/usr/include/m4rie/strassen.h is in libm4rie-dev 20140914-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 | /**
* \file strassen.h
* \brief Strassen-Winograd multiplication for mzed_t
* \author Martin Albrecht <martinralbrecht@googlemail.com>
*/
#ifndef M4RIE_STRASSEN_H
#define M4RIE_STRASSEN_H
/******************************************************************************
*
* M4RIE: Linear Algebra over GF(2^e)
*
* Copyright (C) 2010 Martin Albrecht <martinralbrecht@googlemail.com>
*
* Distributed under the terms of the GNU General Public License (GEL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
******************************************************************************/
/**
* \brief \f$ C = A \cdot B \f$ using Strassen-Winograd.
*
* This function uses Strassen-Winograd multiplication (Bodrato
* variant) recursively until it reaches the cutoff, where it switches
* to Newton-John table based multiplication or naive multiplication.
*
* \param C Preallocated product matrix, may be NULL for allocation.
* \param A Input matrix A.
* \param B Input matrix B.
* \param cutoff Crossover to basecase dimension > 64 or 0 for heuristic choice
*
* \ingroup Multiplication
*/
mzed_t *mzed_mul_strassen(mzed_t *C, const mzed_t *A, const mzed_t *B, int cutoff);
/**
* \brief \f$ C = C + A \cdot B \f$ using Strassen-Winograd.
*
* This function uses Strassen-Winograd multiplication (Bodrato
* variant) recursively until it reaches the cutoff, where it switches
* to Newton-John table based multiplication or naive multiplication.
*
* \param C Preallocated product matrix, may be NULL for allocation.
* \param A Input matrix A.
* \param B Input matrix B.
* \param cutoff Crossover to basecase dimension > 64 or 0 for heuristic choice.
*
* \ingroup Multiplication
*/
mzed_t *mzed_addmul_strassen(mzed_t *C, const mzed_t *A, const mzed_t *B, int cutoff);
/**
* \brief \f$ C = A \cdot B \f$ using Strassen-Winograd.
*
* This function uses Strassen-Winograd multiplication (Bodrato
* variant) recursively until it reaches the cutoff, where it switches
* to Newton-John table based multiplication or naive multiplication.
*
* \param C Preallocated product matrix.
* \param A Input matrix A.
* \param B Input matrix B.
* \param cutoff Crossover to basecase dimension > 64
*
* \ingroup Multiplication
*
*/
mzed_t *_mzed_mul_strassen(mzed_t *C, const mzed_t *A, const mzed_t *B, int cutoff);
/**
* \brief \f$ C = A \cdot B \f$ using Strassen-Winograd.
*
* This function uses Strassen-Winograd multiplication (Bodrato
* variant) recursively until it reaches the cutoff, where it switches
* to Newton-John table based multiplication or naive multiplication.
*
* \param C Preallocated product matrix.
* \param A Input matrix A.
* \param B Input matrix B.
* \param cutoff Crossover to basecase dimension > 64
*
* \ingroup Multiplication
*/
mzed_t *_mzed_addmul_strassen(mzed_t *C, const mzed_t *A, const mzed_t *B, int cutoff);
/**
* \brief Return heurstic choice for crossover parameter for Strassen-Winograd multiplication given A, B and C.
*
* \param C Matrix (ignored)
* \param A Matrix
* \param B Martix (ignored)
*
* \ingroup Multiplication
*/
rci_t _mzed_strassen_cutoff(const mzed_t *C, const mzed_t *A, const mzed_t *B);
#endif //M4RIE_STRASSEN_H
|