This file is indexed.

/usr/include/m4rie/ple.h is in libm4rie-dev 20140914-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
/**
 * \file ple.h
 * \brief PLE decomposition: \f$ L \cdot E = P \cdot A\f$.
 *
 * \author Martin Albrecht <martinralbrecht@googlemail.com>
 */

#ifndef M4RIE_PLE_H
#define M4RIE_PLE_H

/******************************************************************************
*
*            M4RIE: Linear Algebra over GF(2^e)
*
*    Copyright (C) 2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
*  Distributed under the terms of the GNU General Public License (GEL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
******************************************************************************/

#include <m4ri/m4ri.h>
#include <m4rie/mzed.h>
#include <m4rie/mzd_slice.h>
#include <m4rie/conversion.h>

/**
 * \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
 *
 * Modifies A in place to store lower triangular L below (and on) the
 * main diagonal and E -- an echelon form of A -- above the main
 * diagonal (pivots are stored in Q). P and Q are updated with row and
 * column permutations respectively.
 *
 * This function uses naive cubic PLE decomposition depending on the
 * size of the underlying field.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 *
 * \ingroup PLE
 *
 * \sa mzed_ple_newton_john() mzed_ple()
 */

rci_t mzed_ple_naive(mzed_t *A, mzp_t *P, mzp_t *Q);

/**
 * \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
 *
 * Modifies A in place to store lower triangular L below (and on) the
 * main diagonal and E -- an echelon form of A -- above the main
 * diagonal (pivots are stored in Q). P and Q are updated with row and
 * column permutations respectively.
 *
 * This function uses either asymptotically fast PLE decomposition by
 * reducing it to matrix multiplication or naive cubic PLE
 * decomposition depending on the size of the underlying field. If
 * asymptotically fast PLE decomposition is used, then the algorithm
 * switches to mzed_ple_newton_john if e * ncols * nrows is <= cutoff
 * where e is the exponent of the finite field.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 * \param cutoff Integer
 *
 * \ingroup PLE
 *
 * \sa mzed_ple_naive() mzed_ple_newton_john() mzed_ple()
 */

rci_t _mzd_slice_ple(mzd_slice_t *A, mzp_t *P, mzp_t *Q, rci_t cutoff);

/**
 * \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
 *
 * Modifies A in place to store lower triangular L below (and on) the
 * main diagonal and E -- an echelon form of A -- above the main
 * diagonal (pivots are stored in Q). P and Q are updated with row and
 * column permutations respectively.
 *
 * This function implements asymptotically fast PLE decomposition by
 * reducing it to matrix multiplication.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 *
 * \ingroup PLE
 *
 * \sa mzed_ple_naive() mzed_ple_newton_john() _mzd_slice_ple()
 */

static inline rci_t mzd_slice_ple(mzd_slice_t *A, mzp_t *P, mzp_t *Q) {
  assert(P->length == A->nrows);
  assert(Q->length == A->ncols);
  return _mzd_slice_ple(A, P, Q, 0);
}

/**
 * \brief PLUQ decomposition: \f$ L \cdot U \cdot Q = P \cdot A\f$.
 *
 * This function implements asymptotically fast PLE decomposition by
 * reducing it to matrix multiplication. From PLE the PLUQ
 * decomposition is then obtained.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 * \param cutoff Crossover to base case if mzed_t::w * mzed_t::ncols * mzed_t::nrows < cutoff.
 *
 * \ingroup PLE
 */

rci_t _mzd_slice_pluq(mzd_slice_t *A, mzp_t *P, mzp_t *Q, rci_t cutoff);

/**
 * \brief PLUQ decomposition: \f$ L \cdot U \cdot Q = P \cdot A\f$.
 *
 * This function implements asymptotically fast PLE decomposition by
 * reducing it to matrix multiplication. From PLE the PLUQ
 * decomposition is then obtained.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 *
 * \ingroup PLE
 */

static inline rci_t mzd_slice_pluq(mzd_slice_t *A, mzp_t *P, mzp_t *Q) {
  assert(P->length == A->nrows);
  assert(Q->length == A->ncols);
  return _mzd_slice_pluq(A, P, Q, 0);
}


/**
 * \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
 *
 * Modifies A in place to store lower triangular L below (and on) the
 * main diagonal and E -- an echelon form of A -- above the main
 * diagonal (pivots are stored in Q). P and Q are updated with row and
 * column permutations respectively.
 *
 * This function uses either asymptotically fast PLE decomposition by
 * reducing it to matrix multiplication or naive cubic PLE
 * decomposition depending on the size of the underlying field. If
 * asymptotically fast PLE decomposition is used, then the algorithm
 * switches to mzed_ple_newton_john if e * ncols * nrows is <= cutoff
 * where e is the exponent of the finite field.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 * \param cutoff Integer >= 0
 *
 * \ingroup PLE
 *
 * \sa mzed_ple_naive() mzed_ple_newton_john() _mzed_ple()
 */

rci_t _mzed_ple(mzed_t *A, mzp_t *P, mzp_t *Q, rci_t cutoff);

/**
 * Default crossover to PLE base case (Newton-John based).
 */

#define __M4RIE_PLE_CUTOFF (__M4RI_CPU_L2_CACHE<<2)

/**
 * \brief PLE decomposition: \f$ L \cdot E = P \cdot A \f$.
 *
 * Modifies A in place to store lower triangular L below (and on) the
 * main diagonal and E -- an echelon form of A -- above the main
 * diagonal (pivots are stored in Q). P and Q are updated with row and
 * column permutations respectively.
 *
 * This function uses either asymptotically fast PLE decomposition by
 * reducing it to matrix multiplication or naive cubic PLE
 * decomposition depending on the size of the underlying field.
 *
 * \param A Matrix
 * \param P Permutation vector of length A->nrows
 * \param Q Permutation vector of length A->ncols
 *
 * \ingroup PLE
 *
 * \sa mzed_ple_naive() mzed_ple_newton_john() _mzed_ple()
 *
 */

static inline rci_t mzed_ple(mzed_t *A, mzp_t *P, mzp_t *Q) {
  return _mzed_ple(A, P, Q, __M4RIE_PLE_CUTOFF);
}

#endif //M4RIE_PLE_H