/usr/include/m4rie/newton_john.h is in libm4rie-dev 20140914-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | /**
* \file newton_john.h
*
* \brief Newton-John table based algorithms
*
* \note These tables were formally known as Travolta tables.
*
* \author Martin Albrecht <martinralbrecht@googlemail.com>
*/
#ifndef M4RIE_NEWTON_JOHN_H
#define M4RIE_NEWTON_JOHN_H
/******************************************************************************
*
* M4RIE: Linear Algebra over GF(2^e)
*
* Copyright (C) 2010,2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
* Distributed under the terms of the GNU General Public License (GEL)
* version 2 or higher.
*
* This code is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* The full text of the GPL is available at:
*
* http://www.gnu.org/licenses/
******************************************************************************/
#include <m4rie/gf2e.h>
#include <m4rie/mzed.h>
#include <m4rie/mzd_slice.h>
/**
* \brief Newton-John table
*/
typedef struct {
rci_t *L; /**< A map such that L[a] points to the row where the first entry is a. */
mzed_t *M; /**< Table of length \e with multiples of the input s.t. \f$a^i\f$ is the first entry of row \f$i\f$. */
mzed_t *T; /**< Actual table of length \f$2^e\f$ of all linear combinations of T. */
} njt_mzed_t;
/**
* \brief Allocate Newton-John table of dimension gf2e::degree<<1 * ncols.
*
* \param ff Finite field.
* \param ncols Integer > 0.
*/
njt_mzed_t *njt_mzed_init(const gf2e *ff, const rci_t ncols);
/**
* \brief Free Newton-John table
*
* \param t Table
*/
void njt_mzed_free(njt_mzed_t *t);
/**
* \brief Construct Newton-John table T for row r of A, and element A[r,c].
*
* \param T Preallocated Newton-John table or NULL.
* \param A Matrix.
* \param r Row index.
* \param c Column index.
*/
njt_mzed_t * mzed_make_table(njt_mzed_t *T, const mzed_t *A, const rci_t r, const rci_t c);
/**
* \brief \f$C = A \cdot B\f$ using Newton-John tables.
*
* \param C Preallocated return matrix, may be NULL for automatic creation.
* \param A Input matrix A.
* \param B Input matrix B.
*
* \sa mzed_mul _mzed_mul_newton_john0()
*
* \ingroup Multiplication
*/
mzed_t *mzed_mul_newton_john(mzed_t *C, const mzed_t *A, const mzed_t *B);
/**
* \brief \f$C = C + A \cdot B\f$ using Newton-John tables.
*
* \param C Preallocated product matrix, may be NULL for automatic creation.
* \param A Input matrix A.
* \param B Input matrix B.
*
* \sa _mzed_mul_newton_john() mzed_mul()
*
* \ingroup Multiplication
*/
mzed_t *mzed_addmul_newton_john(mzed_t *C, const mzed_t *A, const mzed_t *B);
/**
* \brief \f$C = C + A \cdot B\f$ using Newton-John tables.
*
* This is a simple implementation for clarity of presentation. Do not
* call, it is slow.
*
* \param C Preallocated product matrix.
* \param A Input matrix A.
* \param B Input matrix B.
*
* \sa mzed_mul_newton_john() mzed_mul()
*
* \ingroup Multiplication
*/
mzed_t *_mzed_mul_newton_john0(mzed_t *C, const mzed_t *A, const mzed_t *B);
/**
* \brief \f$C = C + A \cdot B\f$ using Newton-John tables.
*
* This is an optimised implementation.
*
* \param C Preallocated product matrix.
* \param A Input matrix A.
* \param B Input matrix B.
*
* \sa mzed_mul()
*
* \ingroup Multiplication
*/
mzed_t *_mzed_mul_newton_john(mzed_t *C, const mzed_t *A, const mzed_t *B);
/**
* \brief Reduce matrix A to row echelon form using Gauss-Newton-John
* elimination.
*
* \param A Matrix to be reduced.
* \param full If set to true, the reduced row echelon form will be
* computed.
*
* \ingroup Echelon
*/
rci_t mzed_echelonize_newton_john(mzed_t *A, int full);
/**
* \brief Invert the matrix A using Gauss-Newton-John elimination.
*
* \param B Preallocated space for inversion matrix, may be NULL for
* automatic creation.
* \param A Matrix to be inverted.
*/
mzed_t *mzed_invert_newton_john(mzed_t *B, const mzed_t *A);
/**
* \brief \f$B = L^{-1} \cdot B\f$ using Newton-John tables.
*
* \param L Lower-triangular matrix (other entries are ignored).
* \param B Matrix.
*
* \ingroup Triangular
*/
void mzed_trsm_lower_left_newton_john(const mzed_t *L, mzed_t *B);
/**
* \brief \f$B = L^{-1} \cdot B\f$ using Newton-John tables.
*
* \param L Lower-triangular matrix (other entries are ignored).
* \param B Matrix.
*
* \ingroup Triangular
*/
void mzd_slice_trsm_lower_left_newton_john(const mzd_slice_t *L, mzd_slice_t *B);
/**
* \brief \f$B = U^{-1} \cdot B\f$ using Newton-John tables.
*
* \param U Upper-triangular matrix (other entries are ignored).
* \param B Matrix.
*
* \ingroup Triangular
*/
void mzed_trsm_upper_left_newton_john(const mzed_t *U, mzed_t *B);
/**
* \brief \f$B = U^{-1} \cdot B\f$ using Newton-John tables.
*
* \param U Upper-triangular matrix (other entries are ignored).
* \param B Matrix.
*
* \ingroup Triangular
*/
void mzd_slice_trsm_upper_left_newton_john(const mzd_slice_t *U, mzd_slice_t *B);
/**
* \brief PLE decomposition: \f$L \cdot E = P\cdot A\f$ using Newton-John tables.
*
* \ingroup PLE
*/
rci_t mzed_ple_newton_john(mzed_t *A, mzp_t *P, mzp_t *Q);
/**
* \brief The function looks up 6 entries from position i,startcol in
* each row and adds the appropriate row from T to the row i.
*
* This process is iterated for i from startrow to stoprow
* (exclusive).
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param T Newton-John table
*
* \ingroup RowOperations
*/
static inline void mzed_process_rows(mzed_t *M, const rci_t startrow, const rci_t endrow, rci_t startcol, const njt_mzed_t *T) {
mzd_process_rows(M->x, startrow, endrow, startcol*M->w, M->w, T->T->x, T->L);
}
/**
* \brief Same as mzed_process_rows but works with two Newton-John tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param T0 Newton-John table
* \param T1 Newton-John table
*
* \ingroup RowOperations
*/
static inline void mzed_process_rows2(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
const njt_mzed_t *T0, const njt_mzed_t *T1) {
mzd_process_rows2(M->x, startrow, endrow, startcol*M->w, 2*M->w, T0->T->x, T0->L, T1->T->x, T1->L);
}
/**
* \brief Same as mzed_process_rows but works with three Newton-John
* tables in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param T0 Newton-John table
* \param T1 Newton-John table
* \param T2 Newton-John table
*
* \ingroup RowOperations
*/
static inline void mzed_process_rows3(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2) {
mzd_process_rows3(M->x, startrow, endrow, startcol*M->w, 3*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L);
}
/**
* \brief Same as mzed_process_rows but works with four Newton-John
* tables in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param T0 Newton-John table
* \param T1 Newton-John table
* \param T2 Newton-John table
* \param T3 Newton-John table
*
* \ingroup RowOperations
*/
static inline void mzed_process_rows4(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2, const njt_mzed_t *T3) {
mzd_process_rows4(M->x, startrow, endrow, startcol*M->w, 4*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L, T3->T->x, T3->L);
}
/**
* \brief Same as mzed_process_rows but works with five Newton-John
* tables in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param T0 Newton-John table
* \param T1 Newton-John table
* \param T2 Newton-John table
* \param T3 Newton-John table
* \param T4 Newton-John table
*
* \ingroup RowOperations
*/
static inline void mzed_process_rows5(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2, const njt_mzed_t *T3, const njt_mzed_t *T4) {
mzd_process_rows5(M->x, startrow, endrow, startcol*M->w, 5*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L, T3->T->x, T3->L, T4->T->x, T4->L);
}
/**
* \brief Same as mzed_process_rows but works with six Newton-John tables
* in parallel.
*
* \param M Matrix to operate on
* \param startrow top row which is operated on
* \param endrow bottom row which is operated on
* \param startcol Starting column for addition
* \param T0 Newton-John table
* \param T1 Newton-John table
* \param T2 Newton-John table
* \param T3 Newton-John table
* \param T4 Newton-John table
* \param T5 Newton-John table
*
* \ingroup RowOperations
*/
static inline void mzed_process_rows6(mzed_t *M, const rci_t startrow, const rci_t endrow, const rci_t startcol,
const njt_mzed_t *T0, const njt_mzed_t *T1, const njt_mzed_t *T2,
const njt_mzed_t *T3, const njt_mzed_t *T4, const njt_mzed_t *T5) {
mzd_process_rows6(M->x, startrow, endrow, startcol*M->w, 6*M->w, T0->T->x, T0->L, T1->T->x, T1->L, T2->T->x, T2->L, T3->T->x, T3->L, T4->T->x, T4->L, T5->T->x, T5->L);
}
#endif //M4RIE_NEWTON_JOHN_H
|