This file is indexed.

/usr/include/m4rie/newton_john.h is in libm4rie-dev 20140914-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
/**
 * \file newton_john.h
 *
 * \brief Newton-John table based algorithms
 *
 * \note These tables were formally known as Travolta tables.
 *
 * \author Martin Albrecht <martinralbrecht@googlemail.com>
 */

#ifndef M4RIE_NEWTON_JOHN_H
#define M4RIE_NEWTON_JOHN_H

/******************************************************************************
*
*            M4RIE: Linear Algebra over GF(2^e)
*
*    Copyright (C) 2010,2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
*  Distributed under the terms of the GNU General Public License (GEL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
******************************************************************************/

#include <m4rie/gf2e.h>
#include <m4rie/mzed.h>
#include <m4rie/mzd_slice.h>

/**
 * \brief Newton-John table
 */

typedef struct {
  rci_t *L;  /**< A map such that L[a] points to the row where the first entry is a. */
  mzed_t *M; /**< Table of length \e with multiples of the input s.t. \f$a^i\f$ is the first entry of row \f$i\f$. */
  mzed_t *T; /**< Actual table of length \f$2^e\f$ of all linear combinations of T. */
} njt_mzed_t;

/**
 * \brief Allocate Newton-John table of dimension gf2e::degree<<1 * ncols.
 *
 * \param ff Finite field.
 * \param ncols Integer > 0.
 */

njt_mzed_t *njt_mzed_init(const gf2e *ff, const rci_t ncols);

/**
 * \brief Free Newton-John table
 *
 * \param t Table
 */

void njt_mzed_free(njt_mzed_t *t);

/**
 * \brief Construct Newton-John table T for row r of A, and element A[r,c].
 *
 * \param T Preallocated Newton-John table or NULL.
 * \param A Matrix.
 * \param r Row index.
 * \param c Column index.
 */

njt_mzed_t * mzed_make_table(njt_mzed_t *T, const mzed_t *A, const rci_t r, const rci_t c);

/**
 * \brief \f$C = A \cdot B\f$ using Newton-John tables.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa mzed_mul _mzed_mul_newton_john0()
 *
 * \ingroup Multiplication
 */

mzed_t *mzed_mul_newton_john(mzed_t *C, const mzed_t *A, const mzed_t *B);

/**
 * \brief \f$C = C + A \cdot B\f$ using Newton-John tables.
 *
 * \param C Preallocated product matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzed_mul_newton_john() mzed_mul()
 *
 * \ingroup Multiplication
 */

mzed_t *mzed_addmul_newton_john(mzed_t *C, const mzed_t *A, const mzed_t *B);

/**
 * \brief \f$C = C + A \cdot B\f$ using Newton-John tables.
 *
 * This is a simple implementation for clarity of presentation. Do not
 * call, it is slow.
 *
 * \param C Preallocated product matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa mzed_mul_newton_john() mzed_mul()
 *
 * \ingroup Multiplication
 */

mzed_t *_mzed_mul_newton_john0(mzed_t *C, const mzed_t *A, const mzed_t *B);

/**
 * \brief \f$C = C + A \cdot B\f$ using Newton-John tables.
 *
 * This is an optimised implementation.
 *
 * \param C Preallocated product matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa mzed_mul()
 *
 * \ingroup Multiplication
 */

mzed_t *_mzed_mul_newton_john(mzed_t *C, const mzed_t *A, const mzed_t *B);

/**
 * \brief Reduce matrix A to row echelon form using Gauss-Newton-John
 * elimination.
 *
 * \param A Matrix to be reduced.
 * \param full If set to true, the reduced row echelon form will be
 * computed.
 *
 * \ingroup Echelon
 */

rci_t mzed_echelonize_newton_john(mzed_t *A, int full);

/**
 * \brief Invert the matrix A using Gauss-Newton-John elimination.
 *
 * \param B Preallocated space for inversion matrix, may be NULL for
 * automatic creation.
 * \param A Matrix to be inverted.
 */

mzed_t *mzed_invert_newton_john(mzed_t *B, const mzed_t *A);

/**
 * \brief \f$B = L^{-1} \cdot B\f$ using Newton-John tables.
 *
 * \param L Lower-triangular matrix (other entries are ignored).
 * \param B Matrix.
 *
 * \ingroup Triangular
 */

void mzed_trsm_lower_left_newton_john(const mzed_t *L, mzed_t *B);

/**
 * \brief \f$B = L^{-1} \cdot B\f$ using Newton-John tables.
 *
 * \param L Lower-triangular matrix (other entries are ignored).
 * \param B Matrix.
 *
 * \ingroup Triangular
 */

void mzd_slice_trsm_lower_left_newton_john(const mzd_slice_t *L, mzd_slice_t *B);

/**
 * \brief \f$B = U^{-1} \cdot B\f$ using Newton-John tables.
 *
 * \param U Upper-triangular matrix (other entries are ignored).
 * \param B Matrix.
 *
 * \ingroup Triangular
*/

void mzed_trsm_upper_left_newton_john(const mzed_t *U, mzed_t *B);

/**
 * \brief \f$B = U^{-1} \cdot B\f$ using Newton-John tables.
 *
 * \param U Upper-triangular matrix (other entries are ignored).
 * \param B Matrix.
 *
 * \ingroup Triangular
 */

void mzd_slice_trsm_upper_left_newton_john(const mzd_slice_t *U, mzd_slice_t *B);

/**
 * \brief PLE decomposition: \f$L \cdot E = P\cdot A\f$ using Newton-John tables.
 *
 * \ingroup PLE
 */

rci_t mzed_ple_newton_john(mzed_t *A, mzp_t *P, mzp_t *Q);

/**
 * \brief The function looks up 6 entries from position i,startcol in
 * each row and adds the appropriate row from T to the row i.
 *
 * This process is iterated for i from startrow to stoprow
 * (exclusive).
 *
 * \param M Matrix to operate on
 * \param startrow top row which is operated on
 * \param endrow bottom row which is operated on
 * \param startcol Starting column for addition
 * \param T Newton-John table
 *
 * \ingroup RowOperations
 */

static inline void mzed_process_rows(mzed_t *M, const rci_t startrow, const rci_t endrow, rci_t startcol, const njt_mzed_t *T) {
  mzd_process_rows(M->x, startrow, endrow, startcol*M->w, M->w, T->T->x, T->L);
}

/**
 * \brief Same as mzed_process_rows but works with two Newton-John tables
 * in parallel.
 *
 * \param M Matrix to operate on
 * \param startrow top row which is operated on
 * \param endrow bottom row which is operated on
 * \param startcol Starting column for addition
 * \param T0 Newton-John table
 * \param T1 Newton-John table
 *
 * \ingroup RowOperations
 */

static inline void mzed_process_rows2(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol, 
                                      const njt_mzed_t *T0, const njt_mzed_t *T1) {
  mzd_process_rows2(M->x, startrow, endrow, startcol*M->w, 2*M->w, T0->T->x, T0->L, T1->T->x, T1->L);
}

/**
 * \brief Same as mzed_process_rows but works with three Newton-John
 * tables in parallel.
 *
 * \param M Matrix to operate on
 * \param startrow top row which is operated on
 * \param endrow bottom row which is operated on
 * \param startcol Starting column for addition
 * \param T0 Newton-John table
 * \param T1 Newton-John table
 * \param T2 Newton-John table
 *
 * \ingroup RowOperations
 */

static inline void mzed_process_rows3(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
                                      const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2) {
  mzd_process_rows3(M->x, startrow, endrow, startcol*M->w, 3*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L);
}

/**
 * \brief Same as mzed_process_rows but works with four Newton-John
 * tables in parallel.
 *
 * \param M Matrix to operate on
 * \param startrow top row which is operated on
 * \param endrow bottom row which is operated on
 * \param startcol Starting column for addition
 * \param T0 Newton-John table
 * \param T1 Newton-John table
 * \param T2 Newton-John table
 * \param T3 Newton-John table
 *
 * \ingroup RowOperations
 */

static inline void mzed_process_rows4(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
                                      const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2, const njt_mzed_t *T3) {
  mzd_process_rows4(M->x, startrow, endrow, startcol*M->w, 4*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L, T3->T->x, T3->L);
}

/**
 * \brief Same as mzed_process_rows but works with five Newton-John
 * tables in parallel.
 *
 * \param M Matrix to operate on
 * \param startrow top row which is operated on
 * \param endrow bottom row which is operated on
 * \param startcol Starting column for addition
 * \param T0 Newton-John table
 * \param T1 Newton-John table
 * \param T2 Newton-John table
 * \param T3 Newton-John table
 * \param T4 Newton-John table
 *
 * \ingroup RowOperations
 */

static inline void mzed_process_rows5(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
                                      const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2, const njt_mzed_t *T3, const njt_mzed_t *T4) {
  mzd_process_rows5(M->x, startrow, endrow, startcol*M->w, 5*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L, T3->T->x, T3->L, T4->T->x, T4->L);
}


/**
 * \brief Same as mzed_process_rows but works with six Newton-John tables
 * in parallel.
 *
 * \param M Matrix to operate on
 * \param startrow top row which is operated on
 * \param endrow bottom row which is operated on
 * \param startcol Starting column for addition
 * \param T0 Newton-John table
 * \param T1 Newton-John table
 * \param T2 Newton-John table
 * \param T3 Newton-John table
 * \param T4 Newton-John table
 * \param T5 Newton-John table
 *
 * \ingroup RowOperations
 */

static inline void mzed_process_rows6(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
                                      const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2,
                                      const njt_mzed_t *T3, const njt_mzed_t *T4, const njt_mzed_t *T5) {
  mzd_process_rows6(M->x, startrow, endrow, startcol*M->w, 6*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L, T3->T->x, T3->L, T4->T->x, T4->L, T5->T->x, T5->L);
}


#endif //M4RIE_NEWTON_JOHN_H