {
return false; // f=0 BC, or no BC, or nonzero f BC, or zero deriv BC, or nonzero deriv BC
}
else if (bc_left == BC_PERIODIC) {
l += two2n; // Periodic BC
MADNESS_ASSERT(bc_left == bc_right); //check that both BCs are periodic
}
else {
MADNESS_EXCEPTION("enforce_bc: confused left BC?",bc_left);
}
}
else if (l >= two2n) {
if (bc_right == BC_ZERO || bc_right == BC_FREE || bc_right == BC_DIRICHLET || bc_right == BC_ZERONEUMANN || bc_right == BC_NEUMANN) {
return false; // f=0 BC, or no BC, or nonzero f BC, or zero deriv BC, or nonzero deriv BC
}
else if (bc_right == BC_PERIODIC) {
l -= two2n; // Periodic BC
MADNESS_ASSERT(bc_left == bc_right); //check that both BCs are periodic
}
else {
MADNESS_EXCEPTION("enforce_bc: confused BC right?",bc_right);
}
}
return true;
}
Key<NDIM> neighbor(const keyT& key, int step) const {
Vector<Translation,NDIM> l = key.translation();
l[axis] += step;
if (!enforce_bc(bc(axis,0), bc(axis,1), key.level(), l[axis])) {
return keyT::invalid();
}
else {
return keyT(key.level(),l);
}
}
Future<argT>
find_neighbor(const implT* f, const Key<NDIM>& key, int step) const {
keyT neigh = neighbor(key, step);
if (neigh.is_invalid()) {
return Future<argT>(argT(neigh,coeffT(vk,f->get_tensor_args()))); // Zero bc
}
else {
Future<argT> result;
f->task(f->get_coeffs().owner(neigh), &implT::sock_it_to_me, neigh, result.remote_ref(world), TaskAttributes::hipri());
return result;
}
}
template <typename Archive> void serialize(const Archive& ar) const {
throw "NOT IMPLEMENTED";
}
}; // End of the DerivativeBase class
/// Implements derivatives operators with variety of boundary conditions on simulation domain
template <typename T, std::size_t NDIM>
class Derivative : public DerivativeBase<T, NDIM> {
private:
typedef DerivativeBase<T, NDIM> baseT;
public:
typedef Tensor<T> tensorT ;
typedef GenTensor<T> coeffT ; ///< holding the node's coeffs (possibly low rank)
typedef Key<NDIM> keyT ;
typedef std::pair<keyT,coeffT> argT ;
typedef FunctionImpl<T,NDIM> implT ;
typedef Function<T,NDIM> functionT;
typedef WorldContainer< Key<NDIM> , FunctionNode<T, NDIM> > dcT;
typedef FunctionNode<T,NDIM> nodeT;
private:
const functionT g1; ///< Function describing the boundary condition on the right side
const functionT g2; ///< Function describing the boundary condition on the left side
// Tensors for holding the modified coefficients
Tensor<double> rm, r0, rp ; ///< Blocks of the derivative operator
Tensor<double> rmt, r0t, rpt ; ///< Blocks of the derivative operator, transposed
Tensor<double> left_rm, left_r0 ; ///< Blocks of the derivative for the left boundary
Tensor<double> left_rmt, left_r0t ; ///< Blocks of the derivative for the left boundary
Tensor<double> right_r0, right_rp; ///< Blocks of the derivative for the right boundary
Tensor<double> right_r0t, right_rpt; ///< Blocks of the derivative for the right boundary
Tensor<double> bv_left, bv_right ; ///< Blocks of the derivative operator for the boundary contribution
void do_diff2b(const implT* f, implT* df, const keyT& key,
const argT& left,
const argT& center,
const argT& right) const {
Vector<Translation,NDIM> l = key.translation();
double lev = (double) key.level();
coeffT d;
//left boundary
if (l[this->axis] == 0) {
coeffT tensor_right=df->parent_to_child(right.second, right.first, this->neighbor(key,1));
coeffT tensor_center=df->parent_to_child(center.second, center.first, key);
d= transform_dir(tensor_right,left_rmt,this->axis);
d+=transform_dir(tensor_center,left_r0t,this->axis);
}
else {
coeffT tensor_left=df->parent_to_child(left.second, left.first, this->neighbor(key,-1));
coeffT tensor_center=df->parent_to_child(center.second, center.first, key);
d= transform_dir(tensor_left,right_rpt,this->axis);
d+=transform_dir(tensor_center,right_r0t,this->axis);
}
d.scale(FunctionDefaults<NDIM>::get_rcell_width()[this->axis]*pow(2.0,lev));
d.reduce_rank(df->get_thresh());
df->get_coeffs().replace(key,nodeT(d,false));
// This is the boundary contribution (formally in BoundaryDerivative)
int bc_left = this->bc(this->axis,0);
int bc_right = this->bc(this->axis,1);
Future<argT> found_argT;
tensorT bf, bdry_t;
//left boundary
if (l[this->axis] == 0) {
if (bc_left != BC_PERIODIC && bc_left != BC_FREE && bc_left != BC_ZERO && bc_left != BC_ZERONEUMANN) {
bf = copy(bv_left);
found_argT = g1.get_impl()->find_me(key);
}
else {
return;
}
}
else { //right boundary
if (bc_right != BC_PERIODIC && bc_right != BC_FREE && bc_right != BC_ZERO && bc_right != BC_ZERONEUMANN) {
bf = copy(bv_right);
found_argT = g2.get_impl()->find_me(key);
}
else {
return;
}
}
tensorT gcoeffs = df->parent_to_child(found_argT.get().second, found_argT.get().first,key).full_tensor_copy();
//if (this->bc.get_bc().dim(0) == 1) {
if (NDIM == 1) {
bdry_t = gcoeffs[0]*bf;
}
else {
tensorT slice_aid(this->k); //vector of zeros
slice_aid[0] = 1;
tensorT tmp = inner(slice_aid, gcoeffs, 0, this->axis);
bdry_t = outer(bf,tmp);
if (this->axis) bdry_t = copy(bdry_t.cycledim(this->axis,0,this->axis)); // make it contiguous
}
bdry_t.scale(FunctionDefaults<NDIM>::get_rcell_width()[this->axis]);
if (l[this->axis]==0) {
if (bc_left == BC_DIRICHLET)
bdry_t.scale( pow(2.0,lev));
else if (bc_left ==BC_NEUMANN)
bdry_t.scale(FunctionDefaults<NDIM>::get_cell_width()[this->axis]);
}
else {
if (bc_right == BC_DIRICHLET)
bdry_t.scale( pow(2.0,lev));
else if (bc_right ==BC_NEUMANN)
bdry_t.scale(FunctionDefaults<NDIM>::get_cell_width()[this->axis]);
}
bdry_t += d.full_tensor_copy();;
df->get_coeffs().replace(key,nodeT(coeffT(bdry_t,df->get_thresh(),df->get_tensor_type()),false));
}
void do_diff2i(const implT* f, implT*df, const keyT& key,
const argT& left,
const argT& center,
const argT& right) const
{
//#if !HAVE_GENTENSOR
// coeffT d = madness::inner(rp,
// df->parent_to_child(left.second, left.first, baseT::neighbor(key,-1)).swapdim(this->axis,0),
// 1, 0);
// inner_result(r0,
// df->parent_to_child(center.second, center.first, key).swapdim(this->axis,0),
// 1, 0, d);
// inner_result(rm,
// df->parent_to_child(right.second, right.first, baseT::neighbor(key,1)).swapdim(this->axis,0),
// 1, 0, d);
// // flo thinks this is wrong for higher dimensions -- need to cycledim
// if (this->axis) d = copy(d.swapdim(this->axis,0)); // make it contiguous
// d.scale(FunctionDefaults<NDIM>::get_rcell_width()[this->axis]*pow(2.0,(double) key.level()));
// df->get_coeffs().replace(key,nodeT(d,false));
//
//#else
coeffT tensor_left=df->parent_to_child(left.second, left.first, this->neighbor(key,-1));
coeffT tensor_center=df->parent_to_child(center.second, center.first, key);
coeffT tensor_right=df->parent_to_child(right.second, right.first, this->neighbor(key,1));
coeffT d= transform_dir(tensor_left,rpt,this->axis);
d+=transform_dir(tensor_center,r0t,this->axis);
d+=transform_dir(tensor_right,rmt,this->axis);
d.scale(FunctionDefaults<NDIM>::get_rcell_width()[this->axis]*pow(2.0,(double) key.level()));
d.reduce_rank(df->get_thresh());
df->get_coeffs().replace(key,nodeT(d,false));
//#endif
}
void initCoefficients() {
r0 = Tensor<double>(this->k,this->k);
rp = Tensor<double>(this->k,this->k);
rm = Tensor<double>(this->k,this->k);
left_rm = Tensor<double>(this->k,this->k);
left_r0 = Tensor<double>(this->k,this->k);
right_r0 = Tensor<double>(this->k,this->k);
right_rp = Tensor<double>(this->k,this->k);
// These are the coefficients for the boundary contribution
bv_left = Tensor<double>(this->k);
bv_right = Tensor<double>(this->k);
int bc_left = this->bc(this->axis,0);
int bc_right = this->bc(this->axis,1);
double kphase = -1.0;
if (this->k%2 == 0) kphase = 1.0;
double iphase = 1.0;
for (int i=0; i<this->k; ++i) {
double jphase = 1.0;
for (int j=0; j<this->k; ++j) {
double gammaij = sqrt(double((2*i+1)*(2*j+1)));
double Kij;
if (((i-j)>0) && (((i-j)%2)==1))
Kij = 2.0;
else
Kij = 0.0;
r0(i,j) = 0.5*(1.0 - iphase*jphase - 2.0*Kij)*gammaij;
rm(i,j) = 0.5*jphase*gammaij;
rp(i,j) =-0.5*iphase*gammaij;
// Constraints on the derivative
if (bc_left == BC_ZERONEUMANN || bc_left == BC_NEUMANN) {
left_rm(i,j) = jphase*gammaij*0.5*(1.0 + iphase*kphase/this->k);
double phi_tmpj_left = 0;
for (int l=0; l<this->k; ++l) {
double gammalj = sqrt(double((2*l+1)*(2*j+1)));
double Klj;
if (((l-j)>0) && (((l-j)%2)==1)) Klj = 2.0;
else Klj = 0.0;
phi_tmpj_left += sqrt(double(2*l+1))*Klj*gammalj;
}
phi_tmpj_left = -jphase*phi_tmpj_left;
left_r0(i,j) = (0.5*(1.0 + iphase*kphase/this->k) - Kij)*gammaij + iphase*sqrt(double(2*i+1))*phi_tmpj_left/pow(this->k,2.);
}
else if (bc_left == BC_ZERO || bc_left == BC_DIRICHLET || bc_left == BC_FREE) {
left_rm(i,j) = rm(i,j);
// B.C. with a function
if (bc_left == BC_ZERO || bc_left == BC_DIRICHLET)
left_r0(i,j) = (0.5 - Kij)*gammaij;
// No B.C.
else if (bc_left == BC_FREE)
left_r0(i,j) = (0.5 - iphase*jphase - Kij)*gammaij;
}
// Constraints on the derivative
if (bc_right == BC_ZERONEUMANN || bc_right == BC_NEUMANN) {
right_rp(i,j) = -0.5*(iphase + kphase / this->k)*gammaij;
double phi_tmpj_right = 0;
for (int l=0; l<this->k; ++l) {
double gammalj = sqrt(double((2*l+1)*(2*j+1)));
double Klj;
if (((l-j)>0) && (((l-j)%2)==1)) Klj = 2.0;
else Klj = 0.0;
phi_tmpj_right += sqrt(double(2*l+1))*Klj*gammalj;
}
right_r0(i,j) = -(0.5*jphase*(iphase+ kphase/this->k) + Kij)*gammaij + sqrt(double(2*i+1))*phi_tmpj_right/pow(this->k,2.);
}
else if (bc_right == BC_ZERO || bc_right == BC_FREE || bc_right == BC_DIRICHLET) {
right_rp(i,j) = rp(i,j);
// Zero BC
if (bc_right == BC_ZERO || bc_right == BC_DIRICHLET)
right_r0(i,j) = -(0.5*iphase*jphase + Kij)*gammaij;
// No BC
else if (bc_right == BC_FREE)
right_r0(i,j) = (1.0 - 0.5*iphase*jphase - Kij)*gammaij;
}
jphase = -jphase;
}
iphase = -iphase;
}
// Coefficients for the boundary contributions
iphase = 1.0;
for (int i=0; i<this->k; ++i) {
iphase = -iphase;
if (bc_left == BC_DIRICHLET)
bv_left(i) = iphase*sqrt(double(2*i+1)); // vector for left dirichlet BC
else if(bc_left == BC_NEUMANN)
bv_left(i) = -iphase*sqrt(double(2*i+1))/pow(this->k,2.); // vector for left deriv BC
else
bv_left(i) = 0.0;
if (bc_right == BC_DIRICHLET)
bv_right(i) = sqrt(double(2*i+1)); // vector for right dirichlet BC
else if (bc_right == BC_NEUMANN)
bv_right(i) = sqrt(double(2*i+1))/pow(this->k,2.); // vector for right deriv BC
else
bv_right(i) = 0.0;
}
r0t = transpose(r0);
rpt = transpose(rp);
rmt = transpose(rm);
right_r0t = transpose(right_r0);
right_rpt = transpose(right_rp);
left_rmt = transpose(left_rm);
left_r0t = transpose(left_r0);
//print(rm.normf(),r0.normf(),rp.normf(),left_rm.normf(),left_r0.normf(),right_r0.normf(),right_rp.normf(),bv_left.normf(),bv_right.normf());
}
public:
typedef T opT;
/// Constructs a derivative operator
/// @param world The world
/// @param axis The direction to differentiate
/// @param bc Boundary conditions (default from FunctionDefaults)
/// @param g1 Function providing left boundary value (default empty)
/// @param g2 Function providing right boundary value (default empty)
/// @param k Wavelet order (default from FunctionDefaults)
Derivative(World& world,
std::size_t axis,
const BoundaryConditions<NDIM>& bc=FunctionDefaults<NDIM>::get_bc(),
const functionT g1=functionT(),
const functionT g2=functionT(),
int k=FunctionDefaults<NDIM>::get_k())
: DerivativeBase<T, NDIM>(world, axis, k, bc)
, g1(g1)
, g2(g2)
{
MADNESS_ASSERT(axis<NDIM);
initCoefficients();
g1.reconstruct();
g2.reconstruct();
this->process_pending();
}
virtual ~Derivative() { }
};
/// Convenience function returning derivative operator with free-space boundary conditions
template <typename T, std::size_t NDIM>
Derivative<T,NDIM>
free_space_derivative(World& world, int axis, int k=FunctionDefaults<NDIM>::get_k()) {
return Derivative<T, NDIM>(world, axis, BoundaryConditions<NDIM>(BC_FREE), Function<T,NDIM>(), Function<T,NDIM>(), k);
}
/// Conveinence function returning derivative operator with periodic boundary conditions
template <typename T, std::size_t NDIM>
Derivative<T,NDIM>
periodic_derivative(World& world, int axis, int k=FunctionDefaults<NDIM>::get_k()) {
return Derivative<T, NDIM>(world, axis, BoundaryConditions<NDIM>(BC_PERIODIC), Function<T,NDIM>(), Function<T,NDIM>(), k);
}
/// Applies derivative operator to function (for syntactic equivalence to integral operator apply)
template <typename T, std::size_t NDIM>
Function<T,NDIM>
apply(const Derivative<T,NDIM>& D, const Function<T,NDIM>& f, bool fence=true) {
return D(f,fence);
}
/// Convenience function returning vector of derivative operators implementing grad (\f$ \nabla \f$)
/// This will only work for BC_ZERO, BC_PERIODIC, BC_FREE and
/// BC_ZERONEUMANN since we are not passing in any boundary
/// functions.
template <typename T, std::size_t NDIM>
std::vector< std::shared_ptr< Derivative<T,NDIM> > >
gradient_operator(World& world,
const BoundaryConditions<NDIM>& bc = FunctionDefaults<NDIM>::get_bc(),
int k = FunctionDefaults<NDIM>::get_k()) {
std::vector< std::shared_ptr< Derivative<T,NDIM> > > r(NDIM);
for (std::size_t d=0; d<NDIM; ++d) {
MADNESS_ASSERT(bc(d,0)!=BC_DIRICHLET && bc(d,1)!=BC_DIRICHLET);
MADNESS_ASSERT(bc(d,0)!=BC_NEUMANN && bc(d,1)!=BC_NEUMANN);
r[d].reset(new Derivative<T,NDIM>(world,d,bc,Function<T,NDIM>(),Function<T,NDIM>(),k));
}
return r;
}
namespace archive {
template <class Archive, class T, std::size_t NDIM>
struct ArchiveLoadImpl<Archive,const DerivativeBase<T,NDIM>*> {
static void load(const Archive& ar, const DerivativeBase<T,NDIM>*& ptr) {
WorldObject< DerivativeBase<T,NDIM> >* p = nullptr;
ar & p;
ptr = static_cast< const DerivativeBase<T,NDIM>* >(p);
}
};
template <class Archive, class T, std::size_t NDIM>
struct ArchiveStoreImpl<Archive,const DerivativeBase<T,NDIM>*> {
static void store(const Archive& ar, const DerivativeBase<T,NDIM>* const & ptr) {
ar & ptr->id();
}
};
}
} // End of the madness namespace
#endif // MADNESS_MRA_DERIVATIVE_H_INCLUDED
|