This file is indexed.

/usr/include/m4rie/mzd_slice.h is in libm4rie-dev 20140914-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/**
 * \file mzd_slice.h
 *
 * \brief Matrices using a bitsliced representation.
 *
 * Matrices over \GF2E can be represented as polynomials with matrix
 * coefficients where the matrices are in \GF2.
 *
 * In this file, matrices over \GF2E are implemented as \e slices of
 * matrices over \GF2 where each slice holds the coefficients of one
 * degree when viewing elements of \GF2E as polynomials over \GF2.
 *
 * \author Martin Albrecht <martinralbrecht@googlemail.com>
 */

#ifndef M4RIE_MZD_SLICE
#define M4RIE_MZD_SLICE

/******************************************************************************
*
*            M4RIE: Linear Algebra over GF(2^e)
*
*    Copyright (C) 2010,2011 Martin Albrecht <martinralbrecht@googlemail.com>
*
*  Distributed under the terms of the GNU General Public License (GEL)
*  version 2 or higher.
*
*    This code is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
*    General Public License for more details.
*
*  The full text of the GPL is available at:
*
*                  http://www.gnu.org/licenses/
******************************************************************************/

#include <m4ri/m4ri.h>
#include <m4rie/mzd_poly.h>
#include <m4rie/mzed.h>
#include <m4rie/blm.h>

/**
 * \brief Dense matrices over \GF2E represented as slices of matrices over \GF2.
 *
 * This is one of two fundamental data types of this library, the
 * other being mzed_t. For large matrices (\f$m \times n \times e > L2\f$)
 * it is advisable to use this data type because multiplication
 * is faster in this representation. Hence, compared to mzed_t one
 * saves the time to convert betwen representations and - more
 * importantly - memory.
 *
 * \ingroup Definitions
 */

typedef struct {
  mzd_t *x[16]; /**< mzd_slice_t::x[e][i,j] is the \e-th bit of the entry A[i,j]. */
  rci_t nrows; /**< Number of rows. */
  rci_t ncols; /**< Number of columns. */
  unsigned int depth;   /**< Number of slices                *
                         * \note This value may be greater than finite_field->degree in some situations */
  const gf2e *finite_field; /**<A finite field \GF2E. */
} mzd_slice_t;


/**
 * \brief Create a new matrix of dimension \f$ m \times n\f$ over ff
 *
 * Use mzd_slice_free() to free it.
 *
 * \param ff Finite field
 * \param m Number of rows
 * \param n Number of columns
 *
 * \ingroup Constructions
 */

static inline mzd_slice_t *mzd_slice_init(const gf2e *ff, const rci_t m, const rci_t n) {
  mzd_slice_t *A = (mzd_slice_t*)m4ri_mm_malloc(sizeof(mzd_slice_t));

  A->finite_field = ff;
  A->nrows = m;
  A->ncols = n;
  A->depth = ff->degree;

  for(int i=0; i<A->depth; i++)
    A->x[i] = mzd_init(m,n);
  return A;
}

/**
 * \brief Return diagonal matrix with value on the diagonal.
 *
 * If the matrix is not square then the largest possible square
 * submatrix is used.
 *
 * \param A Matrix.
 * \param value Finite Field element.
 *
 * \ingroup Assignment
 */

void mzd_slice_set_ui(mzd_slice_t *A, word value);

/**
 * \brief Extend or truncate the depth of A to depth new_depth.
 *
 * We may think of mzd_slice_t as polynomials over matrices over
 * \GF2. This function then truncates/extends these polynomials to
 * degree new_depth-1. In case of extension, all newly created
 * coefficients are zero, hence the mathematical content of A is not
 * changed. In case of truncation higher degree terms are simply
 * deleted and A's mathematical content modified.
 *
 * \param A Matrix, modifed in place.
 * \param new_depth Integer >= mzd_slice_t::finite_field::degree.
 */

static inline mzd_slice_t *_mzd_slice_adapt_depth(mzd_slice_t *A, const unsigned int new_depth) {
  assert(A->finite_field->degree <= new_depth);

  if (new_depth < A->depth) {
    for(unsigned int i=new_depth; i<A->depth; i++) {
      mzd_free(A->x[i]);
      A->x[i] = NULL;
    }
  } else {
    for(unsigned int i=A->depth; i<new_depth; i++) {
      A->x[i] = mzd_init(A->nrows,A->ncols);
    }
  }
  A->depth = new_depth;
  return A;
}


/**
 * \brief Free a matrix created with mzd_slice_init().
 *
 * \param A Matrix.
 *
 * \ingroup Constructions
 */

static inline void mzd_slice_free(mzd_slice_t *A) {
  for(int i=0; i<A->depth; i++)
   mzd_free(A->x[i]);
#if __M4RI_USE_MM_MALLOC
  _mm_free(A);
#else
  free(A);
#endif
}

/**
 * \brief copy A to B
 *
 * \param B Matrix.
 * \param A Matrix. 
 *
 * \ingroup Constructions
 */

static inline mzd_slice_t *mzd_slice_copy(mzd_slice_t *B, const mzd_slice_t *A) {
  if(B == NULL)
    B = mzd_slice_init(A->finite_field, A->nrows, A->ncols);

  for(int i=0; i<A->depth; i++) {
    mzd_copy(B->x[i],A->x[i]);
  }
  return B;
}

/**
 * \brief Get the element at position (row,col) from the matrix A.
 *
 * \param A Source matrix.
 * \param row Starting row.
 * \param col Starting column.
 *
 * \todo This function is considerably slower than it needs to be.
 *
 * \ingroup Assignment
 */ 

static inline word mzd_slice_read_elem(const mzd_slice_t *A, const rci_t row, const rci_t col) {
  word ret = 0;
  for(int i=0; i<A->depth; i++) {
    ret |= mzd_read_bit(A->x[i], row, col)<<i;
  }
  return ret;
}

/**
 * \brief At the element elem to the element at position (row,col) in the matrix A.
 *
 * \param A Target matrix.
 * \param row Starting row.
 * \param col Starting column.
 * \param elem finite field element.
 *
 * \todo This function is considerably slower than it needs to be.
 *
 * \ingroup Assignment
 */

static inline void mzd_slice_add_elem(mzd_slice_t *A, const rci_t row, const rci_t col, word elem) {
  for(int i=0; i<A->depth; i++) {
    __mzd_xor_bits(A->x[i], row, col, 1, elem&1);
    elem=elem>>1;
  }
}

/**
 * \brief Write the element elem to the position (row,col) in the matrix A.
 *
 * \param A Target matrix.
 * \param row Starting row.
 * \param col Starting column.
 * \param elem finite field element.
 *
 * \todo This function is considerably slower than it needs to be.
 *
 * \ingroup Assignment
 */

static inline void mzd_slice_write_elem(mzd_slice_t *A, const rci_t row, const rci_t col, word elem) {
  for(int i=0; i<A->depth; i++) {
    mzd_write_bit(A->x[i], row, col, elem&1);
    elem=elem>>1;
  }
}

/**
 * \brief Return -1,0,1 if if A < B, A == B or A > B respectively.
 *
 * \param A Matrix.
 * \param B Matrix.
 *
 * \note This comparison is not well defined (except for !=0)
 * mathematically and relatively arbitrary since elements of GF(2^k)
 * don't have an ordering.
 *
 * \ingroup Comparison
 */

static inline int mzd_slice_cmp(mzd_slice_t *A, mzd_slice_t *B) {
  int r = 0;
  if ((A->finite_field != B->finite_field) | (A->depth != B->depth) )
    return -1;
  for(int i=0; i<A->depth; i++)
    r |= mzd_cmp(A->x[i],B->x[i]);
  return r;
}

/**
 * \brief Zero test for matrix.
 *
 * \param A Input matrix.
 *
 * \ingroup Comparison
 */

static inline int mzd_slice_is_zero(const mzd_slice_t *A) {
  for(int i=0; i<A->depth; i++) {
    if (!mzd_is_zero(A->x[i]))
      return 0;
  }
  return 1;
}

/**
 * \brief Swap the two rows rowa and rowb.
 *
 * \param A Matrix
 * \param rowa Row index.
 * \param rowb Row index.
 *
 * \ingroup RowOperations
 */

static inline void mzd_slice_row_swap(mzd_slice_t *A, const rci_t rowa, const rci_t rowb) {
  for(int i=0; i<A->depth; i++) {
    mzd_row_swap(A->x[i], rowa, rowb);
  }
}

/**
 * \brief copy row j from A to row i from B.
 *
 * The number of columns of A must be less than or equal to the number of columns of B.
 *
 * \param B Target matrix.
 * \param i Target row index.
 * \param A Source matrix.
 * \param j Source row index.
 *
 * \ingroup RowOperations
 */

static inline void mzd_slice_copy_row(mzd_slice_t* B, size_t i, const mzd_slice_t* A, size_t j) {
  for(int ii=0; ii<A->depth; ii++)
    mzd_copy_row(B->x[ii], i, A->x[ii], j);
}

/**
 * \brief Swap the two columns cola and colb.
 *
 * \param A Matrix.
 * \param cola Column index.
 * \param colb Column index.
 *
 * \ingroup RowOperations
 */

static inline void mzd_slice_col_swap(mzd_slice_t *A, const rci_t cola, const rci_t colb) {
  for(int i=0; i<A->depth; i++)
    mzd_col_swap(A->x[i], cola, colb);
}

/**
 * \brief Swap the two columns cola and colb but only between start_row and stop_row.
 *
 * \param A Matrix.
 * \param cola Column index.
 * \param colb Column index.
 * \param start_row Row index.
 * \param stop_row Row index (exclusive).
 */

static inline void mzd_slice_col_swap_in_rows(mzd_slice_t *A, const rci_t cola, const rci_t colb, const rci_t start_row, rci_t stop_row) {
  for(unsigned int e=0; e < A->finite_field->degree; e++) {
    mzd_col_swap_in_rows(A->x[e], cola, colb, start_row, stop_row);
  };
}

/**
 * \brief Add the rows sourcerow and destrow and stores the total in
 * the row destrow.
 *
 * \param A Matrix
 * \param sourcerow Index of source row
 * \param destrow Index of target row
 *
 * \note this can be done much faster with mzd_combine.
 *
 * \ingroup RowOperations
 */

static inline void mzd_slice_row_add(mzd_slice_t *A, const rci_t sourcerow, const rci_t destrow) {
  for(int i=0; i<A->depth; i++)
    mzd_row_add(A->x[i], sourcerow, destrow);
}

/**
 * \brief Print a matrix to stdout.
 *
 * \param A Matrix
 *
 * \ingroup StringConversions
 */

void mzd_slice_print(const mzd_slice_t *A);

/**
 * \brief Move the submatrix L of rank r2 starting at column n1 to the left to column r1.
 *
 * \param A Matrix
 * \param r1 Integer < n1
 * \param n1 Integer > r1
 * \param r2 Integer <= A->ncols - n1
 */

static inline void _mzd_slice_compress_l(mzd_slice_t *A, const rci_t r1, const rci_t n1, const rci_t r2) {
  for(int i=0; i<A->depth; i++)
    _mzd_compress_l(A->x[i], r1, n1, r2);
}

/**
 * \brief Concatenate B to A and write the result to C.
 *
 * That is,
 \verbatim
 [ A ], [ B ] -> [ A  B ] = C
 \endverbatim
 * The inputs are not modified but a new matrix is created.
 *
 * \param C Matrix, may be NULL for automatic creation.
 * \param A Matrix.
 * \param B Matrix.
 *
 * \note This is sometimes called augment.
 *
 * \ingroup Constructions
 */

static inline mzd_slice_t *mzd_slice_concat(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  if(C == NULL)
    C = mzd_slice_init(A->finite_field, A->nrows, A->ncols + B->ncols);

  for(int i=0; i<A->depth; i++) {
    mzd_concat(C->x[i], A->x[i], B->x[i]);
  }
  return C;
}

/**
 * \brief Stack A on top of B and write the result to C.
 *
 * That is,
 \verbatim
 [ A ], [ B ] -> [ A ] = C
                 [ B ]
 \endverbatim
 * The inputs are not modified but a new matrix is created.
 *
 * \param C Matrix, may be NULL for automatic creation
 * \param A Matrix
 * \param B Matrix
 *
 * \ingroup Constructions
 */

static inline mzd_slice_t *mzd_slice_stack(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  if(C == NULL)
    C = mzd_slice_init(A->finite_field, A->nrows + B->nrows, A->ncols);

  for(int i=0; i<A->depth; i++) {
    mzd_stack(C->x[i], A->x[i], B->x[i]);
  }
  return C;
}

/**
 * \brief Copy a submatrix.
 *
 * \param S Preallocated space for submatrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param lowr start rows
 * \param lowc start column
 * \param highr stop row (this row is \em not included)
 * \param highc stop column (this column is \em not included)
 *
 * \ingroup Constructions
 */

static inline mzd_slice_t *mzd_slice_submatrix(mzd_slice_t *S, const mzd_slice_t *A,
                                               const size_t lowr, const size_t lowc, const size_t highr, const size_t highc) {
  if(S==NULL)
    S = mzd_slice_init(A->finite_field, highr - lowr, highc - lowc);

  for(int i=0; i<A->depth; i++) {
    mzd_submatrix(S->x[i], A->x[i], lowr, lowc, highr, highc);
  }
  return S;
}

/**
 * \brief Create a window/view into the matrix M.
 *
 * A matrix window for M is a meta structure on the matrix M. It is
 * setup to point into the matrix so M \em must \em not be freed while the
 * matrix window is used.
 *
 * This function puts the restriction on the provided parameters that
 * all parameters must be within range for M which is not currently
 * enforced.
 *
 * Use mzd_slice_free_window() to free the window.
 *
 * \param A Matrix
 * \param lowr Starting row (inclusive)
 * \param lowc Starting column (inclusive)
 * \param highr End row (exclusive)
 * \param highc End column (exclusive)
 *
 * \ingroup Constructions
 */

static inline mzd_slice_t *mzd_slice_init_window(const mzd_slice_t *A,
                                                 const size_t lowr, const size_t lowc,
                                                 const size_t highr, const size_t highc) {
  mzd_slice_t *B = (mzd_slice_t *)m4ri_mm_malloc(sizeof(mzd_slice_t));
  B->finite_field = A->finite_field;
  B->depth = A->depth;
  B->nrows = highr - lowr;
  B->ncols = highc - lowc;
  for(int i=0; i<A->depth; i++) {
    B->x[i] = mzd_init_window(A->x[i], lowr, lowc, highr, highc);
  }
  return B;
}

/**
 * \brief Free a matrix window created with mzd_slice_init_window().
 *
 * \param A Matrix
 *
 * \ingroup Constructions
 */

static inline void mzd_slice_free_window(mzd_slice_t *A) {
  for(int i=0; i<A->depth; i++) {
    mzd_free_window(A->x[i]);
  }
  m4ri_mm_free(A);
}

/**
 * \brief \f$ C = A + B\f$.
 *
 * \param C Preallocated sum matrix.
 * \param A Matrix
 * \param B Matrix
 *
 * \ingroup Addition
 */

static inline mzd_slice_t *_mzd_slice_add(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  _mzd_ptr_add(C->x, (const mzd_t**)A->x, (const mzd_t**)B->x, A->depth);
  return C;
}

/**
 * \brief \f$ C = A + B\f$.
 *
 * C is also returned. If C is NULL then a new matrix is created which
 * must be freed by mzd_slice_free().
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 *
 * \ingroup Addition
 */

static inline mzd_slice_t *mzd_slice_add(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  if ( (A->finite_field != B->finite_field) | (A->nrows != B->nrows) | (A->ncols != B->ncols) ) 
    m4ri_die("mzd_slice_add: input matrices A (%d x %d) and B (%d x %d) do not match.\n",A->nrows,A->ncols, B->nrows,B->ncols);

  if(C == NULL)
    C = mzd_slice_init(A->finite_field, A->nrows, A->ncols);
  else if ( (A->finite_field != C->finite_field) | (A->nrows != C->nrows) | (A->ncols != C->ncols) )
    m4ri_die("mzd_slice_add: input matrix A (%d x %d) and output matrix (%d x %d) do not match.\n",A->nrows,A->ncols, C->nrows, C->ncols);

  return _mzd_slice_add(C,A,B);
}

/**
 * \brief \f$ C = A + B\f$.
 *
 * C is also returned. If C is NULL then a new matrix is created which
 * must be freed by mzd_slice_free().
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 *
 * \ingroup Addition
 */

#define mzd_slice_sub mzd_slice_add

/**
 * \brief \f$ C = A + B\f$.
 *
 * \param C Preallocated sum matrix, may be NULL for automatic creation.
 * \param A Matrix
 * \param B Matrix
 *
 * \ingroup Addition
 */

#define _mzd_slice_sub _mzd_slice_add

/**
 * \brief \f$ C = A \cdot B \f$ using quadratic polynomial multiplication with matrix coefficients.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \ingroup Multiplication
 */

mzd_slice_t *_mzd_slice_addmul_naive(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B);

/**
 * \brief \f$ C = C + A \cdot B \f$ using Karatsuba multiplication of polynomials over matrices over \GF2.
 *
 * This function reduces matrix multiplication over \GF2E to matrix
 * multiplication over \GF2.
 *
 * As an example consider \f$ \mathbb{F}_4 \f$. The minimal polynomial is
 * \f$ x^2 + x + 1 \f$. The matrix A can be represented as A0*x + A1 and the matrix B
 * can be represented as B0*x + B1. Their product C is
 * \f[
 A0 \cdot B0 \cdot x^2 + (A0 \cdot B1 + A1 \cdot B0) \cdot x + A1*B1.
 * \f]
 * Reduction modulo x^2 + x + 1 gives
 * \f[
 (A0 \cdot B0 + A0 \cdot B1 + A1 \cdot B0) \cdot x + A1 \cdot B1 + A0 \cdot B0.
 * \f]
 * This can be re-written as
 * \f[
 ((A0 + A1) \cdot (B0 + B1) + A1 \cdot B1) \cdot x + A1 \cdot B1 + A0 \cdot B0
 * \f]
 * and thus this multiplication costs 3 matrix multiplications over
 * \GF2 and 4 matrix additions over \GF2.
 *
 * This technique was proposed in Tomas J. Boothby and Robert
 * W. Bradshaw; Bitslicing and the Method of Four Russians Over Larger
 * Finite Fields; 2009; http://arxiv.org/abs/0901.1413
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa mzed_mul() mzd_slice_mul() mzd_slice_addmul_karatsuba()
 *
 * \ingroup Multiplication
 */

static inline mzd_slice_t *_mzd_slice_addmul_karatsuba(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  if (C == NULL)
    C = mzd_slice_init(A->finite_field, A->nrows, B->ncols);
  switch(A->finite_field->degree) {
  case  2:  _mzd_ptr_addmul_karatsuba2(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  3:  _mzd_ptr_addmul_karatsuba3(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  4:  _mzd_ptr_addmul_karatsuba4(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  5:  _mzd_ptr_addmul_karatsuba5(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  6:  _mzd_ptr_addmul_karatsuba6(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  7:  _mzd_ptr_addmul_karatsuba7(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  8:  _mzd_ptr_addmul_karatsuba8(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case  9:  _mzd_ptr_addmul_karatsuba9(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 10: _mzd_ptr_addmul_karatsuba10(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 11: _mzd_ptr_addmul_karatsuba11(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 12: _mzd_ptr_addmul_karatsuba12(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 13: _mzd_ptr_addmul_karatsuba13(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 14: _mzd_ptr_addmul_karatsuba14(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 15: _mzd_ptr_addmul_karatsuba15(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  case 16: _mzd_ptr_addmul_karatsuba16(A->finite_field, C->x, (const mzd_t**)A->x, (const mzd_t**)B->x); break;
  default:
    C = _mzd_slice_addmul_naive(C, A, B); break;
  }
  return C;
}

/**
 * \brief \f$ C = A \cdot B \f$ using Karatsuba multiplication of polynomials over matrices over \GF2.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_addmul_karatsuba()
 *
 * \ingroup Multiplication
 */

static inline mzd_slice_t *mzd_slice_mul_karatsuba(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  if (A->ncols != B->nrows || A->finite_field != B->finite_field)
    m4ri_die("mzd_slice_mul_karatsuba: rows, columns and fields must match.\n");
  if (C != NULL) {
    if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols)
      m4ri_die("mzd_slice_mul_karatsuba: rows and columns of returned matrix must match.\n");
    mzd_slice_set_ui(C,0);
  }
  return _mzd_slice_addmul_karatsuba(C, A, B);
}

/**
 * \brief \f$ C = C + A \cdot B\f$ using Karatsuba multiplication of polynomials over matrices over \GF2.
 *
 * \param C Preallocated return matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_addmul_karatsuba()
 *
 * \ingroup Multiplication
 */

static inline mzd_slice_t *mzd_slice_addmul_karatsuba(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  assert(C != NULL);
  if (A->ncols != B->nrows || A->finite_field != B->finite_field)
    m4ri_die("mzd_slice_addmul_karatsuba: rows, columns and fields must match.\n");
  if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols)
    m4ri_die("mzd_slice_addmul_karatsuba: rows and columns of returned matrix must match.\n");
  return _mzd_slice_addmul_karatsuba(C, A, B);
}

/**
 * \brief \f$ C = A \cdot B \f$ using bilinear maps over matrices over \GF2.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 * \param f Blinear map such that C == H*((F*A) x (G*B)), if NULL it will be created and destroyed
 *
 * \ingroup Multiplication
 *
 * \note Calling _mzd_slice_addmul_karatsuba will be more efficient
 */

static inline mzd_slice_t *_mzd_slice_mul_blm(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B, blm_t *f) {  
  if (C == NULL)
    C = mzd_slice_init(A->finite_field, A->nrows, B->ncols);

  int free_f = 0;

  if (f == NULL) {
    const deg_t d = C->finite_field->degree;
    if (d > 16) 
      m4ri_die("degrees > 16 unsupported.\n");
    int *p = (int *)m4ri_mm_calloc(M4RIE_MAX_DEGREE+1, sizeof(int));
    p[d] = 1;
    free_f = 1;
    f = blm_init_crt(C->finite_field, d, d, p, 1);
    m4ri_mm_free(p);
  }

  _mzd_ptr_apply_blm(C->x, (const mzd_t**)A->x, (const mzd_t**)B->x, f);

  if (free_f)
    blm_free(f);
  
  return C;
}

/**
 * \brief \f$ C = A \cdot B \f$ using bilinear maps over matrices over \GF2.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 * \param f Blinear map such that C == H*((F*A) x (G*B)), if NULL it will be created and destroyed
 *
 * \ingroup Multiplication
 *
 * \note Calling mzd_slice_mul_karatsuba will be more efficient
 */

static inline mzd_slice_t *mzd_slice_mul_blm(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B, blm_t *f) {
  if (A->ncols != B->nrows || A->finite_field != B->finite_field)
    m4ri_die("mzd_slice_mul_karatsuba: rows, columns and fields must match.\n");
  if (C != NULL) {
    if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols)
      m4ri_die("mzd_slice_mul_karatsuba: rows and columns of returned matrix must match.\n");
    mzd_slice_set_ui(C,0);
  }
  return _mzd_slice_mul_blm(C, A, B, f);
}

/**
 * \brief \f$ C = C + A \cdot B \f$ using bilinear maps over matrices over \GF2.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 * \param f Blinear map such that C == C + H*((F*A) x (G*B)), if NULL it will be created and destroyed
 *
 * \ingroup Multiplication
 *
 * \note Calling mzd_slice_addmul_karatsuba will be more efficient
 */

static inline mzd_slice_t *mzd_slice_addmul_blm(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B, blm_t *f) {
  assert(C != NULL);
  if (A->ncols != B->nrows || A->finite_field != B->finite_field)
    m4ri_die("mzd_slice_addmul_karatsuba: rows, columns and fields must match.\n");
  if (C->finite_field != A->finite_field || C->nrows != A->nrows || C->ncols != B->ncols)
    m4ri_die("mzd_slice_addmul_karatsuba: rows and columns of returned matrix must match.\n");
  mzd_slice_t *T = _mzd_slice_mul_blm(NULL, A, B, f);
  mzd_slice_add(C, C, T);
  mzd_slice_free(T);
  return C;
}


/**
 * \brief \f$ C = a \cdot B \f$.
 *
 * \param C Preallocated product matrix or NULL.
 * \param a finite field element.
 * \param B Input matrix B.
 *
 * \ingroup Multiplication
 */

mzd_slice_t *mzd_slice_mul_scalar(mzd_slice_t *C, const word a, const mzd_slice_t *B);

/**
 * \brief \f$ C += a \cdot B \f$.
 *
 * \param C Preallocated product matrix.
 * \param a finite field element.
 * \param B Input matrix B.
 *
 * \ingroup Multiplication
 */

mzd_slice_t *mzd_slice_addmul_scalar(mzd_slice_t *C, const word a, const mzd_slice_t *B);


/**
 * \brief \f$ C = A \cdot B \f$.
 *
 * \param C Preallocated return matrix, may be NULL for automatic creation.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_addmul_karatsuba()
 *
 * \ingroup Multiplication
 */

static inline mzd_slice_t *mzd_slice_mul(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  return mzd_slice_mul_karatsuba(C,A,B);
}

/**
 * \brief \f$ C = C + A \cdot B \f$.
 *
 * \param C Preallocated return matrix.
 * \param A Input matrix A.
 * \param B Input matrix B.
 *
 * \sa _mzd_slice_addmul_karatsuba(n)
 *
 * \ingroup Multiplication
 */

static inline mzd_slice_t *mzd_slice_addmul(mzd_slice_t *C, const mzd_slice_t *A, const mzd_slice_t *B) {
  return mzd_slice_addmul_karatsuba(C,A,B);
}

/**
 * \brief Fill matrix A with random elements.
 *
 * \param A Matrix
 *
 * \todo Allow the user to provide a RNG callback.
 *
 * \ingroup Assignment
 */

static inline void mzd_slice_randomize(mzd_slice_t *A) {
  for(int i=0; i<A->depth; i++)
    mzd_randomize(A->x[i]);
}

/**
 * \brief Copy matrix A to B.
 *
 * \param B May be NULL for automatic creation.
 * \param A Source matrix.
 *
 * \ingroup Assignment
 */


#endif //M4RIE_MZD_SLICE