/usr/include/m4rie/ple.h is in libm4rie-dev 20140914-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | /**
* \file ple.h
* \brief PLE decomposition: \f$ L \cdot E = P \cdot A\f$.
*
* \author Martin Albrecht <martinralbrecht@googlemail.com>
*/
#ifndef M4RIE_PLE_H
#define M4RIE_PLE_H
/******************************************************************************
*
* M4RIE: Linear Algebra over GF(2^e)
*
* Copyright (C) 2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
* Distributed under the terms of the GNU General Public License (GEL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
******************************************************************************/
#include <m4ri/m4ri.h>
#include <m4rie/mzed.h>
#include <m4rie/mzd_slice.h>
#include <m4rie/conversion.h>
/**
* \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
*
* Modifies A in place to store lower triangular L below (and on) the
* main diagonal and E -- an echelon form of A -- above the main
* diagonal (pivots are stored in Q). P and Q are updated with row and
* column permutations respectively.
*
* This function uses naive cubic PLE decomposition depending on the
* size of the underlying field.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
*
* \ingroup PLE
*
* \sa mzed_ple_newton_john() mzed_ple()
*/
rci_t mzed_ple_naive(mzed_t *A, mzp_t *P, mzp_t *Q);
/**
* \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
*
* Modifies A in place to store lower triangular L below (and on) the
* main diagonal and E -- an echelon form of A -- above the main
* diagonal (pivots are stored in Q). P and Q are updated with row and
* column permutations respectively.
*
* This function uses either asymptotically fast PLE decomposition by
* reducing it to matrix multiplication or naive cubic PLE
* decomposition depending on the size of the underlying field. If
* asymptotically fast PLE decomposition is used, then the algorithm
* switches to mzed_ple_newton_john if e * ncols * nrows is <= cutoff
* where e is the exponent of the finite field.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
* \param cutoff Integer
*
* \ingroup PLE
*
* \sa mzed_ple_naive() mzed_ple_newton_john() mzed_ple()
*/
rci_t _mzd_slice_ple(mzd_slice_t *A, mzp_t *P, mzp_t *Q, rci_t cutoff);
/**
* \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
*
* Modifies A in place to store lower triangular L below (and on) the
* main diagonal and E -- an echelon form of A -- above the main
* diagonal (pivots are stored in Q). P and Q are updated with row and
* column permutations respectively.
*
* This function implements asymptotically fast PLE decomposition by
* reducing it to matrix multiplication.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
*
* \ingroup PLE
*
* \sa mzed_ple_naive() mzed_ple_newton_john() _mzd_slice_ple()
*/
static inline rci_t mzd_slice_ple(mzd_slice_t *A, mzp_t *P, mzp_t *Q) {
assert(P->length == A->nrows);
assert(Q->length == A->ncols);
return _mzd_slice_ple(A, P, Q, 0);
}
/**
* \brief PLUQ decomposition: \f$ L \cdot U \cdot Q = P \cdot A\f$.
*
* This function implements asymptotically fast PLE decomposition by
* reducing it to matrix multiplication. From PLE the PLUQ
* decomposition is then obtained.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
* \param cutoff Crossover to base case if mzed_t::w * mzed_t::ncols * mzed_t::nrows < cutoff.
*
* \ingroup PLE
*/
rci_t _mzd_slice_pluq(mzd_slice_t *A, mzp_t *P, mzp_t *Q, rci_t cutoff);
/**
* \brief PLUQ decomposition: \f$ L \cdot U \cdot Q = P \cdot A\f$.
*
* This function implements asymptotically fast PLE decomposition by
* reducing it to matrix multiplication. From PLE the PLUQ
* decomposition is then obtained.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
*
* \ingroup PLE
*/
static inline rci_t mzd_slice_pluq(mzd_slice_t *A, mzp_t *P, mzp_t *Q) {
assert(P->length == A->nrows);
assert(Q->length == A->ncols);
return _mzd_slice_pluq(A, P, Q, 0);
}
/**
* \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
*
* Modifies A in place to store lower triangular L below (and on) the
* main diagonal and E -- an echelon form of A -- above the main
* diagonal (pivots are stored in Q). P and Q are updated with row and
* column permutations respectively.
*
* This function uses either asymptotically fast PLE decomposition by
* reducing it to matrix multiplication or naive cubic PLE
* decomposition depending on the size of the underlying field. If
* asymptotically fast PLE decomposition is used, then the algorithm
* switches to mzed_ple_newton_john if e * ncols * nrows is <= cutoff
* where e is the exponent of the finite field.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
* \param cutoff Integer >= 0
*
* \ingroup PLE
*
* \sa mzed_ple_naive() mzed_ple_newton_john() _mzed_ple()
*/
rci_t _mzed_ple(mzed_t *A, mzp_t *P, mzp_t *Q, rci_t cutoff);
/**
* Default crossover to PLE base case (Newton-John based).
*/
#define __M4RIE_PLE_CUTOFF (__M4RI_CPU_L2_CACHE<<2)
/**
* \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
*
* Modifies A in place to store lower triangular L below (and on) the
* main diagonal and E -- an echelon form of A -- above the main
* diagonal (pivots are stored in Q). P and Q are updated with row and
* column permutations respectively.
*
* This function uses either asymptotically fast PLE decomposition by
* reducing it to matrix multiplication or naive cubic PLE
* decomposition depending on the size of the underlying field.
*
* \param A Matrix
* \param P Permutation vector of length A->nrows
* \param Q Permutation vector of length A->ncols
*
* \ingroup PLE
*
* \sa mzed_ple_naive() mzed_ple_newton_john() _mzed_ple()
*
*/
static inline rci_t mzed_ple(mzed_t *A, mzp_t *P, mzp_t *Q) {
return _mzed_ple(A, P, Q, __M4RIE_PLE_CUTOFF);
}
#endif //M4RIE_PLE_H
|